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We analyzed the response of elastic half space to a harmonically vibrating lateral force applied to the
surface. We first derived analytic formulae which give the wave field at an arbitrary depth. These
formulae provide a theoretical basis for a new method of physical prospecting which has been developed
recently and is believed to be crucial for the precision investigation of underground geological structure.
Next we calculated the formula for the most important lateral mode. While a large response was generated
at the surface in the form of surface waves, the radiation pattern showed remarkable directivity resulting a
cone shaped strongly excited area with vertical axis beneath the source.
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1. INTRODUCTION

The demand for precision investigation of
underground geological structures is increasing
because of the construction of huge civil structures,
exploitation of resources, prediction of earthquakes
and so on. There are many conventional methods.
Boring which makes specimens and bore-holes is
commonly performed for the site investigation.
Sonar and the underground radar system are
frequently used for engineering purposes with a
limitation of sensing depth. Natural earthquakes,
blast earthquakes, vibroseisms and air-guns are
generally used by scientists. Natural earthquakes are
a good source of geological information, but they
are destructive and uncontrollable; i.e., its
resolution is quite limited. The others also have
many limitations in terms of the signal/noise (S/N)
ratio, resolution and so on.

Recently, geophysicists have been discussing the
possibility of a new method of active elastic-wave
remote sensing of the upper crust of the earth”.
Artificial seismic sources will emanate continuous
harmonic wave of small amplitude. Although signal
is considered small, latest high performance
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seismographs with feedback control mechanism is
expected not to miss the signal so long as the
sources have practically reasonable ability provided
by modern but conventional technologies.

This signal itself appears too small to be separable
from the noise. But if the frequency of the emitted
wave is kept constant for a very long period as
several ten days or several months, we can cancel
out the noises by stacking the data. The recent
development of the GPS system and electro-
mechanical control technologies has made such idea
realistic, and models are now under field
examination. These sources carry an electric motor
and rotate an eccentric mass. Being adjusted
continually by the time signal from GPS satellites,
they have achieved constant frequency with error of
less than 107,

Another basic idea is the array-deployment
strategy of the sources; individual source is
regarded as an element of an enormous virtual
source aperture. These sources are driven with a
common identical frequency while the phase of
each source is assigned in an appropriate manner
which optimizes the prospecting mission. This



method enables a variety of different patterns of
wave radiation.

This new concept requires a mathematical theory
of compliance of elastic space ; it is necessary for
the estimation of the needed power of the sources,
the determination of the array geometry and the
phase assignment among the sources. Takei and
Kumazawa investigated the response of the elastic
full space to various modes of oscillation” and they
manufactured sources based on this knowledge.

They fixed the sources on the surface of the
ground. Although the deployment of the sources
deep in the ground is desirable, they will have to
stay for the time being on the surface; the analysis
of the response of the elastic half space is needed.
The source attached to the surface of the ground
will ordinarily generate surface waves. It may
induce some secondary modes of oscillation. All
these phenomena make worse the efficiency of the
source and make the emitted wave dirty”. Analyses
without accounting the interference at the surface of
the ground are, therefore, insufficient for the new
methodology. This is the objective of the present
paper.

In this paper, analytical formulae are derived for
all possible modes of oscillation. Next, the wave
field induced by three kinds of sources is
calculated: lateral source in full space, lateral source
and torsional source attached to the surface of
elastic half space. By using these results, we can
design the sources and plan the optimal phased
array system of the sources.

2. HISTORY OF THE MATHEMATICAL
BASIS

The study of point load in elastic solids has a long
history. One of the fundamental results in the theory
of elasticity is the Kelvin’s solution® for a force
applied at a point in a solid of indefinite extent. The
classical problem of Boussinesq” dealing with a
normal force applied at the plane boundary of a
semi-infinite solid is solved by superimposing
solutions derived from Kelvin’s results and Cerruti®
investigated a tangential force case. The Mindlin
solution” fills in the gap between the two by giving
the displacement and stresses for a case where the
force is applied near the surface. The solution is
obtained similarly by superposition of a
combination of nuclei of strain, which are derived
by synthesis from Kelvin’s solution.

The generation of elastic waves by the application
of concentrated loads on the surface or inside of a
half space is known as Lamb’s problem® since
Lamb was first to treat it. Most fully discussed were
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the surface motions generated by a line load and a
point load applied normally to the surface. Both
loads of harmonic time dependence and impulse
were considered. Also truly ingenious and skillful
introduction of a particular solution to loads inside
the half space was shown. All the followers”™'?
employed this method. Sezawa” extended Lamb's
problem to arbitrary asymmetric modes with
azimuthal dependency and suggested the general
solution.

Since the study of Reissner'”, the surface source
problem was mainly discussed as the response of a
harmonically oscillating circular disk attached to the
surface of an elastic body. A great many papers
have been published while no special attention was
paid to the behavior of the internal ground. One of
the present authors developed a general inversion
procedure of the Sezawa’s formula in applying it to
the circular disk on elastic half space'®. It is
applicable to the calculation of the response of the
internal point.

The response of a homogeneous isotropic elastic
full space to the harmonic lateral force is calculated
by the following equation' that is originally from
Kelvin's solution. The force acts in the x direction
and u, is the displacement response to the force
direction.
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where F) is the amplitude of the applied force, p is
density, w is circular frequency, R is distance, x is
horizontal distance, v, and v, are S and P wave
velocities respectively.

The response of the surface of elastic half space to
a lateral excitation at the surface is expressed in the
following equation'®,
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where F, is the amplitude of the applied force,
F(k)=(k* + B -ak'ap, a=Jk -a*, g=k*-b?,
a = @/v,, b= wlv,, ris horizontal distance, p is
rigidity and J, is Bessel function of the first kind of
order n.

Kobayashi reduced the infinite integral into a sum
of a term expressing the contribution of the residue
and an integral over a finite interval',
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Fig.1 The comparison of responses of full space and half space
with lateral force excitation

Fig. 1 is the comparison of responses of full space
and half space with lateral force excitation, where
Fy=(2nf)’ N and f = 5 Hz. Practically more higher
frequency will be used but low frequency is applied
for the convenience of the response comparison. If
excitation frequency is increased, the response will
be more complicated wave form. Twice the
amplitude of force is used for the full space
calculation. The absolute value of displacement
response is shown in Fig. 1.

The far field response of the half space is much
bigger than that of the full space. This means that a
lot of energy of the emitted wave is trapped at the
free surface as a surface wave; body wave
generation of the surface source may be poor.
Analysis of the recorded data will be difficult
because the body waves which come up with
information of deep underground is masked by the
large amplitude surface waves. This is one of the
critical issues.

3. FORMULA FOR THE WAVE IN
ELASTIC HALF SPACE INDUCED BY
A SUPERFICIAL POINT SOURCE

In this chapter, analytical formulae are
systematically derived for the wave field generated
in the elastic half space by a point source applied on
the surface.

These formulae are based upon the general
solution given by Sezawa”, who obtained the
following convenient and universal expression in
cylindrical coordinates (7, 6 2),
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where z = depth and other symbols are the same as
in Eq. (2). The components of displacement in
radial, circumferential and vertical direction are
u,cos(mé), ugsin(m) and weos(mé) (m=0, 1, 2, ),
respectively.

Similar integral representation of the stress
components is obtained as a linear combination of
first order derivatives of Eq. (3). Every possible
solution is obtainable through integral transforms'”.
This comprehensiveness is valuable for the
decomposition of the effect of interference with
secondary modes from the recorded data.

(1)Case:m=0

In this case, the torsional mode in which u, and w
vanish is separable from other modes. If a pure
torque T around the z-axis is applied :
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This integral is analytically performable and
results in the following expression:
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This is identical to the result of the pioneer work of
E. Reissner '©.

There are two axisymmetric modes in which ug
vanishes. The one is so-called vertical mode in
which pure vertical force Q is applied.
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Although the wvertical component of the

displacement is prevailing, some horizontal (radial)
displacement arises:
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The above two modes are physically realizable by
means of a single source. According to the formula
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obtained, there is another axisymmetric mode. This
mode cannot be generated by a single source, but
axisymmetric array of radially oscillating lateral
sources can generate it.

2) Case:m=1

In this case, there is no separable component;
three components always couple. The formulae
become simpler in rectangular coordinates and let #,
and u, be the displacement component in this
coordinate system, and the formulae of all the
modes takes the following form:
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If a pure lateral force P is applied in x-direction,
Fy=P and:
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This is the so-called rocking mode. As is in the
axisymmetric case, there is another, third mode
which cannot be produced by a single source but by
an appropriate array of lateral mode sources.

4. WAVE FIELD GENERATED BY THE
LATERAL MODE SOURCE

In this chapter, we calculate Eq. (9) of the most
important lateral mode. This formula is an extension
of Eq. (2).
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Fig.2 The integrand of a part of A in Eq. (11) without
exponential and Bessel function
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Fig.3 The integrand of a part of A in Eq. (11)

For the efficiency of the numerical calculation the
terms of Eq. (9) are rearranged as Eq. 1n.

A= wf{(%- % (€ o= )}/O(kr)dk an

Fig. 2 and 3 shows the integrand of the rearranged
two parts of A in Eq. (11), where f = 50 Hz, v, =
500 m/s, Poisson’s ratio = 0.25, »r =100 m, z = 1 m.
The infinite integral of the first part of Eq. (11)
converges quickly because of the influence of
exponential function. The second part of Eq. (11)
shows bad convergence only when z is particularly
small, but in such a case the proportion of this term
in the total equation is small enough to be ignored.
There are peaks at k = g in the real and imaginary
parts. Two singularities are found in the integral
path: one is the root of the Rayleigh function F(k),
the other is % = b. Analytic and semi-analytic
integration was done at these singularities with a
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Fig.4 The response contour on full space
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very short integral path. When z = 0, the contour
integral procedure is possible as is shown in
Kobayashi’s paper'. When z = 0, such a procedure
is impossible but no special integral skill is needed
because ¢ makes the infinite integral converge
quickly. The integral path was divided in many sub-
paths in accordance with the peaks, singularities and
the oscillating integrand. The error examinations of
the integration were done in many ways.

By numerical integration we can obtain a
complex-valued  response  which  contains
information about amplitude and phase.

The displacement responses of the force direction
of the full space and of the half space induced by
laterally vibrating sources are given as contour map
in Fig. 4 and 5, where 50 Hz excitation, 500 m/sec
S wave velocity, and normalized distance is used
with three different Poisson’s ratios. The three
contours in Fig. 4 are the responses of elastic full
space and those in Fig. 5 are the responses of elastic
half space. Considering symmetry, 1/4 of the total
contour map is shown in each contour of Fig. 4 and
1/2 of the total contour map is shown in each
contour of Fig. 5. The absolute value of the
responses are shown in all contours. It is difficult to
show the far-field and near-field responses together
because of large difference of the value. The
discussions here concern with far field responses
only. For avoiding black part in contour map, we
did not show the near field responses which have
dense contour lines.

With the above parameters, normalized distance
br = 628 and bz = 628 denote 1 km horizontal
distance and 1 km vertical distance respectively.
The response fluctuates with distance as shown in
Fig. 1 which is 5 Hz excitation case. Since 10 times
larger excitation frequency is applied for contour
drawing in Fig. 4 and Fig. 5, the response fluctuates
more quickly. For convenience of understanding the
general  attenuation  tendency, smoothing
(averaging) is done for contour drawing. The real
part of the response of Fig. 5(b) is shown in Fig. 6
in which distance and depth are 100 m, while
distance and depth are 1 km in Fig. 5(b). We can
check the S wave length 10 m in depth direction.

Firstly, we consider the response contours of full
space. Even though the compressibility is different,
there is no response difference in the z direction as
shown in the three contours in Fig. 4. The response
in the force direction changes with the Poisson’s
ratio which becomes smaller as the Poisson’s ratio
becomes bigger. There are inversely curved parts in
each of the contour lines that are convex to the
direction of source. P wave and S wave have their
own radiation patterns. These waves attenuate as P
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The magnitude of the P wave varies as the cosine
of the angle between the force direction and the
direction of the P wave. The magnitude of the S
wave varies as the sine of the angle between the
force direction and the direction of the S wave'”.

Thinking about the above radiation patterns, we
can understand the response contour of full space.
The response in the z direction comes from the
magnitude of the S wave and the generation of this
shear wave is not directly influenced by the
Poisson’s ratio as shown in Fig. 4. The response in
the r direction comes from the magnitude of the P
wave, and the generation of this compressional
wave is largely influenced by the Poisson’s ratio as
shown in Fig. 4.

By looking into the contours in Fig. 4(a) and (b),
we can find the inversely curved parts, shown by
dotted lines, in each of the contour lines which
make diagonal parts with relatively small amplitude
of response. Such a contour shape is from the
radiation pattern of body waves which is written in
preceding parts. The response of the upper part of
this diagonal is mainly from the magnitude of the P
wave, while the response of the lower part is mainly
from the magnitude of the S wave. When the full
space is incompressible, this diagonal becomes
horizontal, as shown in Fig. 4(c).

Secondly, we consider the response contours of
half space. Large response is generated at the free
surface of the half space. The responses in the z
direction show the same value with different
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Poisson’s ratios as shown in the three contours of
Fig. 5. We can find the diagonal lines in Fig. 5(b),
(¢) and the inversely curved parts in each of the
contour lines in Fig. 5(a) as shown in the case of
full space.

The large response on the surface in Fig. 5 is
considered to be the surface wave motion. The main
part of this surface amplification is free surface
Rayleigh waves, the depth of which is not clearly
shown here for the convenience of contour drawing.
The criterion for Rayleigh waves, i.e. exponential
decay of displacement with the depth from the free
surface, could be checked by using Eq. (8) and Eq.
9).

The absolute value of response of the free surface
is shown in Fig. 7 with four different Poisson’s
ratios. In the case of lateral source on half space,
not only the amplitude of the surface response but
also the phases of the surface response in the force
direction are influenced by compressibility, as
shown in Fig. 7. The surface response becomes
smaller and smoother with the increase of the
Poisson’s ratio. The phase delay also changes
slowly with a large Poisson’s ratio.

We can find weak diagonal parts in Fig. 5(a) as
shown in Fig. 4(a), (b). The response of the lower
part of this diagonal comes mainly from the
magnitude of the S wave and the response of the
upper part of this diagonal comes mainly from the
magnitude of P wave, but the response of this part is
smaller than that of full space. This phenomenon is
due to the trapped energy on the free surface.
Trapped means that a part of input energy is
consumed by surface wave energy. This hinders us
from emitting waves into deep underground.
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Fig.8 The response contour of half space with low Poisson’s
ratio
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Fig.9 The response decay of half space with depth

The energy propagation of the upper part of the
diagonal is mainly caused by P wave motion and
much of the energy of that part is moved to the
surface. On the other hand, the response of the
lower part can be equal with that of full space. We
examine this fact in the rest of this section. Fig. 8 is
the contours of the response of half space with a
small Poisson’s ratio which shows the absolute
value of displacement response. The response on
the upper part of the diagonal becomes smaller as
the Poisson’s ratio becomes bigger. Finally, the
response of this part shows a large difference
compared with that of the lower part. This large
difference of response of the two parts causes the
diagonal lines in Fig. 5(b), (¢).

The decay of the absolute value of response with
depth is shown in Fig. 9. The absolute values of the
responses in z direction in full space and half space
are almost the same. Especially the absolute value
of the response of full space in the far field can be
approximated as follows,
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(12)

In the response of half space to surface source, the
generation of S wave is almost same as in the full
space case but the generation of P wave is poorer
than in the full space case because the energy for P
wave is trapped near the surface.

From the above results, we found the directivity
of the response of elastic half space under the
lateral source. This area of relatively large response
has a cone shape whose axis is vertically downward
from the source. In spite of the large trapped energy
on the surface, the response of half space in this
cone is almost the same as that of full space.
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Fig.11 The response contour of torque on half space

5. THE WAVE FIELD INDUCED BY A
TORSIONAL POINT SOURCE

The response of surface torque is examined here
on the basis of Eq. (5).

The absolute value of the response to a torsional
surface source is shown in Fig. 1. There is no large
response on the surface in the response of the far
field. The torsional response in the far field does not
highly depend on depth.

A torsional source does not make surface wave.
The response in the far field attenuates slowly with
depth, besides the response near the source
attenuates quickly with depth. When r = 0, i.e.
down from the source, the response is zero.

The contour of the response of half space under
torsional excitation on the surface is shown in Fig.
11, in which the absolute value of the response is
used. Response decay with depth in the far field is
very smooth and no free surface amplification is



found. The response under the source reduces
quickly. The response decay of the torsional source
with depth and radial distance is proportional to z”
and ' respectively. The response magnitude to the
lateral source is influenced by the magnitude of
force and the response to the torsional surface
source in the far field is proportional to not only the
force magnitude of the source but also the excitation
frequency.

It is difficult to make a large torsional source but
the array system of lateral force unit can work as a
large torsional source. By arranging lateral force
units on a large circle, we can obtain the same
response, in far-field, as that induced by torque. The
new formula can be used for making such an array
system.

6. CONCLUSION

In this paper, we analyzed the response of a
homogeneous, isotropic, elastic half space to a
harmonically vibrating point source applied to its
surface, and derived analytically rigorous formulae
of the response of the space at an arbitrary depth.
These formulae provide a useful information to the
design of new artificial seismic sources which have
been developed recently.

Numerical integration was achieved for the lateral
mode with high precision; a complex-valued
response which contained the information about
amplitude and phase was obtained. The result was
compared with the response of two analytically
solvable modes: the lateral mode of the full space
and the torsional mode of the half space.

The obtained results are summarized as follows:
(1) Large response is generated at the surface in the

form of surface waves. This type of response
does not exist in the case of the full space nor in
the case of the torsional mode of the half space.

(2) The radiation pattern shows remarkable
directivity. The large response area has a cone
shape with a vertical axis beneath the source.

(3) Owing to this directivity, in spite of the large
energy trapping at the surface, the response
decay of the lateral mode with depth in the far
field is almost the same as that of the full space
case.

(4) A relatively large response area of the torsional
mode is skewed to the side down with weak
response beneath the source. The response
decay of the torsional mode is reciprocally
proportional to both the horizontal distance and
the square of the depth.

(5) The response to the torsional surface source in
the far field is proportional to the excitation
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frequency and force amplitude of the source. The
response to the lateral surface source is
influenced by the force amplitude alone.
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