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Full-scale vibration tests on the world's longest single-plane-supported cable-stayed bridge identified

various dynamic vibration characteristics.

Identification methods and their suitability were examined.

Ambient vibration tests illustrated the effects of the various vibration modes, the effects of boundary
conditions on frequency evaluations, and the importance of amplitude range in evaluating damping.
Further, forced vibration tests indicated that non-linearities seen in damping during free vibration tests can
to some degree be taken into account by the modal circle fitting method. The factors influencing the low-
frequency, high-damping characteristics of this bridge are compared with those of similar bridges.
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1. INTRODUCTION

Recent rapid progress and innovation in material
science, design and construction technology has led
to a large number of long-span bridges being
constructed.  Since bridge becomes more and
more flexible as its span increases, it is necessary
to carry out studies on aerodynamic and aseismic
stability. Important design parameters in such
studies are dynamic characteristics such as natural
frequency, natural vibration mode, and structural
damping factor. Of these, determining the natural
frequency and natural vibration mode with
relatively high accuracy has become possible.
However, it is still difficult to estimate the
structural damping factor quantitatively and
This paper is translated into English from the
Japanese paper, which originally appeared on J.
Struct. Mech. Earthquake Eng., JSCE, No.543/I-
36, pp. 247-258, 1996.7.
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theoreticallyD.

Given this background, some full-scale field
vibration measurements have been conducted on
actual bridges to validate the dynamic parameters
assumed at the design phase. The reliability of
these measurements varies depends on the
experimental and analytical methods used. In
particular, structural damping parameters are
important to the wind-resistant design of bridges,
but they are affected in many cases by a range of
factors?). They, therefore, need to be handled with
the greatest care.

In Japan, many full-scale bridge vibration tests
have been reported since the vibration tests using
large vibration shakers on the Ohnaruto Bridge3).
Principal among them are tests on Honshu-Shikoku
Bridges including the Ohshima Bridge¥, the Hitsu
Ishi Jima Bridge®), the Minami Bisan Seto Bridge?),
the Tkuchi Bridge?), and the main bridges on the
Metropolitan Expressway system, including the
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Fig. 1 General drawings of the Tsurumi Tsubasa Bridge

Yokohama Bay Bridge®) and the Rainbow Bridge?.
However, these reports have focused mainly on (1)
the validation of design, (2) clarifying the dynamic
characteristics, and (3) collecting data for the
design of long-span bridges in the future. This
has led to insufficient discussion of variations in
accuracy and reliability in identifying dynamic
characteristics by experimental and analytical
methods.

With the above in mind, in present study, an
analysis is carried out with the results of full scale
field vibration tests on the Tsurumi Tsubasa
Bridge, a long-span cable-stayed bridge. We
examine methods of identifying the dynamic
characteristics of long-span  bridges from
measurements and  discuss  the  dynamic
characteristics of the bridge.

2. TSURUMI TSUBASA BRIDGE

Fig. 1 presents the general drawings of the
Tsurumi Tsubasa Bridge, which forms the main
link between Daikoku Wharf and Ohgishima Island
on the Metropolitan Expressway system. The
bridge is a three-span single-plane-supported cable-
stayed steel bridge with a center span of 510 m and
side spans of 255 m. The main girder are of flat
box girder designed with good aerodynamic
performance, and the main tower is reverse Y-
shaped with a trapezoidal cross section for a
slender exterior appearance.

From a structural viewpoint, the bridge is
featured by elastically restrained cables. The

relative longitudinal displacement between the
main girder and tower, which is finked by vertical
bearings, is restrained with these cables. This
contrasts with the Yokohama Bay Bridge, where
the vibration isolation design is adopted. The
concept is that the period of longitudinal vibrations
of the main girder is significantly increased with
the tower links. Vane dampers are installed on
the horizontal beams of the main tower to restrain
longitudinal displacement of the main girder, give
stability to elastically restrained cables even during
earthquakes, and add damping in the longitudinal
direction. In addition, to reduce vortex-induced
and rain-induced vibrations, cable dampers
consisting of high-damping rubbers and oil
dampers are attached to the 68 main cables. The
details of the cable dampers, vertical bearings, and
vane dampers are reported in Reference 10).

3. FIELD VIBRATION TESTS

(1) Specifications of vibration shakers

Large shakers owned by the Honshu-Shikoku
Bridge Authority (and specified for the Oshima
Bridge) were used for the field vibration tests on
the bridge.  These shakers of the inertial-
excitation type operate as follows: the turning force
from a DC motor is transmitted, via reducers, a
clutch, and gears, to a crank shaft; the crank shaft
links to a connecting rod, which drives a
reciprocating set of weights in a vertical direction
to produce an excitation force. Two shakers with
a maximum excitation force of 196 kN each were
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used to cause excitation not only in the vertical
mode but also in the torsional mode. Excitation in
these two modes is achieved by operating the two
shakers in the same phase and out of phase,
respectively. The maximum weight per shake is
33 tons, so 66 tons is available at the maximum.
The minimum weight is 6 tons when the shaker is
unloaded.  Exciting frequencies from 0.154 to
0.920 Hz are available.

(2) Excitation modes and position

Taking into consideration the performance of the
shakers, the possible excitation directions, and the
schedule available for experiments, the following
five vibration modes were selected:

e Two vibration modes important in the evaluation
of flutter characteristics for wind-resistant design,
i.e. the first sym. vertical bending and first sym.
torsional modes;

* Three vibration modes, i.e. the first asym. vertical
bending, second sym. vertical bending, and second
asym. vertical bending modes

The field tests did not cover horizontal bending and
longitudinal (like swinging-log) modes, but rather
the vertical bending modes shown to be important
in wind tunnel tests using a full bridge model and
in time-history response seismic analysis carried
out in advance of the tests.

The excitation positions are shown in Fig. 2.
Vibrations were first excited in the asym. vertical
bending mode at a point one-third of the way along
the central span, and then in the sym. vertical
bending and torsional modes after moving shakers
to the center of the central span.

Kato et al.!D have categorized the methods of
field vibration tests on actual bridges according to
the characteristics of the vibrations they measured
and analyzed. The following three test methods
were adopted in this study:

a) Ambient vibration test

To obtain a rough understanding of natural
frequency, vibration mode, and modal damping
over a small amplitude range, microtremors were
measured at night prior to the forced vibration test.
Sensors were first placed in a vertical orientation to
measure microtremors in the vertical bending and
torsional modes, and then in a horizontal direction
to measure microtremors in the horizontal bending
mode.

b) Forced vibration test

Using the ambient vibration test as reference, as
well as the results of a natural frequency analysis,
stationary amplitudes were measured while
changing the vibration excitation frequency in a
step-by-step manner close to the natural frequency
of each vibration mode. Data was collected once
it was confirmed that the bridge had reached a
steady vibration state. The resonance frequency,
vibration mode, and modal damping were
identified from the collected data.
¢) Free vibration test

Free vibration waveforms were measured when
the shakers were brought to a sudden stop after
exciting the bridge at each resonance frequency
obtained in the forced vibration test. To improve
accuracy in identifying the damping characteristics,
these measurements were repeated three times or
more in each vibration mode.

(4) Measurements

Fig. 3 shows the layout of measuring instruments
in the forced vibration and free vibration tests.
For the ambient vibration tests, the instruments
were laid out in the same manner but the sensors
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ambient vibration test

were moved as required. The measured items
were exciting force, girder, tower, and
cableaccelerations, displacement at bearings, wind
direction, wind velocity, and ambient temperature
at the bridge. Data were collected in the data
recorders. Data on some of the measuring
channels were processed on site using a simplified
method to check whether the tests were being
successfully implemented.

4. ANALYSIS OF TEST DATA

(1) Analysis of ambient vibration test data

The time-history response series analog data
collected during the ambient vibration test was
filtered using a 1 Hz low-pass filter to remove
unnecessary high-frequency components. It was
then digitized and FFT-processed to obtain
response power spectrum. The number of FFT-
processed data was 16,384 and the sampling
interval was 100 ms, thus the frequency resolution
was 0.0006 Hz. The sampling duration was 168
seconds. Fig. 4 shows a typical acceleration
power spectrum obtained by this method. The
modal damping was calculated from the peak of
this power spectrum by the half-power method!2.
Since simultaneous data were obtained at each
measuring point, the natural vibration mode was
determined by examining the amplitude ratio and
phase (isophase or opposite phase) at all other
measuring positions for one particular reference
point.

(2) Analysis of forced vibration test data

The excitation force was calculated from the
product of acceleration measured using an
accelerometer attached to the shaker weight and the
mass of the weight.  Since the shakers were
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forced vibration test

mounted on the bridge, the measured accelerations
included those due to bridge vibrations.
Therefore, to improve the accuracy of the analysis,
the acceleration due to these vibrations was
removed to obtain the actual excitation force.
Control frequencies with a resolution of 0.001 Hz
were adopted as excitation frequencies.

To identify the dynamic characteristics obtained
in the forced vibration test, two analytical methods
were used, one utilizing a resonance curve and the
other the modal circle fitting method. The
following is a discussion on the difference in
identification accuracy between the two methods.
a) Resonance curve method

Fig. 5 shows resonance and phase curves
(diagrams) for the five vibration modes. The
horizontal axis represents excitation frequency, and
the vertical axes are acceleration amplitude per unit
excitation force, and the difference in phase
between acceleration waveforms at a measuring
point and at the shaker, respectively. The natural
frequency was obtained from the peak of the
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resonance curve, and the modal damping was
extracted by the half-power method. A natural
vibration mode diagram was obtained by
comparing the amplitude ratio of resonance curve
and phase of arbitrary points with those selected
as a reference point.
b) Medal circle fitting method

Generally, frequency response functions such as
compliance can be expressed approximately by
circles on a Nyquist diagram if the damping is
relatively small and coupling between modes is not
so large. Taking advantage of this characteristic,
the natural frequency and modal damping can be
identified from forced vibration test data by fitting
a single-degree-of-freedom curve!3).  This method
is outlined below.

Since many accelerometers were used in the
experiments on the bridge, an accelerance, L( f ),

representing the transfer function for the response

between  external  excitation  forces and
accelerations can be used as defined below.
__1_(!_)
m "
L(f)= 7 f'& 3 (D
Inpn
j;l ” f;
where m = modal mass; f = -excitation
frequency; f, = natural frequency in vibration
mode; 6 = logarithmic decrement, and j =

imaginary operator.

Theoretically, the relationship between the real
and imaginary part of the accelerance is
represented as a circle, called a modal circle, in the
complex plane of a Nyquist diagram.
Experimentally, the accelerance at a particular
excitation frequency can be obtained by measuring
the steady-state response acceleration at that
frequency. When plotting the relationship
between the real part, x;, and the imaginary part,
¥, of the accelerance obtained experimentally on a
Nyquist diagram, the result is not necessarily fitted
on the modal circle. (See Fig. 6 (a).) That is,
there may be various errors in the measurements.
Thus the data is fitted so as to minimize the square
of the errors. More concretely, the equation of a
modal circle is written as follows.

xiz+yi2_axi_byi_c':0 @

Therefore, the coefficients of the fitted circle, a, b,
and c, are given by the following equation:

Int]g  Retx)

L
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Fig. 6 Identification of the dynamic characteristics by

the modal circle curve fitting method
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In this way, the natural frequency and modal
damping are determined using the fitted modal
circle. To determine a natural frequency, the center
of the modal circle is first connected with
measurements plotted on the diagram.  The
central angle formed by two adjacent two rays is
set to be 8, (i = 1 to n-1). Then the maximum
central angle is found and adjacent central angles
on either side of the maximum one are used to

determine the natural frequency using the
following equation!3):
f — f + (fmax+1 - fmax)gmaxﬂ (4)

7 +6

max—1 max+1
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where 8,, = maximum central angle, f,.,

frequency at maximum central angle, suffix
max+1 = adjacent angle on each side of the
maximum central angle. (See Fig. 6 (b).)

To determine the modal damping, the method
proposed by Nagamatsu!¥ was considered. In
this method, the modal damping is determined
using data at positions on each side of the natural
frequency. Tt assumes that the data falls on the
modal circle, since data measured during vibration
tests on long-span bridges contain certain errors,
and points do not always fall on the modal circle.
Therefore, we used the two positions D (xp, ¥Vp)
and E (xg, yg), representing intersection
between the circumference of the modal circle and
straight line connecting the circle center with the
two points rather than the two measurement points,
D (xp, y};) and E (xz, yr), as shown in Fig. 6
(c). This satisfies the assumption that the two
points are on the modal circle, and fp= fD and
fe=fr at the excitation frequency. In this
regard, the modified modal circle fitting method
presented in this paper differs somewhat from the
method proposed by Nagamatsu. As a
consequence, the following equation is obtained for

frq 1 0.213 Hz First sym. vertical bending
6 1 0.114(0.079 ~ 0.135)

trq 1 0.518 K2 Gecond sym.vertical bending
8 :0.091(0.051 - 0.124)

0.532

0.208 '€
0.52

.210

2
0.213

0.524

0.518

im

fra : 0.293 Hz First agym. vertical bendingra : 0.597 Hz Second asym. vertical bending
6 1 0.034(0.024 - 0.04)) 6 :0.032(0.025 - 0.037

0.5%9
0.597 y
400

0.59 602

0.604
&5940.59

as1z e

542

0544

calculating the modal damping (logarithmic
damping): Fig. 7 Model circle curve fittings in the forced vibration tests
2 2
5= f" f" 5) Table1 Accuracy of modal damping identification by modal
h f Pl f, g. circle curve fitting method
=L I tan -5+ | =& | tan—&
A 2 \J, 2
Vibration mode OAvE  OMIN SMax 4
The modal damping was calculated as described Firstsym. Vertical ~ 0.11 0.079 0.140  2.1x10*
a.bove using data at four adjacent points on each Firstasym. Vertical  0.03 0.024  0.045  4.2510-5
side of the natural frequency. The average of the ) )
modal damping calculated by two-point data First sym. Torsional ~ 0.07 0.055 0.079 = 4.1x10°5
selected as a pair of data from four-point data was Second sym. Vertical 0.09 0.051 0.120 3.8¢10-4
taken as the modal damping. Data at four points Second asym
was adopted because the calculation would have Vertical 0.03 0.025 0.037 10x10-5

yielded errors in specific data if there were too few
data points. On the other hand, the result of this
method would almost equate with that of the half-
power method described later if the number of data
was too many. Incidentally, trial calculations
were made for specific cases using data at three
and five points, but results differed in no
significant way from four-point case.

Fig. 7 shows modal circles drawn up using the
modified method described above, and Table 1
lists the calculated average modal damping
(logarithmic decrement), &4, minimum modal

damping, S, maximum modal damping, Sy,
and variance, V .

The reliability of the average modal decrement,
S, can be evaluated from the variance, V in
this method . As listed in Table 1, the variance in
the first asym. vertical bending, first sym. torsional,
and second asym. vertical bending modes are of the
order of 10-5, whereas those in the first and second
sym. vertical bending modes are larger by one
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order of magnitude, thus indicating a slightly poor
fitting to the modal circle.

(3) Analysis of free vibration test data

The time-history response series analog data
collected in the free vibration test was filtered
using a 1 Hz low-pass filter before conversion into
a digital signal. To prevent problems with
accuracy at micro-amplitude levels, an A/D
converter with a 14-bit resolution was used to
capture the data.

Fig. 8 shows free vibration waveforms, wave
number versus amplitude envelope, and the wave
number versus logarithmic decrement. In the
graph showing free vibration waveforms, the
horizontal and vertical axes are time in seconds and
acceleration amplitude in gal, respectively. The
axes of the wave number versus amplitude
envelope graph are the wave number (counted as
two waves per cycle) and amplitude ratio (4/40 =
a ratio of arbitrary double-amplitude, 4, to
maximum double-amplitude, 40) respectively.
In the graph showing the wave number versus
logarithmic decrement, the horizontal and vertical
axes are the wave number and logarithmic
decrement, &, respectively.

The peak method!?), by which the peak-to-peak
period of a series of waves is extracted, was used to
calculate the natural frequency. For logarithmic
decrement, an average of values from the first to
the tenth cycles was taken. As described above,
to check repeatability, measurements were repeated
consecutively three times or more in each vibration
mode.

5. COMPARISON AND DISCUSSION OF
METHODS FOR  IDENTIFYING
DYNAMIC CHARACTERISTICS

(1) Natural frequency

Table 2 compares the values of natural frequency
identified by the vibration tests. The frequencies
given as identified by eigenvalue analysis in the
table were obtained using a space-frame model.
In this model, the functionality of bearings at end
sections and at supporting sections of the girder on
the towers were faithfully modeled. = Beam
elements were used to represent girders and towers,
rod elements that transfer only axial forces and
torque for cables. The substructure was assumed
to be fixed at the top of the bridge pier.

As shown in Table 2, almost the same results
were derived from the forced vibration test data by



Table2 Comparison of identified natural frequencies
Forced vibration
Spect- test Free Eigen-
rum vibra-  value
Vibration by am- Reso-  Modal tion anily—
mode bient nance circle peak sis*D
vibra-  cypve me-
tion thod
test
First sym. 0224 0213 0213 0213 0210
Vertical
First sym. 0304  — — 0253
Horizontal
Firstasym. 316 0203 0293 0293 0290
Vertical
First sym. 0558 0.544 0545 0545  0.501
Torsional
Secondsym. o 26 0517 0518 0516 0512
Vertical
Secondasym. o140 (508 0597 0599 0597

Vertical

*1) One rod element per cable

At vertical bearings, longitudinal sliding is allowed.

both the resonance curve and modal circle fitting
methods, as well as from the free vibration test data
by the peak method. This demonstrates that there
is little difference among these methods of
identifying the natural frequency, and that natural
frequencies are identified with good accuracy.

In one case only, the natural frequencies
identified from the ambient vibration test, the
frequencies were larger than those identified from
the other tests by 3% to 5%. Good agreement was
obtained among the natural frequencies identified
by eigenvalue analysis and the forced vibration and
free vibration tests, though in the first sym.
torsional mode the natural frequencies identified
from forced vibration and free vibration data were
larger than those identified by eigenvalue analysis,
with a discrepancy of nearly 9%.

To look into the differences between natural
frequency values identified from experimental data
and from the eigenvalue analysis, the analytical
model used to determine the natural frequencies
was partly changed. The results are listed in
Table 3. In Model I, cables are replaced by a
three-mass system that takes into account the
tensile force in the cable by means of a shear
spring. Frequencies in the bending modes
increased slightly because of the effects of tensile
rigidity of cables. 1In particular, the natural
frequency in the second sym. vertical bending
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mode, where strong coupled vibrations were
observed in the cables, approached somewhat
closer to that obtained in the forced vibration and
free vibration data, when compared with the natural
frequency obtained from the eigenvalue analysis
listed in Table 2. However, in the first sym.
torsional mode, where the largest difference
between natural frequencies obtained from the
eigenvalue analysis and those from the forced
vibration and free vibration tests is seen, there is
little difference in the natural frequency despite
this change in the model. A discussion of the
natural frequency in the torsional mode is given
below.

When a bridge girder undergoes torsional
rotation, the rotation center of the girder is lower
than the anchor point of the single-plane-supported
cables on the girder side, so thus the cable is
subject to an  out-of-plane  deformation.
Accordingly, we estimate that the natural
frequency would increase, because the rigidity of
the cable due to the introduced tensile force would
be added to the torsional rigidity of the girder.
However, there was no effect on the natural
frequency in the torsional mode. This may be due
to the small out-of-plane component of the cable.

Incidentally, since the actually measured rotation
center is at a point higher than assumed in the
design phase, an additional study was carried out
correcting the polar moment of inertia with
consideration of this difference in vertical
elevation. As a result, the natural frequency
increased by 1.3% but the difference of 9% could
not be eliminated. A further study investigated
into the effects on torsional frequency of the spring
stiffness of the high-damping rubber fitted about
2m away for the girder's rotation center.

Without the need for an eigenvalue analysis, it
was possible to show that there was no increase in
general stiffness and that the effect of the rubber's
spring stiffness was negligible. This clarifies that
these factors are not leading causes of the torsional
frequency obtained in eigenvalue analysis being
lower than the experimental values. Instead, other
factors such as the effects of secondary members,
which were not taken into account in the analysis,
are likely to be the cause. However, it has not yet
been determined clearly.

The frequencies listed in the Model II column of
Table 3 are those obtained when the longitudinal
restraint conditions at vertical bearings were
changed from sliding to fixed. These frequencies
are somewhat closer to those obtained in the
ambient vibration tests.  During the forced
vibration and free vibration tests, the bearings




Table3 Comparison of natural frequencies for different

analytical models

Natural frequencies obtained
from eigenvalue analysis

Vibration Mode
Model 1* Model 11"
First sym. Vertical 0.218 0.228
First sym.horizontal 0.258 0.318
First asym. vertical 0.296 0.309
First sym. Torsional 0.501 0.501
Second sym.vertical 0.520 0.526
Second asym.vertical ~ 0.611 0.598

*

** Cable model

(Model II) o

overcame inherent friction forces and sliding
occurred. During the ambient vibration test, the
amplitude was not so large as the bearings could
slide. Strong restraint in the longitudinal
direction seems to be one reason for the natural
frequencies identified in the ambient vibration tests
being higher than those in the other tests.

(2) Natural vibration modes

In Fig. 9, the natural vibration modes identified
by eigenvalue analysis, the ambient vibration tests,
and the forced vibration tests are compared.
Apart from a slight difference in the first asym.
vertical bending mode at the towers, these values
are in good agreement; this includes the first sym.
horizontal bending mode that was obtained only in
the ambient vibration test. This demonstrates that
vibration modes can be obtained with satisfactory
accuracy even from ambient vibration tests, at least
in the case of this bridge.

(3) Modal damping factor

Table 4 offers a comparison of the identified
modal damping (logarithmic decrements). Values
identified from the ambient vibration test differ
from those obtained from other tests. Given that
the maximum amplitude in the ambient vibration
test was very small, as listed in Table 4, and that
external perturbations were assumed to be white
noise when analyzing the data, it seemed difficult
to compare modal damping in this simplified
manner.Accordingly, for four of the vibration
modes — leaving out the second sym. vertical
bending mode where coupled vibrations occurred
— logarithmic decrement in the small amplitude
region were obtained from the relationship between
the wave number and the logarithmic decrement

Cable model (Model I) V—WO‘\%L‘"

—0
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Fig.9 Comparison of natural vibration modes

shown in Fig. 8, and they were then compared with
the damping identified in the ambient vibration
test. For the first sym. vertical bending mode, it
identified logarithmic decrement of & = 0.09,
whereas that obtained from Fig. 8 is 5 = 0.08.
Similarly, in the first asym. vertical bending mode,
the identified value was § = 0.07, whereas that
obtained from Fig. 8 is § = 0.04. In the first
sym. torsional mode, the identified value was & =
0.05 as compared with & = 0.06. In the second
asym. vertical bending mode, both the identified
and obtained values were § = 0.03. Thus the
identified damping factors for all modes were close
to the values in the small amplitude region of, as
compared with the factors listed in Table 4. This
indicates that, in the evaluation of structural
damping, it is preferable to compare damping
factors identified in the micro-amplitude region of
a free vibration test with those identified in a
ambient vibration test. Next is the adequacy of
methods of identifying damping on a modal circle
using forced vibration test data by comparing the



Table 4 Comparison of identified medal dampings

Values in parentheses indicate maximum amplitudes.””
Values in the torsional mode are in degrees

Modal damping (logarithmic decrement)
Vibration | Ambient Forced vibration test
mode vibration Modal circle fitting
test method Free
vibration
Half-power | Half- Modified | test
method power modal
method | circle
curve
fitting
method* 1)
First sym. 0.09 0.12 0.11 0.07
vertical (0.55) (8.8) (8.8) (8.2)
First aym. |0.07 0.03 0.03 0.04
vertical (0.017) (14.5) (14.5) (13.4)
First sym. |0.05 0.07 0.07 0.07
torsion (0.003) 0.43) (0.43) (0.38)
Secondd 0.03 0.11 0.09 0.10%**
sym.
vertical (0.004) 3.2) (3.2) 3.0)
Second 0.03 0.03 0.03 0.04
asym.
vertical (0.002) (4.6) (4.6) 4.2)

* Method of calculating modal damping from any point on
each side of the natural frequency

** Maximum amplitudes in cm.
In the ambient vibration test, displacement amplitudes
converted from Fourier acceleration amplitudes in mm.

***Cables resonated with this mode and beating occurred.

results with factors identified in free vibration
tests. In the first asym. vertical bending, second
asym. vertical bending, and first sym. torsional
modes, where the variance 1is less than other in
modes as listed in Table 1, and roughly the same
damping was obtained from the forced vibration
data by the half-power method and the modified
modal circle fitting method and from the free
vibration data. (See Table 4.) The fact that the
variance is small and the fitting to the modal circle
is good means that these vibration modes are close
to the response of a single-degree-of-freedom
system and the amplitude dependence of damping
is small. Actually, Fig. 8 clearly shows that the
amplitude dependence is relatively small and the
variance is small. That is, variance can be taken
as a standard by which to measure the reliability of
identified damping. The smaller the variance, the
smaller the amplitude dependence of damping. It
is confirmed that there is approximate agreement
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Fig. 10 Resonance curves of girders and cables

between dampings identified from forced vibration
test data by the conventional half-power method,
and the modified modal circle fitting method, and
from free vibration data.

As regards the two vibration modes where the
variance in identifying modal dampings by the
modal circle fitting method was an order of
magnitude greater than those of the other modes,
i.e. the first and second sym. vertical bending
modes, the amplitude dependence of damping are
also relatively large.

The cause of this larger variance and poor fitting
to the modal circle in the case of the second sym.
vertical bending mode seems to be the effect of
coupled vibrations during the tests. It is clear
from the resonance curves of girder and cable in
the second sym. vertical bending mode in Fig. 10,
that the acceleration response of the cable was very
large and the peak frequency of the cable and
girder were close to each other.

The first sym. vertical bending mode, as shown in
Fig. 8, was the only mode where the modal
damping had a tendency to decrease at relatively
large amplitude. The trend is also evident in the
damping identified from the forced vibration data
by the modified modal circle fitting method, as
given in Table 4. This indicates that the damping
obtained by the modified method — that is, using
only data of relatively large amplitude adjacent to
the natural frequency on the modal circle — was
slightly smaller than that obtained by the
conventional half-power method corresponding to
calculate the damping from all data on the modal
circle. It does not change, even when the number
of points on the circle is three or five. In other
words, there is a possibility that a logarithmic
decrement calculated by modified method is close
to the peak frequency on the modal circle even
when the amplitude dependency of structural
damping is strong.

In the case of the second sym. vertical bending
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mode, the damping is an apparent value because
beating arose when girder and cables resonated
during the free vibration test. Consequently, it is
difficult to judge whether the modified modal
circle fitting method can take into account non-
linearity in damping amplitudes. On the other
hand, in the first sym. vertical bending mode, the
difference between the damping identified from the
free vibration test data is 0.07, and that identified
from the modified modal circle fitting method is
0.11. How to handle these data is an important
issue in identifying logarithmic decrement from
test data collected for long-span bridges.

6. DYNAMIC CHARACTERISTICS OF
THE TSURUMI TSUBASA BRIDGE

In the previous section, methods of identifying
dynamic characteristics from full-scale vibration
tests were discussed. It was concluded that
natural frequency and modal damping could be
identified from free vibration data with
considerable accuracy. Based on these identified
values, we now discuss the dynamic characteristics
of the Tsurumi Tsubasa Bridge.

(1) Natural frequency

Fig. 11 shows the relationship between the
lowest-mode natural frequency (fundamental
frequency) and the maximum span length of cable-
stayed bridges, comparing the vertical bending and
torsional vibrations of the Tsurumi Tsubasa Bridge
with other cable-stayed bridges!5»16). The natural
frequency of this single plane supported cable-
stayed bridge seems to be somewhat low relative to
its span, but it is approximately an extrapolation of
values for other cable-stayed bridges plotted in the
figure.

Of the bridges plotted, the one closest in span to
the 510 m of the Tsurumi Tsubasa Bridge is the
Tkuchi Bridge, with a span of 490 m. We will
focus on the dynamic characteristics of these two
cable-stayed bridges. The natural frequency of
the Tsurumi Tsubasa bridge is much lower than
that of the Ikuchi Bridge. Bending and torsional
rigidity are two to three times the values for the
Ikuchi Bridge. In terms of weight, it is heavier
than the Ikuchi Bridge by only about 20%, so there
is not such a sharp contrast as in the rigidity.
Considering this relation between rigidity and
weight, this bridge can be expected to show a
rather higher natural frequency than the Ikuchi
Bridge.

In the first sym. vertical bending mode of the
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Fig. 11 Relationship between lowest frequency and span

length of cable-stayed bridges

Tsurumi Tsubasa Bridge, as shown in Fig. 9, the
modal component at the central span is almost the
same as that of the side spans, and the vibration
mode of the central span is similar to that of a
simply supported beam. In contrast, since the
Ikuchi Bridge has PC side spans, the vibration
mode is similar to that of a beam with both ends
fixed. It can be considered that the lowest natural
frequency of the bridge in the first sym. vertical
bending mode is due to this difference in the
vibration mode arising from different restraints
affected by the side spans.

In the first sym. torsional mode, on the other
hand, since the vibration modes of both bridges are
almost the same, the restraint conditions by the side
span seems almost the same. Accordingly, in
spite of the difference in torsional rigidity, the
large difference in rotational stiffness due to cable
differences makes the torsional frequency of this
single-plane-supported bridge smaller than that of
the Tkuchi Bridge.

As explained above, the natural frequency of
cable-stayed bridges is affected more by the
vibration mode of its girder, the restraint conditions
by side spans due to differences in rigidity between
the side and central spans, and the apparent rigidity
due to differences in cable type than by the rigidity
and weight of the girder itself. Thus the natural
frequency is not necessarily dependent on the
central span length.

(2) Modal damping characteristics

Fig. 12 shows the relationship between natural
frequency and modal damping for cable-stayed
bridges in the case of vertical bending and tersional
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vibrations; the Tsurumi Tsubasa Bridge is
compared with other cable-stayed bridges. As is
the case with other cable-stayed bridges!®), the
correlation between natural frequency and modal
damping is poor, indicating a strong mode-
dependence of damping.

Fig. 13 shows the average modal damping in
vertical bending and torsional vibrations, which are
representative of the damping of cable-stayed
bridges, plotted with respect to bridge span without
regard to the order of the vibrations. ~Although the
average dampings of other bridges gradually
decreases as the span increases, this bridge deviates
from this tendency since it has a high average
damping in spite of its long span of 510 m. It is,
as apparent in Table 4, due to large damping in the
first sym. vertical bending and first sym. torsional
modes (aside from the second sym. vertical
bending mode which is accompanied by beating
due to cable resonance).

In the case of first sym. vertical bending
vibrations, the measurements clarified that a sliding
displacement of 1 to 2 mm occurred at the vertical
bearings due to longitudinal displacement of the
girder when a deflection of about 8 cm was
generated at the center of the central span.
Assuming that the design vertical load acting on
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the four vertical bearings is about 7,200 kN, the
amount of dissipated energy by friction forces at
the bearings is not negligible. In addition, as
shown in Fig. 8, the amplitude dependence of the
damping in the first sym. vertical bending mode is
relatively large. The smaller the amplitude, the
larger the damping.  This agrees with the
observations of Ito et al.2) which showed that the
smaller the amplitude the larger Coulomb damping
was caused. It also clarifies why the effects of
friction forces are large in the first sym. vertical
bending mode.

On the contrary, in the first asym. vertical
bending mode, the damping identified from free
vibration data was 0.04, less than in the first sym.
vertical bending mode, and the displacement at the
bearings was small. That is, the damping in the
first sym. vertical bending mode of this bridge
becomes larger compared with other cable-stayed
bridges of similar scale because frictional bearings
were adopted instead of the usual link bearings,
and the amount of dissipated energy by frictional
forces is large.

In the first sym. torsional mode, although the
damping is thought to be small because of a single-
plane-supported bridge, it was in fact larger than
those of other cable-stayed bridges of similar scale.
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The primary cause of this is the large amount of
energy dissipated from the cable dampers, which
consist of oil dampers and high-damping rubber. In
other words, in a single-plane-supported cable-
stayed bridge, although the cables rarely move even
when girder suffers torsional vibrations, the cable
dampers mounted some distance from the girder
rotation center deformed and dissipated a large
amount of energy. There is no other bridge of
similar scale in which cable dampers exert such a
large effect on the damping of girder. Detailed
discussions on the damping characteristics of the
bridge are reported in Reference 17) and 18).

7. CONCLUSIONS

With the focus on the Tsurumi Tsubasa long-span
cable-stayed bridge, a study has been carried out on
methods of identifying dynamic characteristics
such as natural frequency, natural vibration mode,
and structural damping using full-scale test data
from the bridge. The results of the study are
summarized as follows.

(1)Good agreement was obtained between the
values of natural frequency identified from forced
vibration tests by the modal circle fitting method
and resonance curve method and that identified
from free vibration test data by the peak method.
It demonstrates that there is little difference
between these three identification methods and the
accuracy of the methods is high. However, the
natural frequency identified from ambient vibration
test data was 3% to 5% higher than the values
obtained from forced vibration and free vibration
test data. [t is because there is no movement in a
longitudinal direction at the vertical bearings
during the ambient vibration tests.

(2)It was verified that the natural vibration mode
obtained from the forced vibration test agreed
approximately with that calculated by eigenvalue
analysis.  In spite of the small amplitudes
employed in the ambient vibration test, insofar as
vibration mode is concerned, the accuracy of
vibration mode identification was quite reasonable.
(3)The variance in the experimental data, which
indicates the degree of fitting to the modal circle,
can be used as a standard by which the reliability
of the identified damping can be evaluated. The
modified modal circle fitting method presented in
this paper indicates that the possibility of
calculating the logarithmic decrement close to the
peak frequency with good accuracy, even when the
amplitude dependence of structural damping is
strong.

227s

(4)When the dampings identified in ambient
vibration tests by the half-power method with the
forced vibration and free vibration tests are
compared, it should be done in the small amplitude
region taking into account very small vibration
levels of the ambient vibration test data.

(5)As compared to the Ikuchi Bridge, a cable-
stayed bridge of similar scale, the natural frequency
of the Tsurumi Tsubasa Bridge in the first sym.
vertical bending and torsional modes was lower.
The primary causes are relatively weak restraint at
side spans during vertical bending vibrations and
the low rotational rigidity of the entire bridge
system due to the single-plane-supported design.
(6) The damping of the Tsurumi Tsubasa Bridge in
the first sym. vertical bending and torsional modes
was larger than that of other cable-stayed bridges
of similar scale.
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