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In the global buckling of a framed structure, members are examined for their own stabilities. It is
shown that, besides the actual member forces exerted, there can be considered a critical axial force
of each member determined by its displacement mode in the global buckling, The effective lengths of
members are defined for those critical forces. The stability state of each member is qualified by the
actual axial force acting on that effective length. The global buckling is explained as an assembly of

those stability states of members.
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1. INTRODUCTION

While the recent computer analysis can easily
determine the global buckling of a framed struc-
ture, in the stability design, the axial strength of
members has been dealt with by the concept of
effective length. This is supposed because of its
practical usefulness in the design procedure. At
the same time, the difficulty is how the actual ef-
fective lengths are evaluated appropriately. The
specified lengths in the existing design codes ¢&1)
are restricted to a truss or a rectangular rigid
frame. Further, they can have excessive margins.

In those circumstances, there has been pre-
sented one method for a general framework 2),
in which, after the eigenvalue analysis of a
global buckling, by an inverted use of the Euler-
buckling formula, the effective lengths for com-
pressed members are individually estimted from
their axial forces. In view of its practical us-
age, that method suggests a desirable way in
the computational analyses. However, after ex-
amined in the usual structures in various load-

“ A main part of this paper has been presented at the
JSCE Annual Conference®’, held in Nagoya, 1996-9.

ings, certain shortages have been revealed: as re-
ported previously 3-6) | the effective length for a
slightly compressed member becomes extremely
large; and the opposite evaluation is given for the
changes of cross-section in members.

Some improvements have been suggested for
that method: for instance, in one treatment 5),
the small compressive member forces existing in
a global buckling are amplified to correct their
effective lengths; and, in another one 7), instead
of the member forces exerted in the loading,
the axial strength forces estimated convention-
ally from the member cross-sections are adopted
in the eigenvalue problem.

In this study, the behaviors of members in a
global buckling are analyzed within the stability
theory of a discretized structure. As a result, the
compressed members are not necessarily in their
own critical states. Besides the actual member
forces exerted in the loading, there can be consid-
ered another critical axial force for each member,
which is derived from its displacement mode in
the global buckling. The effective member length
is defined for that critical force. Then, the stabil-
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ity state of each member is qualified by the actual
axial force acting upon that effective length. It is
shown that the global buckling is a result of those
member stability states coupled.

2. GLOBAL BUCKLING

We consider a linear loading applied to the ini-
tial state of a framed: structure:

{ Pn} = o { Py} (1)

where {P,/} is a mode of loading; and p is the
load factor. While the members are subject to
certain axial forces, for a simplified expansion,
their bending deformations are here assumed to
be small enough up to the buckling. In those
small displacements, the buckling mode, { X5},
and the magnitude of load, p°, can be determined
by the well-known eigenvalue problem:

([Kow 1+ 7 [ Kgw 1 ) {XR}={0} (2

where [Kop] is the initial stiffness matrix; and
[Ky] denotes the geometrical stiffness matrix
exerted by the axial member forces, per unit of
loading factor p.

In the potential theory of buckling: For an in-
finitesimal displacement & {uy} from an equilib-
rium state, since the nodal forces { Fiy} exerted in
members have been equal to the external { Py},
the first variation of total potential energy W
results into zero. By the use of tangent stiffness
[Kn(p)] = [Kon]+ p|Kdy], the second variation
is written as

2 1 T
FW = 5 o{un} [ Kn(p) J6{un} (3)
This quadratic form is positive definite in the
stable domain lying around the initial state. The
buckling state on the load path (1) is equivalent
to a point where the quadratic form turns into
semi-positive definite:

(r=) {x3} [ w0 ]{x5} = 0 (@)
3. STABILITY OF MEMBERS

Stiffness matrix [Kn| of a framed structure is
derived by the superposition of member stiffness
matrices [ k |(m), in the entire nodal freedom.
Then, by collecting each member’s mode {X Hom)
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from the global {X§}, we can rewrite quadratic
form (4) into the sum of the members’ works:

M
m=1

Imy = {Xs}fm) [k(ps) ](m) {XS}(m) (5-b)

When the structure attains to a neutral stiffness
in mode { X3}, the sum becomes zero. But, this
zero value usually consists of positive and nega-
tive I,y of members. Concerning the stability of
each member in the global buckling, the follow-
ings can be said:

I(m) > 0 : member (m) is stable into its nodal dis-
placement { XS }(m), acting to restrain
the global buckling {X§} by its posi-
tive stiffness.

I(my < 0: (m) is instable into {XS}(m), pushing
forward the buckling {X§} by its neg-
ative stiffness.

4. EFFECTIVE MEMBER LENGTH
IN MODE {XS}(m)

Let the axial forces of members at the global
buckling be denoted by N(;Z). As stated before,
the members with N(;g) exist in the structure to
be stable or instable. Now, we can consider an-

other axial force N(frf) for which member (m) is

critical into its mode {XS}(m):

T Crr s
{X }(m) ( [ ko] +N { kG})(m) {X }(m) =0
(6)
where [ ko](m) is the initial stiffness of member
(m); and [ kg](m) is the geometrical stiffness per
unit axial compression. Since {X5 }(m) have been
obtained in the global-buckling analysis, we have

o X kol (X7} )
m - = /S
{XS}(m) [ %6 m) {XS}(m)

The actual N(n‘i) are now compared with those
N, (1%: in place of the former discriminant 7, m) >0
and I(;y < 0, the same sayings hold for N(rf;) <
N(r(r:;') and N(,i) > N(ﬂc;), respectively.



In the mode {X?¥ }(m) imposed by the global
buckling, N("C;) is the buckling force for each mem-
ber. Thus, the effective length of member (m) is
now estimated for N(f;:), rather than for N(;Z):

ET

~ (®)
Nim)

le?f.(m) =
where E is the Young’s modulus; and I is the mo-
ment of inertia of cross-section. When the actual
axial-stress ratios are plotted on those slender-
ness parameters, as shown in Fig.1, the members
are divided by the Euler curve into three groups:
tensioned; compressed less than instability; and
compressed into instability.
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Fig. 1 Stability state of members

5. EFFECTIVE MEMBER LENGTH
IN DEFORMATION MODE

The quadratic work of each member, I(,,, is
significant in the global buckling. However, this
quantity does not determine the member’s own
stability strength. For instance, suppose a frame-
work containing some rigid members. The rota-
tion as a rigid body of such a member compressed
is instable: its I(,;) has a negative value. But, we
can not suppose the buckling of itself.

A two-dimensional framework is here comsid-
ered in our actual formulation. Let the nodal dis-
placements and the nodal forces of member (m)
be denoted by

{u}(m) - {(u) v, 0)111 (u’ v, e)j} (9'3')
{F}(m) = {(F:):y Fy) M)i) (F:m Fy: M)]} (9~b)
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respectively. The geometrical stiffness matrix is
written as

"0 0 0 0 0 0 ]
6 1 4, =6 1
5 10 5 10
2, =1 =
5 10 30
e Jomy = =N 0 0 o0
6 -1
21
i 5
(10)

where [ is the initial member length.

Now, let a simple support be supposed upon
member (m) to constran its displacement as a
rigid body. By its assistance, as shown in Fig.2,
we can separate nodal displacements {u}(m)
into two parts: displacement of the statically-
determinate support itself, v(,,) = {ui, v, 7}, and
deformation of (m) within that support, €(m) =
{A, ¢4, ¢#5}. Their geometrical relations are

written as
'Uj - Vi

re (1
and
€m) = [Qx Jim) { % }imy (12-a)
-1 001 0 O
(@l =| © 7 10T 0| ()
0 -} 00 :ll 1

For v(y), apparently, no nodal forces come
from the initial stiffness [ ko J(m). But, as a geo-
metrical effect on the preceding N(), rotation
7 produces spatial components Fy; = —F,; =
N(myT- In terms of {1} (), we have

{Flm = [kg](m){ U }m) (13-a)
[0 0 0 0 0 0]
1 0 0 -1 0
[kg] _ ~£ 0 0 0 O
(m) l 0 0 O
Sym. 1 0
L 0 >
(13-b)
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Fig. 2 Deformation and displacement as
a rigid body

The stiffness for deformation €,y can be dealt
with within the simple support fixed in the space.
Let force components into {A, ¢4, ¢p} be de-
noted by f(n) = {H, Ma, Mp} (see Fig.2). By
the linearized discretization of that member sub-
Jected to the preceding N(,,), we have the follow-
ing result:

Ty = ([0 ]+ 156 ] )im) €m) (14-a)
4FE1 2EI
4ET
Sym. _?_
0 0 0
2 -1
{NG](m) = — NI 5 30 (14-c)
2
Sym. T
where A is the area of cross-section. In those

reduced degrees of freedom, [ ko |(m) is the initial
stiffness caused by the elastic deformation, and
[£G |(m) s the geometrical stiffness for Np,.

By taking account of the reactive forces for
{H, M4, Mg} in the simple support, we have
the entire nodal forces. By the contragredi-

ence with Eq.(12), this relation is written as
{Flm) = [Qxl(i)f(m)- Then, the initial
stiffness (ko J(m) used in Eq.(6) is written as
(ko] = [@x]hy k0 Jm)[@x l(m)- Similarly,
the geometrical [kg |(m) is transformed into the
six degrees of freedom:

[£8],,, (= [@x1h (6 )i | @i )

[0 0o o0 0 o0 0
i1, 11

50 10 5/ 10

L -

= —N 15 1030 | (15)

0 g 01

Sym. 5 T

21
i 15 |

This [£Z J(m) represents the geometrical stiffness
for deformation €, contained in nodal displace-
ments {©}(m). [k ]m) given by Eq.(10) is writ-
ten as the sum of this [kg ] and the former
[kg](m) of Eq(13b)

As its own stability strength, we can consider
the buckling of member (m) within that simple
support (see Fig.3). For its displacement mode
{XS}(m), the deformation mode E(,i) is given
similarly to Eq.(12). The critical force, say N(n%,
is determined for this E(S) By the use of the for-
mer relations, the buckling equation is eventually
written as

s\ T D[ D sy
{X }(m) ( [ kol +N [kGD(m) {X }(m) =0
(16)
Except that [k ](m) is placed for [kg ](m), this
equation is similar to Eq.(6). Another effective
length leﬁ'( 3 is estimated for this N2 D In the

plot of this l versus the actual N( )» We can
see the stabxhty of members in their deformation
modes. Similarly to the former case of N(m), the
members are classified into the three groups. But,
since the quadratic work of | kg J¢m) is not positive
for Ny > 0, the compressed members are shifted
to more stable points: I 2 off.(m) < <l&
6. NUMERICAL ANALYSIS

So far, for simplicity, our analysis has been
based on the stiffness relations linearized upon an

eff.(m)’
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Fig. 3 Member buckling in deformation mode

axially compressed state. Unless each one mem-
ber is divided into several segments, this analy-
sis contains a certain error: if a simple beam is
treated in one segment, for instance, the buckling
axial force has an error of about 22%.

To have a good accuracy in the one-to-one seg-
mentation, we here employ a discretization of the
2-D beam for finite displacements developed in
Ref.[8]. In that study, after an exact separation
of nodal displacements of a beam element into its
displacement as a rigid body and its deformation,
the stiffness relations are developed by the per-
turbation method up to the third order of defor-
mation parameters. A numerical comparison is
also presented there between the second- and the
third-order solutions: the error for the aforesaid
simple beam is reduced to 4%. By a pursuit of the
nonlinear equilibrium path, not by the eigenvalue
problem, the global buckling is determined as a
singular state of the tangent stiffness. Together
with the treatment developed in the below, if nec-
essary, the procedure is capable to deal with the
global buckling after finite displacements.

To derive the critical N(g) and N(,Q) for each
member, let some relations be summarized from
that discretization, in contrast with the former
linearized ones. With €(,,) and f(,, defined by
{€, a4, B} (¢ = A/l) and {HI, M4, Mg}, re-
spectively, their tangent stiffness matrix (& fmy =
[&](m)0€(my ) is written as follows:

[K'(Hl; A, ¢B) ](m) =
1 A 4B q
€ €
v vH! v

_‘L 'YMA’Y? ¢B ¢ 'YMA'7¢B
VI ™ O

viE®

Sym. + ~

(17)

where
1 l
+ .
~ EAl " 6300E1

(11¢A + 112 - 13¢A¢B)

’Ye
(18-a)

1
@A =yl = — 5 (164~ ¢B)
(H l)
6300E1
¢B_’YMB— (—¢a+4¢p)
30
(=

6300E1

4EI 2
'Yf,[AA = I + —(Hl)

EI )
— a7 (2464 — 494 +66a05)

11l )
h 6300E1(H D

4E1 2
'Yf,[BB = + -(Hl)

EI
-5 ( 4p 2 + 2402 +6¢A¢B)

11
—— (HD?
6300E1 (H1)
2FE1 1
7;\54AB = 1 - _(Hl)

EI
~ 57 (302 +304 ~ 8949p)
131

2
+ 12600E7 (H1)
To be noted: In the former linearized theory, the
effect of the preceding axial force, N(;,), has been
taken into account. In the same sense, the present
S (m) and €y involved in the above equations are
quantities existing up to the buckling. As the in-
crements in a buckling, variations {d¢, ¢4, S}
and {6(H!), M4, 6Mp}, etc. corresponds to the
former {A, ¢4, ¢5} and {H, M4, Mg}, etc.
On a state {@}(m) = {(z, v, 8)i, ( );}, the an-
gular position of member (m) is given by

7 = arctan Yiz¥
Tj— T4

For a variation of {x} (), the change of deforma-
tion €y is written as

(2294 — 13¢5) (18-b)

(—13¢4 + 22¢5) (18-¢)

(18-d)

(18-¢)

’YMA

(18-f)

(19)

o€y = [Q@x ({z}) Jmy 6 { & } () (20-a)
C S (4 S
T 17 700
S C S C
[Qxlm=\=p 7 ' 7 70
s e 8 ey

o~
~
o~
~
o~
~
o~
~
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(20°b)

where ¢ = cos7, s = sin7, and I’ = /{(z; -
z:)® + (y5 — vi)*}-

The nodal forces of member (m) into {z}(m)-
direction are obtained for {Hl, M4, Mp} by the
contragredience: {F}, = [Qx ](ﬁ)f(m)‘ By the
differentiation, we have

6{F}(m) = (éiQX({m}) }(i))f(m)
HQx({=}) | myF (m)
The first term, which reflects the effect of rotation

as a rigid body and the change of statics on the
deformed configuration, is developed into

(kR] —(&F]
[kg}(m) - [ Syfn. ““ZZ] }

Hl Ma+ M
( )sinzf————————-—A; B

(21)

(22.b)

sin 27

1
I
Sym.
Ma+ Mp
17
Ma+ Mp
7

(H1)

~~T~sinrcosr+

(HY)
l

cos27 0

22.
sin 27 (22<)

cos“ T +

By the use of Eqgs.(17) and (20), the second term
is developed into the tangent deformation stiff-
ness:

5 { FD}(m) = [kag (HL {2}) )y 6 { & }(m)(23-2)
(at Yoy = (@ Jmy | 6 Jomy [ @ Iy (23D)

This [kas (m), in which (Hl)y,y is contained in
up to its square term, corresponds to the former
(k0 J(m) + [£& l(m) in the linearized theory.

In the analysis to determine a global buckling,
force components {Hl, M4, Mp} are connected
to deformation parameters {€, ¢4, #p} by the
stiffness relation. As the result, we have the axial
forces of members, N(;:’;) = —(Hl)(;i)/l(m), and
their buckling modes, {X° }emy- Next, by the
use of each member’s tangent stiffness (k] =
(kat Jmy +[ k& J(m), the equation to determine the
critical N(g) is written as

T
(

{x5} 0y T 2D Iy { X} =0 (29)
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In this equation, the variable is (H1) () only, and
other quantities such as M4 and Mp are fixed
at the global buckling. It is not necessary for
this (Hl)(m) to be related to {¢, ¢4, #5}. By
solving this quadratic equation, we have N, ,(;;) =
—(H1)(m)/ {my- By the use of the deformation
stiffness [ ka (HU, {2})]|(m), in place of [k (), we
have the equation for the critical N("% in defor-
mation mode.

4

| 3@ 500. cm

Fig. 4 Buckling mode in Example ( 1)

Table 1 Actual axial force and critical quantities
of members in Example ( 1)

No. N§ NC K A
(1) 22.78 | 13.61 0.959 2.18
(2) 22.53 | 13.88 0.950 2.15
(3) -16.95 | 27.65 0.673 1.52
(4) -28.33 | 55.12 0.477 1.08
(5) ~17.13 | 29.09 0.656 1.48
(6) 33.75 | 14.89 0.917 2.08
(7) -11.25 | 34.91 0.599 1.36
(8) 11.33 | 2574 0.697 1.58
(9) 11.34 | 26.57 0.686 1.56
(10) | -11.33 | 35.69 0.592 1.34
(11) 34.19 | 15.78 0.891 2.02

(1) A truss.

A truss frame with rigid nodes shown in
Fig.4 is analyzed: EA = 56,346.tonf, EI =
317,100.tonf cm?, and yield stress oy =
2.4 tonf/cmz. In a loading of vertical P applied
at node 1, 2 and 3, the global buckling is de-
termined at 19.6 tonf. By the use of Eq.(24) for
the buckling modes of members, the critical N(g)
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are estimated. Effective-length factor K(m,) and
slenderness parameter A, for those critical axial
forces are given in Table 1, together with the
actual N(i). In this table, the numerical differ-
ences between each two members in the symmetry
are due to the buckling determined after a slight
excess into the bifurcation path. The stability
states of members are plotted in Fig.5. Since
the mode has no translations at the nodes, the
critical N(g) are the same to N(g).

P=32.59tonf{

<=
<=
S

<=

._.
g
~,
'
'
'
'
'
'
'
\
\
w
™

L
1 :
! EA=45,990.tonf '
(5)

El=
: 281,400.tonf cm® 00.cm
1

~
G
)
~--
3
73

g [

£
=
<
@
-
o
~
=

EA=98,238.tonf
El=

(8){  1,066,800.tonf cm’} (9) (0 500.cm

7 9
" 747‘8 ™ —

! 500.cm ! 500.cm !

Fig. 6 Buckling mode in Example ( 2)

(2) A braced rectangular frame

We consider a braced frame consisting of
two different cross-sections (see Fig.6): EA =
45,990.tonf and EI = 281,400.tonf cm? for
member (1) to (7); and EA = 98,238. tonf and

Table 2 Actual axial force and critical quantities

in Example (2)

No. NS NC K A
(1) 0. 12.12  0.957 2.08
(2) 0. 12.11 0.958 2.08
(3) 0. 12.17 0.955 2.08
(4) 0. 12.12  0.957 2.08
(5) 32.59 17.06 0.807 1.76
(6) 32.59 17.08 0.807 1.75
(7 32.59 17.08 0.807 1.75
(8) 32.59 | 98.24 0.655 1.07
(9) 32.59 | 98.37 0.654 1.07
(10) 32.59 | 98.34 0.654 1.07
1.25 T T T T T T T

0.75
5)-{7)
o

Q
o

(®)-(10)
0.25 |

Axial Stress

~0.25 L L 1 1 L 2 L
0 1 2 3 4

Slenderness

Fig. 7 Member state in Example ( 2 )

EI = 1,066,800.tonf cm? for (8) to (10). The
buckling load is obtained as P = 32.59tonf. The
actual N(;Z)’ and the critical N(g), K{(m) and )"\(m)
are given in Table 2. The states of members are
plotted in Fig.7 (0y = 2.4 tonf/cm?).

{( 8) A rectangular frame with no brace

In the three-storied framework shown in Fig.8,
first, the same cross-section is assumed for all the
members: E = 2,100.tonf/cm?, A = 21.9cm?2,
I = 134.cm?, and oy = 2.4 tonf/cm?. In a load-
ing of vertical P at node 1, 2 and 3, the buckling
is determined at 5.70tonf. As shown in Fig.9,
all the compressed column members are instable
in the displacement modes. On the other hand,
Figure 10 shows that they are stable in their
deformation modes.
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Fig. 11 Buckling mode in loading at node 2
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Fig. 9 Member state in displacement mode

Figure 11 shows the buckling for P applied

at node 2 only. The actual N(;Z) and the critical

quantities are obtained as given in Table 3. The

stability states of members in the displacement
mode are shown in Fig.12: only member (8), (11)
and (14) are lying in the instable domain.

Next, member (5), (10) and (13) are replaced

by a smaller cross-section: A’ = 11.85cm? and
I' = 14.8cm®* The buckling in the vertical

loading at node 1, 2 and 3 is at P = 3.79tonf
(Fig.13). Even in their deformation modes, as
shown in Fig.14, member (10) and (13) remain

in the instable domain.

7.

CONCLUDING REMARKS

In the method of Ref.|2], any compressed mem-
bers in a global buckling are regarded as criti-
cal all together at their actual axial forces, N(,fl),

In Example ( 2 ), if the effective lengths are
estimated for those N(;g), we have le%.(5)~(7) =
291.9cm < le?f.(s)~(10) = 568.4cm. This result

is contrary to the followings: since member (8)

to (10) have a bending rigidity four times larger

than other column members, as well as clamped
at their lower ends, they shall have larger buck-
ling strengths than member (5) to (7). In Ex-
ample ( 3 ), a numerical result has been given
for a vertical P applied at node 2 only. Even in
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Table 3 Actual axial force and critical quantities
with P at node 2

No. NS NC K A
me) 000 | 33.90 0572 1.245
(3)(4) 0.00 | 45.68 0.493 1.073
(5)(6) 0.00 | 43.52 0.505 1.099
(7)(9) 001 | 1.63 2.612 5.681
®) 1637 | 6.42 1.315 2.860
(10)(12) | 002 | 1.78 2497 5.432
(11) 1636 | 554 1417 3.081
(13)(15) | 002 | 3.10 1.892 4.115
(14) 1374 | 6.0 1349 2.935
1.28 T T T T T T T T T
y 4
0.75 N
§ 0.5 .
» @411
3 @o
% 025
0 oo D0
(1)-(6 (13)(15) (7))
-0.25 NSNS NN TSNS TN S I N | S
0 1 2 3 4 5 6
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Fig. 12 Member state in displacement mode

case a very small fraction of P are added at node
1 and 3, we have almost the same result. In this
case, the aforesaid method might give any large
effective-lengths to the side column members. On
the other hand, the effective lengths evaluated in
this study from the critical N, g) are much ac-
ceptable for the changes of cross-section (Table
2), and are consistent for any states of members:
tensioned or compressed (Table 3 and Fig.12).
The load carrying capacity of a structure can
be decisively affected by the local buckling. In
the design analysis, there has been the termi-
nology local buckling, such as for the buckling into
the distortion of cross-section. But, in the com-
putation analysis of a discretized model, we do
not have an explicit definition for the local buck-
ling. In the buckling of a framed structure, for
instance, the instable rotation as a rigid body of
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Fig. 14 Member state in deformation mode

a compressed member is balanced with the stable
deformations of other members. In the global
buckling, which is observed in the space-fixed co-
ordinates, the stable and instable members are
interactive. On the other hand, the instability
of a member in its deformation mode E(fn) is a
phenomenocn in itself, measured in a local coordi-
nate system which goes with its displacement as
a rigid body. The treatment in Sec.5. can leads
to a basic definition of the local buckling.

In Eq.(6) ( Eq.(16) ), the critical N(g) (N(n’f))
is determined proportionally to the magnitude of
bending rigidity EI. Then, in Eq.{8), which con-



tains denominator N(f;:) and numerator EI, the
resulting effective length ! e?f. m) ( lef%. (m)) is not
affected by the dimension of EI, in principle. The
effective length is dependent only on displace-
ment mode {X S}(m) (deformation mode E(fn)).
This is the same with the Euler bucklings with

various boundary conditions.

APPENDIX A. NOTATIONS

{Py'} = loading mode;
p = load factor;

[Konl, [ ko)(m) = initial stiffness matrix (global/

member);
[Ken), | kGl(m) = geometrical stiffness matrix
(global/member);

{X5}, {X5}(m) = buckling mode (global/member);

I, Iimy = quadratic work of tangent
stiffness (global/member});
member actual axial force in
a global buckling;

N(g)7 N(g) = member critical axial forces
in displacement and defor-
mation modes, respectively;
effective length for N(;ﬁ);

NS

(m) =

! ‘% =
eD. (m)

1< l =
eff.(m)? “eff.(m)

effective lengths for N(n(’;)
and N(,ff), respectively;

()% () = derivatives with respect to p
and N, respectively;
E = Young's modulus;
A = cross-section area;
I = moment of inertia of cross-

section;
! = initial member length;
{u}(m), {F}(m) = member nodal displacements
and nodal forces, respec-
tively; and

€(m), f(m) = member deformation and de-
formation force, respectively.
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