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Consideration of simple models of wave propagation helps to understand the physical characteristics
of soil layers. In this paper, a new method for modeling wave propagation in multiple linear systems is
developed, its application is discussed and the results are compared with those of conventional
correlation, impulse response and geophysical methods. The new method reveals the arrival times of
incident and reflected waves as well as their relative amplitudes. The effects of weighting coefficients on
Fourier amplitude spectrum of the results are also discussed for some models and actual strong ground

motion records.
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1. INTRODUCTION

Closely spaced seismograph arrays are widely
employed to record the strong ground motion on
the surface or at lower elevations of ground. Those
records are used to study the spatial as well as
temporal variation of ground motion”® and
provide the essential information for seismic
design of largely extended foundation structures,
deeply embedded or buried facilities and lifeline
systems.

Actual earthquake ground motions reflect the
characteristics of the source mechanism, wave
propagation path and amplification effect of the
soil layers. However, those effects cannot be
recognized directly from the records due to
complexity of actual ground motions. Therefore,
some methods are used either to simplify the
ground motion source (such as geophysical
methods) or to make simplified models of wave
propagation (such as impulse response and
correlation functions).

Propagation of wave through ground layers is
studied by using geophysical methods in which an
impulsive seismic source can be generated by
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explosion or impact. The arrival times of the
generated waves by such a simple seismic source
would be detected easily at different points on the
ground surface or at different depths. These
methods are widely employed for evaluating the
dynamic properties of soil. However, the
parameters estimated by such methods are rather
different from those during a strong earthquake
motion, which is much more complicated.

When ground motion at one observation point
repeats itself exactly at another point and noise is
not involved in the motion, an impulse may be
assumed to be a simple model of ground motion at
one location and the impulse response would be
obtained at the other by means of the soil system
transfer function. Actual earthquake motions are
much complicated and this ideal model usually
fails to reveal the properties of the soil system.

The other model that can relate motions at two
locations is the cross-correlation. For the case of
completely coherent motion, it is equal to the
autocorrelation of the motion at one observation
point but shifted by a time lag or advance. Actual
earthquake motions may contain superposed waves
that are reflected and refracted from various
interfaces. Therefore, the cross-correlation of the
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Fig.1 A time-invariant linear soil system

motions at two observation points would not be
simply the shifted results of the autocorrelation.
Further, the shape of cross-correlation function is
greatly influenced by the wave propagation
properties and by the shape of the autocorrelation
function which causes some limitations in practice.

This paper presents a new method for modeling
wave propagation in multiple linear systems by
considering the statistical correlation of the
earthquake ground motions at different observation
points. The paper describes the capability of the
presented method in comparison with the other
existing methods by using some models as well as
actual strong ground motion records.

2. METHODOLOGY

(1) One linear soil system

A time-invariant linear soil system (Fig.1)
subjected to the input earthquake motion, f¥), at
the ground surface and the output g(¢) at depth is
defined by means of the convolution integral”

g = j‘ It — wydu

where A(z) is the weith function.

The input and output of the system in the
frequency domain can be related by means of the
transfer function H{®). For the case that the input
and output of the system are digitized earthquake
ground motions, the output at each frequency is
specified by”
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where At is the sampling rate in the time domain
and N is the number of samples. F(w,) and G(o;)
are the Fourier transforms of the digitized
earthquake motion at the ground surface and at
depth .

Transfer functions depend only on physical
properties of soil systems. Therefore the same
transfer function that defines the relation of the
actual ground motion input, F(w;), and output,
G(o;), should satisfy the relation of the input
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model, X(w,), and the output model, ¥{(w,), as
follows.

Hw)) = Hw)X(o:) 3)

Consider the discrete inverse Fourier transform
of X(o;)

N-1 . 2mim
x(mAf) = K/l&} 20 X(@)e ¥ )

and assume that the amplitude of the input is
desired to be constant at an arbitrary time such as
t=0. Therefore, Eq.(4) gives the following

constraint.
1 Nz“:’
. Y e 5
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Eq.(5) implies that the value of the input at the
ground surface for m=0 (which corresponds to
t=0 in the time domain) is defined to be
normalized to unity.

Using the method of Lagrange multipliers,
squared Fourier amplitude spectra® of the ground
motions at the surface and at depth are minimized
when subjected to the constraint of Eq.(5).
Therefore the Lagrange multipliers method gives

1=3 {IX@)P +1¥@)P)

—A 6)

N-1
= ri{:) X)) - 1'

where A is the Lagrange multiplier. Summation of
square values in Eq.(6) corresponds to the power of
the input and output. A simplified model of input
and output would be obtained by minimizing
Eq.(6). When the constraint is considered, the
simplified input is modeled such that its amplitude
at =0 is unity and the simplified input and output
amplitudes approach zero at the other times unless
correlation exists between the corresponding
ordinates. If there is not any constraint in Eq.(6),
the minimization procedure gives zero input and
zero output at all times and it does not give any
useful result. Substituting Eq.(3) into Eq.(6) gives

N-1
L= 230 {1+ 1H@©@)* I X@)X (@)

1 N-1
A E%X(m,-)q]

M

in which * denotes the complex conjugate .
One may find X(0;) with minimum L by

requiring 5;6(%,3 =0 and 3% = 0. This gives A as:
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Consequently, the simplified ground motions of the
system would be determined by the following
equations:

1
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X(o;) = NAr—=Hel ©)
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2
Y(0) = Nar—1Hed (10)
1
0 [HH@I?

Eq.(10) is the response of the linear system to
the simplified input model of Eq.(9). The same
transfer function that satisfies the relationship of
the actual ground motion input and output is used
to derive Eq.(10). As a result, the complicated
strong motions of the input and output are modeled
to a simple pair that reveals the relation of the
actual strong motions and yields useful information
about the propagation of waves through the system.

The procedure leading to the simplified input
and output models is shown schematically in Fig.2.
As Fig.2 shows, the actual ground motion input,
F(®,), and output, G(®;), are used to compute the
transfer function, H(w;). Minimizing the square
values of Fourier amplitude spectra at the surface
and at depth when the constraint is in existence
would result in the simplified input model of X(®)
and the simplified output model of Y(®;), which
illustrates the statistical correlation between the
two motions. This process is named the
Normalized Input-Output Minimization (NIOM)
method. The inverse Fourier transform of Eq.(9)
gives the input model at the ground surface in the
time domain and the corresponding model at depth
would be obtained by the inverse Fourier transform
of Eq.(10).

(2) Frequency content and smoothing of the
results

High frequency components of the ground
motion are known to be more susceptible to
scattering and attenuation and those components do
not correlate to the corresponding ones at the other
observation points. Also, the noise accompanying
earthquake ground motion can affect the results
and cause fluctuations. Therefore, it is useful to
have a control on the contribution of the frequency
components in the process. Consider dx(f)/dt and

A —F(w) X (©)—ex(2)
observation |— g((—%? = H(®) model
g(t) G (w) Y (@) —y(@)

Fig.2 The schematic procedure of the NIOM method

dy(t)/dt are also taken into account and the square
values of their Fourier amplitude spectra are
minimized and properly weighted. Therefore, the
Lagrange multipliers method gives the following
equation:

L= 2 2 2
L= E(Z) {colX(@)]* + koo | X(®))]
+ o H)? + ho? | X))}

1) |
-A N—Zt ~ X((J),')— }

(11
in which the constraint of Eq.(5) is used and
co, C1, ko and k; are weighting constants.

One may again find X(»,) and Y(o;) with

?ﬁllllimum L by requiring a_,\?(LJS= ax?fm,-) =0 as
ollows:
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Egs.(12) and (13) assume that the relationship

between the weighting constants is

ko _ ki
G =a (14

which implies that the same weighting relationship
between the squared Fourier amplitude spectra of
the input and its time derivative is considered for
the output.

One may keep the value of one of the
coefficients constant in Eq.(14). In this case, co is
fixed to unity in the process. The coefficient k; is
computed in terms of the other weighting
constants. Therefore, it is enough to specify k,and
cyin the computations. The contribution of high
frequencies may be decreased by increasing ko in
Eqgs.(12) and (13) (This is shown later in Figs.5 and
9). Therefore high frequency components of the
input and output, which may be scattered or
attenuated, play a smaller role in the process. The
coefficient ¢, weights the output in comparison to



the input. When c; increases, the contribution of
the output in the process increases.

If ¢, and ko approach zero in Eqs.(12) and (13),
the simplified input in the frequency domain is:

X(w)=At fori=0,.,N-1 (15)

This implies that the simplified input in the time
domain would approach the impulse function and
therefore that the simplified output would approach
the impulse response. The effect of the weighting
constants is discussed later when the application of
the method is explained.

(3) Generalization to multiple linear systems

M linear systems are subjected to the input x(2),
and the outputs are named y(¥) to yad(#). Therefore,
the following value is minimized under the same
constraint of Eq.(5).

3 (o) + kow? (@)

+§ {elTi@pl? +kf0)?[Y/(60i)|2}] (16)

In Eq.(16), co to cps are the weighting constants
of the input and outputs squared Fourier amplitude
spectra, and ko toky are those of their time
derivatives. The multiple linear system is
considered as a number of single linear systems
such that the input is common in all. For each
single system, the relation between the weighting
constants of the input squared Fourier amplitude
spectra and its time derivative is considered to be
equal to that of the output. Therefore, the weighting
coefficients are related as:
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Cohsidering Eq.(17) and the transfer function of
the single linear system / as
Y;(o) D) 18)

then, Lagrange multipliers method gives:

N-1
=5 (18 2imr)
o +koo>,.)X(m,-)X*(w,-)}
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M ZX(mi)—-l} 19
One may find X(co;) with minimum L by requiring

aX(m,) == =0 and 55— BX‘(«)) =0. Thus, A can be obtained
as follows:
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Some algebraic manipulation leads to the following

equations for the simplified input and outputs.
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m=1 /
Yi(®;) is obtained by substituting Eq.(21) into
Eq.(18).

In case of multiple linear systems, if ¢;=1 and &,
to k,, are substituted in terms of the other weighting
constants then it is enough to specify only &, and ¢,
10 e

Generalization of the method to multiple linear
systems gives more realistic results. In this case, all
the ground motions at different observation points
are processed simultaneously, whereas in a single
input-output system the results are based on the
ground motion records at only two observation
points.

(4) Dimensionless Fourier amplitude spectrum

The Fourier amplitude spectrum of the input
and outputs, obtained from Egs.(21) and (22), can
be used in dimensionless form. This form is needed
for comparing one set of Fourier spectra to another
set in which the sampling rate is different. Eqs.(23)
and (24) show the dimensionless forms of the input
and output models respectively. It should be noted
that x(#;) and y(;) are dimensionless while £z) and
g(t) may have dimensions (see Fig.2).
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3. APPLICATION OF THE METHOD TO
SIMPLE MODELS

To clarify the effectiveness of the NIOM
method, the results of the method are compared
here with the results obtained when using
conventional autocorrelation, cross-correlation, and
impulse response methods by using simple models.
The models are made by means of a time history
and applying successive shifting and adding. The
time history f{f) is considered as the input and the
following combinations are assumed to be the
outputs of the linear systems.

21O =40 +n(@) (252)
220 =40 +3ft—1) +n(@) (25b)
23(D) =40 +3ft— 1) + 2 - 21) +n(®) (25¢)
24 =4f(0) + 3t — 1) + 21— 27)

+Ht—-31) +n(®) (25d)

The simplified input and output of the system
are obtained by transforming the results of Egs.(12)
and (13) into the time domain. The results by the
NIOM method are obtained for two cases. In the
first case, the input and output are not accompanied
by white noise (n(¢) = 0). Fig.3 corresponds to this
case and the results of the NIOM method are
compared with the results obtained by the
conventional autocorrelation and cross-correlation
methods and with those of conventional impulse
response function. In the second case, the input and
output are accompanied by white noise n(f). The
results of this case are shown in Fig.4 and
compared with the other two methods. The
weighting constants of ¢,=1, ¢,=0.001, =0.001
and the sampling rate A = 0.01sec are used for the
models mentioned in this section.

The first column in Figs.3 and 4 shows the input
of f{t) and the outputs of Egs.(25a) to (25d) for
t=0.1 sec. The second column shows the
autocorrelation of A7) at the top and
cross-correlation of A7) and g:(¥), g2(9), g3:(f) and
g4(?) below that. The third column shows the unit
impulse function at the top and the unit impulse
responses below that. The fourth column shows the
simplified input of the NIOM method at the top

and the simplified outputs below that. As Figs.3
and 4 show, the results of the NIOM method
clearly present the relationship of the input and the
different outputs as one expects from Eqgs.(25a) to
(25d), whereas the results of correlation and
impulse response methods do not. Comparison
between the third column in Figs.3 and 4 indicates
that the impulse response method is much affected
by noise.

While cross-correlation method is usually more
useful for the case that ensemble strong ground
motion records are available”, Figs.3 and 4 show
that even by considering one input and one output,
the NIOM method is potential to reveal the relation
of the input and output.

As mentioned in section 2(2), the contribution
of frequency bands in the process can be
determined by specifying the weighting constant .
The effect of &, on the frequency band of the input
model (the top figure at the fourth column of Fig.3)
obtained by applying the NIOM method to the
input and the output of Eq.(25a) is illustrated in
Fig.5. In this figure, the dimensionless Fourier
amplitude spectrum is shown for various values of
k=ky/(c,AF) and it indicates that the contributions
of high frequencies are decreased when k is
increased. The coefficient ci/co does not effect on
the results in this case. As Eqs.(23) and (24) show,
cilco is also effective when the transfer function is
not constant. However, Fig.5 can be considered as
a representative simplified Fourier amplitude
spectrum of the results by the NIOM method. The
effect of the weighting constant & is similar to that
of high cut filtering.

4. ANALYSIS OF THE ETCHUJIMA
STRONG MOTION RECORDS

The acceleration time histories recorded at the
Etchujima vertical array'® during the earthquakes
M6.0 of February 27, 1983, M6.0 of August 8,
1983, and M6.7 of December 17, 1987, are used in
this analysis. Table 1 shows the geological profile,
density of the layers, and elastic wave velocities
measured by downhole shooting. The observation
points of the array are located at elevations GL-1.0
m, GL-40.0 m, and GL-100.0 m. Fig.6 shows the
acceleration ground motion (NS component) of the
earthquake M6.0 of February 27, 1983, recorded at
different elevations of the vertical array.

The results of the analysis by using the
generalized NIOM method for multiple linear
systems are shown in Fig.7. Based on the
geophysical and geological information, the arrival



RO Correlation results . Impulse response results 4 NIOM results
LY 1
3 3
5 Qs
2 2
E 0 k4 Ai 0 1 ]
| 0 0
e s
4 -1
I S R S R 4 o2l . . 20 . ! !
EAGEL U]
1 4 4
3 3
0
2 2
0 \¢\/ 1 1
0 0
05
A4 -1
-4 ' . ' f [ . ' . ' B S f ' f ' . ' . i [ [ i [

AOC(gH)
%gs
Ek—
<¢ﬁ_‘
© e M B
© = N &

4 -4

2O =4 +3R~0.1)+2/-0.2)

s}:}“v{\v e || M

L2
N W &

-4 -4

g4(t)=4f(t\+3j(t—0 D+2/-02) +f2-0.3)

1 4 4
3 3
05
/\ 2 2 M
1 1
\/ \" ! 0
10
4 4
) 4 ' DR
M a2 0 0z o4 o a2 0 6z o4 4 02 0 0 04
Teve feac) Tivw {uag) Thve fsec)

Fig.3 Application of the NIOM method to simple models and comparison with the results obtained by the correlation and impulse
response methods. The first column shows the strong motion time history considered as the input f{#) and some
combinations of that as the outputs g,(?) to g,(¢). The second column shows the autocorrelation of f{2) at the top and
cross-correlation of f{#) and g,(?) to g,(¥) below that respectively. The third column shows the unit impulse function at the
top and the impulse responses for different cases below that. The fourth column shows the simplified input by the NIOM at
the top and the responses to the simplified input below that.
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Fig.4 Application of the NIOM method to simple models and comparison with the results obtained by the correlation and impulse
response methods. The first column shows the strong motion time history considered as the input f{#) and some
combinations of that plus the white noise n(?) as the outputs g,() to g,(¢). The second column shows the autocorrelation of
1) at the top and cross-correlation of () and g,() to g,(t) below that respectively. The third column shows the unit
impulse function at the top and the impulse responses for different cases below that. The fourth column shows the
simplified input by the NIOM at the top and the responses to the simplified input below that.

358



g 1000
E 100
:
k-] 10 ., k=0
g 1N
k- S
E 01k
£ oo
g
g o0.001}
a
0.0001 : : :
0 0.1 0.2 0.3 0.4
OAt/(2n)

0.5

Fig.5 Dimensionless Fourier amplitude spectrum of the
simplified input model obtained by the NIOM method
for the input of /{?) and the output of Eq.(25a).

Table 1 Geological and geophysical information of the

Etchujima site.
Depth Type Density P-wave | S-wave Location of
(m) (g/em®) velocity | velocity seismometer
(km/sec) | (km/sec)
0~4 sandy silt L7 0.62 0.11 GL-1.0m
410 0.94
10~16 alluvial clay 16 0.13
16~26 133
26~34 sandy silt 1.7 0.23
34~38 0.93
38~53 sandy gravel 2 0.44 GL-40.0m
53~70
70~75 fine sand 1.85 L7s 03
75~83 0.46
83~100 mudstone 19 GL-100.0m
s
1
g ® L
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Fig.6 The NS component strong motion time history of the
earthquake M6.0 of February 27,1983 recorded at
the Etchujima site.

times of S-wave and P-wave are computed and
shown in the figure. The figure shows the
simplified input and the simplified responses at
different observation points. The simplified input is
obtained at elevation GL-1.0 m and the responses
are computed and shown at GL-40.0 m and
GL-100.0 m. The weighting constants of
c=c=c;=1, k,;=0.0001 and the sampling rate
Ar=0.03 sec are used in this analysis.

The simplified outputs computed by using the
horizontal strong motion records (Fig.7, EW and
NS components) show two clear peaks
corresponding to the incident S-wave and the
reflected S-wave from the ground surface at
GL-40.0 m and GL-100.0 m. The results are
compared with the arrival times obtained by the
downhole well shooting and show good agreement.
The mentioned peaks are stable and are observed at
both the horizontal component responses for all the
three analyzed events. Some other peaks are also
observed at GL-40.0 m and GL-100.0 m of the
horizontal components. Those peaks are recognized
to be stable for different components and
earthquakes and are believed to reflect the
geological conditions.

The simplified outputs computed by applying
the generalized form of the NIOM method to the
vertical strong motion records of the three
earthquakes (Fig.7, UD component) also show
clear peaks which are in agreement with the elastic
P-wave arrival times obtained by downhole well
shooting. The remarkable achievement of
analyzing the vertical strong motion records is that
the vertical simplified outputs at GL-40.0 m and
GL-100.0 m of all the three earthquakes do not
show any peak corresponding to the S-wave
propagation. This is also confirmed by analyzing
the S-portions of the vertical component strong
motions. The results of analyzing only the
S-portions of the vertical component strong motion
records for the three events are shown in Fig.8.
This analysis shows that the S-portions of the
vertical strong motions also propagate in P-wave
velocity.

The effect of ko/(coAr*) on the NIOM results is
confirmed for the actual ground motion records.
Fig.9 shows the dimensionless Fourier amplitude
spectra of the input model for various values of
k= ko/(coAr?) obtained by the NIOM method, for
the earthquake of Feb. 27, 1983, recorded at the
Etchujima site. The actual ground motion records
also show the same trend of dimensionless Fourier
amplitude spectra as obtained for the simple model
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Fig.7 The results obtained by the NIOM method in comparison with the P-wave and S-wave elastic velocities measured by

downhole well shooting at the Etchujima site. Three components (EW, NS and UD) of strong ground motion are considered
in the analysis of each event.
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of Fig.5. The effect of the constant k is similar to
that of high cut filtering.

The method also shows the effect of soil
amplification in Fig.7. Significant differences are
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Fig.9 Dimensionless Fourier amplitude spectra of the
NIOM input model for the earthquake of 27 Feb.,
1983 at the Etchujima site.

observed between the amplitude of the peaks at
deeper layers and the relating peaks at shallower
layers, and implies that the waves are amplified
mostly in the layers from elevation GL-40.0 m to
the ground surface.

The incident and reflected peaks revealed by the
NIOM method also show a reasonable relationship
between the amplitude of the incident wave and the
reflected wave. The reflected wave amplitude is
smaller than the incident amplitude which is in
accordance with the multiple reflection theory.

5. CONCLUSIONS AND DISCUSSIONS

1) The Normalized Input-Output Minimization
(NIOM) method is capable of revealing a
simplified relationship between the input and
outputs of linear systems. The results obtained by
applying the method to simple models, including
one time history as the input and some different
combinations of that as the outputs, reveal a
distinct correlation between the input and the
outputs, and the method is shown to be more
effective than the conventional cross-correlation
and impulse response methods.

The generalized NIOM method has potential for
simultaneous processing of strong ground motions
recorded at different observation points of vertical
and/or horizontal seismic arrays.

2) Application of the method to the records of
the Etchujima vertical array yields clear arrival
times for the incident and reflected S-waves and
P-waves. The results agree with the downhole well
shooting measurements at the site.

The analysis of horizontal components of the
three earthquakes at the Etchujima site shows clear
peaks that agree with the S-wave arrival times.
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3) The vertical component responses by the
NIOM method show clear peaks for the incident
and reflected waves that agree with the P-wave
arrival times obtained by downhole well shooting.
The remarkable result is that the responses of the
vertical strong motions do not show any peak due
to propagation of S-wave. This is also confirmed
by analyzing the separated S-portion of the vertical
strong motions.

4) There is also a reasonable relationship
between the amplitudes of the incident and
reflected waves in the shallow layers. The
amplitude of the reflected wave from the ground
surface is smaller than that of the incident wave,
which is consistent with the multiple reflection
theory.

The method also shows the effect of shallow
layers on the wave amplification at the Etchujima
site. The layers from GL-40.0 m up to the ground
surface have significantly larger effect on
amplification of the wave than do the deeper layers
at the site.

5) The effects of weighting coefficients on
Fourier amplitude spectrum of the results are also
discussed for some models as well as actual strong
ground motion records. The NIOM method clearly
shows the simplified correlation of input and
outputs of linear systems and is useful for studying
wave propagation in shallow layers.

6) The NIOM method has also potential for
processing the horizontal and/or vertical
components of ground motion records at the same
or different observation points which is useful for
studying the propagation of surface waves. This
application is also considered by the authors and
the results will be published in a separate paper.

7) When considering ‘"estimation of the
system", the problem is usually up to obtaining
H(w) in Eq.2). The transfer function, H(w), is
sometimes estimated by the method of least
squares. This estimated transfer function may be
used in the NIOM method instead of that obtained
by Eq.(2). In the proposed NIOM method, square
values are minimized as in the least variance
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estimation method. The difference between these
two methods is that the latter method minimizes
summation of square values of errors whereas in
the NIOM method that of signals is minimized.
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