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A circular rigid punch is located on a semi-infinite plane with an oblique edge crack. The punch is
acted by an eccentric load to keep the punch vertical, and frictional force is assumed to exist on the
contact region. A pair of concentrated forces or point dislocations is assumed to act at arbitrary points
in the semi-infinite plane. The analytical solution (Green function) is obtained by a rational mapping
function and a complex variable method. To solve the problem, the complex stress functions are
divided into two parts; one is the principal part, which corresponds to the fundamental solution of the
semi-infinite plane with an oblique edge crack; the other is the holomorphic part of the problem, which
can be derived explicitly. The stress intensity factors and resultant moment on the contact region to
decide the position of the vertical load on the punch are shown.
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1. INTRODUCTION

It is well known that the fundamental solutions
of an infinite plane and a semi-infinite plane
subjected to concentrated force or point
dislocation at an arbitrary point play important
roles in the analysis of various problems in
engineering, especially in the application of
Boundary Element Method " .

When a punch on a semi-infinite plane with a
crack is concerned, some difficulties will be met
in computation. For example, when the problem is
analyzed by numerical method, the modeling of
the contact region, the semi-infinite extension of
the half plane and the tip of the edge crack will

result in much inconvenience®. In order to solve
the problem effectively, it is necessary to derive
the fundamental solution of the problem, and then
by making use of the solution, the inherent
properties of the problem can be revealed
analytically without much computation, and BEM
can also be applied efficiently.

A rigid flat or circular punch problem on a
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semi-infinite plane with an edge crack has been
studied in the previous papers %) ysing complex
stress functions. The semi-infinite plane with an
edge crack is first mapped into a unit circle by a
rational mapping function so that the forward
derivation can be performed on the mapping plane
in an analytical way. The solution of the semi-
infinite plane with an edge crack is derived by
making use of the regularity of the complex stress
functions of the semi-infinite plane. According to
the loading and displacement conditions, the
punch problem can be transformed into the
Riemann-Hilbert problem. To solve the R-H
equation, the complex stress functions for the
whole problem are divided into two parts, one is
the principal part, which is corresponding to the
solution of the semi-infinite plane with an edge
crack acted by concentrated force or point.
dislocation; the other is the holomorphic part of
the problem. By substituting the first part into the
R-H equation, and introducing a Plemelj function,
the solution of the second part can be obtained
explicitly.



2. THE MAPPING FUNCTION

To analyze the punch problem with an edge
crack in the semi-infinite plane subjected to
concentrated forces or point dislocations, the first
important step is to map the semi-infinite plane
with the crack into a unit circle by a rational
mapping function.

For the semi-infinite plane with an oblique edge
crack (Fig.1), the following irrational mapping
function can be obtained from Schwarz-
Christoffel's formula,

(=i

A+iC)'a-it)™ R
s'(1=s)""

1-¢

Z:CO(C)=b2 )

where b is the crack length, s=v/180, v
represents the oblique angle of the crack , and
€ =1 corresponds to infinity.

To use the above mapping function directly is
impossible to obtain an explicit solution of the
problem, therefore the following rational mapping
function is formed from (1),

z=m(§)=—1§_—9€~+;€fi§+Ec @)

where E,, E, and gk(]§k§>1) are known

constants, E_ is related to the distance from the

crack to the origin of the coordinates, and
N =24 is used in this paper.

The rational expressions for each irrational term
in (1) are formed, and the method of constructing
a rational mapping function in a fractional form
from an irrational one for a semi-infinite plane
with an oblique edge crack has been reported in
the previous papers®, and its high precision has
also been proved. The main idea is stated in
Appendix A. For an arbitrary point z, in the

physical plane, the corresponding &, in the

mapping plane can be decided by solving (2) using
Newton Method or Muller Iteration Method.

3. SEMI-INFINITE PLANE WITH AN
OBLIQUE EDGE CRACK

(1) Case of concentrated force
As shown in Fig.1, the semi-infinite plane with
an oblique edge crack is assumed to be acted by a

pair of concentrated forces q,, g, at an arbitrary

C Gx
J—Dx
- D,
-Qx <
-qy
T-D,

Fig.1 A semi-infinite plane with an oblique
edge crack and the unit circle

point z,, which corresponds to point(; in the unit
circle. It is also supposed that there exists another
pair of concentrated forces —q, ,—¢q, acted at

point z,, , which corresponds to point &, in the

unit circle. The two pairs of concentrated forces
are in self-equilibrium.

It is assumed that the complex stress functions
¢, and y, to be obtained is in the following

form:
¢,(C)=0,(8)+¢,,(0) (3a)
Y, (0= v, (6)+v,,(0) (3b)
where ¢,,(C) and y,(§) are the principal parts of

the complex potentials ¢,(C) and y, (C), and

represent the complex stress functions of an
infinite plane subjected to the concentrated forces,

and ¢,,(6) and y,,(£) are the holomorphic

parts of ¢,(C) and y _ (E), respectively.
It is well known that the expressions of ¢,,(5)

and y,,(C) can be expressed as

_9 ey 94 - 4
¢¢,l(€)~2n log(€-&,) 2nlog(f; C.) (43)

q (&)
2n 0"(CUE-Ey)

V@ =-Llogt-¢,) -

21
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@) b)

'°g“; St e CC-CL)

where g =—(q,+ig )/ (1+x), x=3-4v for
plane strain and (3—v)/(1+V) for plane stress

state, respectively, and v represents the Poisson’s
ratio of the semi-infinite plane.
Since there exists traction free boundary,

another complex stress function Wy (C) can be

expressed by ¢, (C) as”

_ = 1 edly) ., 5
v, (©) ¢q(€) o (4 I )]
where
1 E, 4—, LEL +
- =E'0~ k ;(~ Ec
e M W
and Q;zl/gk.
Substituting (3) into (5) yields
- 1. o/
V©) = ()~ o (5’ )
- _l__co(l/Z;) ¢
¢q.(€) T 4, -v, &) (©

Since y,,(8) (€S") is regular in the unit

circle, the right side of (6) must be also regular. In
order to separate the singular parts from the right
side of (6), the following derivations are
considered:

m(l/C)q)](C)_m(l/Q)i( 11 J

o'(C) o'(€) 2n\C-&, C-C,
=ii BE 1 o(/g) 1
2n S G -8)6-6  0'(G) £-&,
_ay BG 1 ed/g,) |
2n |3 G =G, 66 0'(,) §-¢,
+regularpart (L eS*) @)
— N 4 T
mcs (/QC)) ¢:/z ©)= Z; Aqkfék + regular part

(LesS™) ®

where A4, =¢.,(C;) and EEE‘/‘D'(CZ)‘

51{2(1/?;) in (6) must be determined so as to

eliminate the irregular parts in the right side of (6).
The following expression is then obtained:

D)3

+_q__(0(‘;o)“(0(1/§o 1
2n '((;o) C‘Qo
g 0 -0l/g,) 1

21t w'(E,) -G,

N ( 1 ]"BZ v

ann G — C.:m Gy —Co/ E-C;
A B,

>

k=1

X 1og(g - co)——ilog(c ~6,)

(EeS) C)
From (9), it is easy to deduce that

0,2(0) =5 log(G~1/E,) - TlogG~1/8,)
4 0@)-0(/&) (/6

m o' G-1/G,

L4 0G,)-00/,) 4/5,)

o e, 6-1/¢,
__'q"_N( L ]Bk
nii\G-0, G5t
NquBk

SEk (10)
+;C‘Qk
and then

_kq 1 1
nl6)= {c 18, ¢- 1/5}

q o(Cy) - m(l/go) (I/CO)
T oG G-1/5,)
g 0G)-00/g,) 1/5,)
m o 0'G,) (€-1/6,)

a1 _
il

Y 4B,
Z:. (€6,

1 ) B,
& @G
§R))

To decide the undetermined values of
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Ay E¢;2(g;), let £=C(j=12,...,N) in(11),
it is obtained that
+
Z(C =&’
xq 1 _ 1
o |G -1/E, & -1/,
+im(€0)_w(l/ao) (1/5022
2n ©'(G) (=175
_4 0@,)-0l/5,) (/)
2n ®'(G,) @ -1/¢,)
G e (o
2 G\G -G, G -Go) (€ -6
(12)
A,,and ./_1:;(]' =1,2,..,N). can then be
determined by the above N equations.
When the point force at z=z, applies at

infinity, the solution of the original problem can
be obtained by letting z, —> o, ie. { —1.

(2) Case of point dislocations

As shown in Fig.1, in this case, the semi-
infinite plane is assumed to be subjected to a pair
of point dislocations D, ,D, at point z; in the
semi-infinite plane. It is also supposed that there
exists another pair of point dislocations
=D, ,~ D, atanother point z,.

The complex stress functions of the problem to
be obtained are assumed in the following forms:

$,8)=6¢,0)+¢,,(8)
Y0 =y, (E)+y,,(8)

(13a)
(13b)

where ¢,,(£) and w () are the principal parts,

which represent the complex stress functions for
an infinite plane subjected to the point
dislocations, and ¢,,(§) and y,,(§) are the
holomorphic of ¢,(8) andy, (5,
respectively.

¢,,(8) and y,,(€) for point dislocations can

be expressed as

parts

0 (©) =~ 108E 8+ log(G-C,) (140
g 2n

c (%

X
Z6(Xg ,¥o)

-1 1
v JE(B)
A D)

A circular rigid punch on a cracked
semi-infinite plane and the unit circle

Fig.2

D s o&,)
W(n(g)“‘ lOg(C Co)+ 0'C)C-Cy)
D w(‘;m
—-—-l - 20— (14b)
A o' C)C-C,)

where D=D, +iD,.

By the same procedures used in the case of
concentrated forces, the present solution can be
obtained as

04(0) =~ 086 ~C) + - log(6 L)

+_D_10g(<;_1/50)__’2;og(g_uz;m)
D m((;o) w(l/go) (l/go)

"on o'G) &= 1/,
__B_m(c;m)-m(l/cm)(l/gm_)
2n o'C,)  &-1/¢,

DY ( 1 ___1_] B,
2m 5\, -C, G -G/ C-C,
L Ay B,
—hk (15)
+Z;§"§k

where 4,, and 1_4;: are determined by solving 2N

linear simultaneous equations for real and
imaginary parts of A, =¢,,(C,) (k=12,.,N).
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4. LOADING AND DISPLACEMENT
CONDITIONS OF PUNCH PROBLEM

The punch problem is shown in Fig.2, in which
the punch is acted by load P with a distance e
from the origin of the coordinates. Coulomb's
frictional force exists on the contact region. An
oblique edge crack with an angle

vy (O0<y <180°) is located at or away from the

right end of the punch. The semi-infinite plane is
assumed to be subjected to concentrated forces or
point dislocations, respectively.

The loading and displacement conditions of the
problem can be presented as follows:

p.=p,=0 on L=L +L, (l6a)
D, =UD,, jpy ds=P on M (16b)
V=x*/2R on M (16¢)
The displacement in (16c) is given by
V=-o~R =5 =-RJl-(x/ R
~x*/(2R) (16d)

owing to the fact that V is very small compared
with R. The conditions related to the concentrated
forces or point dislocations are expressed as

Q(x7y) = (qx +iqy)8(2920)'—(qx +iqy)8(zazm)
(17a)

G(x,y) =(D, +iD,)d(z,2,) ~ (D, +iD,)3(z,2,)
(17b)

where L, = ABCD'D, L, = EA, M = DE in
Fig.2; p represents the Coulomb’s frictional
coefficient on M ; p_ and p, represents the
components of traction in x and y directions on the
surface of the semi-infinite plane; (J(x,y) and
G(x,y) represent the forces and dislocations in
the semi-infinite plane, respectively; 3(z,z,) =1
when z =2z, and 0 when z # z;, so does 3(z,z,,) .
R represents the radius of curvature of the punch.

5. FUNDAMENTAL SOLUTIONS OF
THE PUNCH PROBLEM

According to the above loading and displacement
conditions, the problem can be transformed into

the Riemann-Hilbert problem as follows: **!

¢ (c)-¢ (o)=f, on L=L+L, (18a)

() + b7 (0)=f, on M (18b)
g

where (o) denotes the value of ¢(c) on the
unit circle approaching from inside region S*and

¢~ (o) from the outside region S~ (see Fig.1), and

7 =ij(px +ip,)ds (19a)
7, = 41— iw)GiV + (1 + in)(1 + x)S(o) (19b)
(k+1D)—ip(x -1)
- 1-ip (1
S =)+ I+ ‘1{(—;] (19¢)
lz(K+1)+ip.(K—1) (19d)

g (K+D-ip(x-1)

S(€) is a function to be determined so as to
satisfy (19¢), and G is the shear modulus of the
semi-infinite plane. R is included in the expression
of V= [u)(cs)]2 /(2R)in (19b). The solution of
punch problem can be easily obtained from the
present paper by letting g and D zero.

(1) The semi-infinite plane acted by
concentrated forces
The complex stress functions to be obtained are
represented by two terms:

(20a)
(20b)

0(0)=¢,(6) +9,(8)
y(©) =y, (O +w,(6)

where ¢,(£) and y,(C) correspond to ¢, (C)
and (&) of the semi-infinite plane acted by the

two pairs of concentrated forces, as presented by
(3), (4), (10) and (5); ¢,(C) and y,(C) are the

holomorphic parts of ¢(C) and w(&).

Substituting (20a) into (18), it is obtained that
$3(0) =2 (0) = f12(0)
1 S
03(0)+ - 4:(0)= i) +C [6,(6)-4,(0)]
= fu2(0)

+§;{(5— kq)f, +(xq—q)f, +48 +4g, +2’rrg3}
(21b)

(21a)
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where

0 on I
Jia(o)= {

. (22a)
[P(1—ipn) on L,
Fi(0) = 41 - w)GiV +(1 + i1+ x)S(o)
K+D—ip(x -1
(22b)
_ I, [1
S(Q) = ¢z((;) + 1+ip ¢2[5J (22¢)
(1—in)x +1) (22d)

T (e D)-in(x-1)

£, =log(c—1/L,)~log(c —1/L,) (22€)

Sy =log(c -Cy)~log(c -C,) (220
g = 0G)-0(/g) 1
l 0)'((;0) C“Co
_0E,)-001/5) 1
%c> c-¢&,
— S ( 1 ) 22
Z(G Qk)kgk -G, Ck Cn @28
_0&)-0/g,) (/E,)
’ 0'(G)  o-1/¢,
_o@,)-0d/t,) 1/E,)
©'C,) o-1/g,
LB 1 1 )
- S — 22h
gwngq~g g-c,)
— v Aqk_B:gcz _ S —"Z;;Bk .
8 20Ty Zocg O
By introducing the Plemelj function

X&) =C-a)"C-P) ™", m=05-ilng/2x,

the solution of (21) can be expressed as ™"

02(0) = H\(©)+ Hy(&) + Hy(C)
+12R 10+ 0@

(23)

where

H P(1 - X(C) 24
(©) =P =i jx(c)(a Q (242)
Gil=ip) x(§) ¢ fo)}

Q)= R(x +1) 2mi 4;«0)(0

_ Gi(l-iw) 20

 R(x +1){ @} - N

{Ez{m 1-m }LzE‘)E‘_Jr E? }
gll-a 1-B] 1-¢ (-0

~Z 2E,E, { () }

f;k ~1 {xMA-8)  XENE, &)

{ NI (S
c, 16 -0 1E)E,

x(@f E; { m *1‘”;3]

5}

kI'X.(gk)lgk Cl&—o & -
2EE By 2H (24b)
& -¢ (-9
Hy(Q)=
Cx(&) f(q KQf, +(xq-q)f, +qg, +3g, +27g, |
an’i g 1 (oXc-C)
(24c)
x(6) R(o)
JQ=72 §X(G)(c Odcs (24d)

and (&) is a function to be determined. H,(C) is

related to the load on the punch. Though it is in
integral form, its first derivative can be expressed

in the form without integration®; H,(§) is

related to the vertical displacement on the contact
region induced by the radius of curvature of the
punch. Owing to the use of the rational mapping

function, the integration of H,(£) has been

carried out; H,(§) is related to the concentrated
forces in the semi-infinite plane. The final
expression of H,(C) can be obtained as

H;(C;) =
1—ip [(5 ~xq)F, +(kq - q)F, + 4G, +4G, + 2nG3]
4n
(25)

where

F,=log(6~1/8y) - log(¢~1/C,,)
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1z,
20 [,z MX(G)(G 5 (26a)
= log(¢~ co) log(¢-¢,)
x(@)j m (26b)
:m@g)—m(l/ao)[l_ x(é)} !
‘ ®'(%,) (49) [
_m(@)-m(l/?;,,,)[l_ x(f;)} !
0'(,) 121G 6-C,
2 1 16 |B&Y
1-
Z.( &, ca—cmj[ 1)<,
(26¢)
=m(c;0)—m(1/2;o>{l_ x(©) (/6
’ ®'(Gy) 1(1/Ge) |6 -11&,
,w«;m)—m(wém){l_ x(©) }(l/ém_f
0'C,) 21/, |C-1/8,
1 1@ ] B,
— — 1-
Z( -&, cz—cmj{ x(ck)}é—ck
(26d)
Y A, BLY
G, = -3 Zulion |y X(C)]
; 5-¢, [ 1E)
S x(C)}
-5 6
i G- Ck[ &) (26¢)

The method of deriving F; and F, is stated in
Appendix B. Though the last terms of F, and F,
are in integral forms, their first derivatives can be
expressed in the form without integration®’ .

Since there exists traction free boundary for the

problem, another stress function W(£) can be
expressed by (&) as”

- 4/ m(l/(;)
y(€)=—-61/E)- o) — ')

Substituting (20) into (27), it is obtained that

27

vy m(l/(;)
—wl(z;)—%(w&)f”(f(’é%<c> 28)

Since there also exists free boundary for the
semi-infinite plane acted by concentrated forces,
W, (&) can be expressed by ¢,(C) as presented in
(5). By substituting (5) into (28), it is obtained
that

(0(1/(‘;)

29
o' ©) ——=¢:(0) (29

¥, (0) = —,(1/ ) - ——=

It is noticed that there exists irregular term in
the right side of (29) as

(—D;S(/s) $3(0) = g; * “kék + regular part

(EeS™) (0
where 4, = 45(5;).

Since ,(&) must be regular in S*, ¢2(1/E)
must cancel the irregular term of (30), i.e.,

¢(1/i)=-i»—-—A’< 2 regul
) gular part
k=1 ‘:"C

(EeS™) @b

From (23) it is obtained that

6,(1/8)= H,(1/ Q)+ H,(1/ L)+ H,(1/8)
+ 2R ID oY) 62

On the other hand, it can be proved that

F(/8)=-F(() (332)
G,(1/8) = -G,(&) (33b)
G,(1/8) = -G,(&) (330)
Making use of (33), it is easy to prove that
HUD=-hm© 69

The following equations can also be derived )

I+ip

H(1/5)=-— @ 6
HUD=-"Em© o
HID =) (350)
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(34) and (35) mean that the first four terms of

the right side of (32) are all regularin S™.
Therefore it must be that

O/ D1/ D) = - z "+regularpart
k=1 k

(CesS™) (36)
Finally

0O = -3 HOA4B,

37N
i XE G, —8)

Making use of (34) and (35), J({) can be
determined so as to satisfy (22c, 24d) as”

Jer= S x(é;)}ZBk
© Z[ 1) 16 —¢

1——412[ x(C)}A BG

+const (38)
1+ip X&) ] & —-¢

Therefore each term of ¢,({) expressed by
(23) has been determined, ie., H,(£) is
expressed by (24a), H,(C) by (24b), H,(C) by
(25), J(C) by (38) and Q(E)x(C) by (37),
respectively.

A, and ?4_,: are determined by solving 2N
linear simultaneous equations for real and
imaginary parts of A, = ¢%(C,) (k=1,2,3,...,N).

In this paper, N =24and thus 48 linear
simultaneous equations must be solved.

(2) The semi-infinite plane subjected to
point dislocations
The complex stress functions in the present case
are also divided into two parts as expressed in (20),

where ¢,() and ,(£) correspond to ¢,(£) and
y,(£), which represent the solution of the semi-

infinite plane subjected to two pairs of point
dislocations presented by (15). In the same
procedure described in the case of concentrated
force, the solution of the present case can be
obtained as

¢(C)=¢,(0)+¢,(0)
= 0,8+ Hi(C)+ H, (&) + H,(©)

%EJ(C;H 0ONG) 69

where ¢,(C) is expressed by (15), H,(C) by
(24a), H,(£) by (24b), J(&) by (38) and

O&)x(&) by (37), respectively.
H,(€) in this case is given by

H4(§) =

=iy [-(D+D)F, +(D+D)F,
'
+ DG, + DG, + 2nGS] (40)

where F|, F, and G, are expressed by (26) and

=m(1/éo>—m«;o){l_ x(C)J !

¢ ®'(Gy) X&) £-C

_w(l/im)—m(qm){lw x(C)J !
(D'(Cm) X(Qm) Q*C’m

x(c)} “n
X&) |C-C;

Y 1
1-
+§[ Co CZ '—Qm)[

¥

ﬂm(l/&)—m(co)[l_

x(6) } (178,

T 0'(G) x(1/C) |6 -1/C,
_wﬂ/i,,,)—w(c:,,,){l_ 1% }(l/cu
Y@ 2(1/6,) |6-1/¢
NS 1 1@ ] B
SRR ——— 1- 42
+2( g g;—c,,,][ x(c;,f)}c; g

6. STRESS INTENSITY FACTORS

The stress intensity factors of the crack are
calculated by ®

K, ~-iK,

=227 liny 0{1 f[o(0) - 0(oo)]e*'(5)/ m'(c)}
=2ne¢'(c,)/ Jo"(5,)  (43)

where 6, =(1-2s+i)/(1-2s—1i) is £ onthe
unit circle corresponding to the tip of the crack
(point C on the unit circle), and & = ~iyn /180
represents the angle between the x-axis and the
crack.

The non-dimensional stress intensity factors are
defined as
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Fig.3 F; with different p and d, Yo = Oand y = 90°

0
F n 7
fed
7
0.5 0.1
q:/P=1
R W)
-0.8
0 1 2 3 4 5
d/a

Figd F,; with different p andd, y, =0 and y = 90°
1 0

g ovip, - YA K
Pn

In the following examples, b/a=05, ¢/a=0,

x¥=2 and GZ/(PR=1 are

calculationFigs.3 and 4 show F, and F) with

different pand d, where d=x,-a/2-c¢

and y, = 0, which represents that g, or g, acts

selected for

on the surface of the semi-infinite plane. The
incline angle of the crack is typically taken as

y =90°. When the concentrated force acts on the
boundary, the solution can also be obtained by
using (19c). F, usually decreases with the

increase of d, and tends to a stable value (for the
case of punch only) for each p . The influence of

g, on F, is greater than that of g, on F, owing

to the fact that the edge crack is in vertical
direction; F, increases with the increase of d and

also tends to a stable value for each p.Both F,
and F,, increase with the increase of p.
Figs.5 and 6 show F, and F), with different p

-0.2
-06 -04 -02

Fig.5 Fl with different p and X, Yo =-a andy = 60°

" e p=0,9 mmmmm="
------- qy/Pi!"_—"_ _E
0.1 —.——_—_:-:;::a——"z"-—_—"‘__pgé‘—'-;:"'og
: YR
P S E—

Fig.6 F}; with different p and x;, yg =-a and y =60

and x,,and y, =—a. The angle of the crack is

taken as y =60°. F, and F), usually increase
with the increase of x, and the influence of

q.onk, and F, is smaller than that of g, on

them

7. RESULTANT MOMENT

The resultant moment on the contact region about
the origin of the x-y coordinates is necessary to
decide the position of the load P on the punch (see

Fig.2), and is calculated by7)

8 B
—( 1\ do 1
R =-R '(—)—+ m(——) '(0)do
: eb@(ﬁ)«b e f‘ _J¢' @)
(45)
The position of the load P is decided by
Pe=R, (46)

The non-dimensional resultant moment which also
means the length e/a is defined by
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Fig.7 shows M, with g, and g, act on the

surface of the semi-infinite plane with y =90".
M, increases with the increase of d, and tends to
a stable value for each p, which corresponds
to M, for the punch problem without ¢, and q,

in the semi-infinite plane. The influence of g,

on M, is greater than g, when d is relatively
small but tends to the same value with the increase
of d since the influences of ¢, and g, become
smaller and smaller with the increase of d for each
u . Fig.8 shows M, with g, andg, that act in the

semi-infinite plane withy, =—a and y =60".
When ¢, is applied, M, decreases with the

increase of x, foreach p; while ¢, isapplied,
M, usually increases with the increase of x, for
large p but decreases for small p. For all
cases, the larger the value of p becomes, the
smaller the value of M, becomes. It is noted that
the positive value of M, represents  anti-
clockwise moment on the contact region, which
corresponds to the case that the load P is on the
left side of the y-axis. In the same process, the
results for the punch on the semi-infinite plane
subjected to point dislocation can be obtained.

8. CONCLUSIONS

The solution of circular rigid punch on a cracked
semi-infinite plane subjected to concentrated force
or point dislocation was derived. Since one part of
the complex stress functions of the punch problem
is selected as the solution (see(20)) of the

M,
0
-0.1
-0.2
-06 -04 -02 0 0.2 0.4 06
Xo/a

Fig.8 M, with different p and xj, yy = —aandy = 60"

corresponding  cracked  semi-infinite  plane
subjected to the concentrated force or point
dislocation, the influence of the concentrated force
or point dislocation and the boundary conditions
of the semi-infinite plane can be reflected
completely. The derivation of the solutions (10)
and (15) for a semi-infinite plane and (20) for a
punch problem does not need tedious integration
because they have been derived from the condition
of the regularity of W(C). The concentrated forces

or point dislocations are located at arbitrary points
in the semi-infinite plane. If V' in (16c) is
changed, the punch problem of other shapes can
be solved. If the radius of curvature of the punch
tends to infinity, the fundamental solution of flat-
ended punch problem can be obtained. If the
coefficients E, ( k=1,2,3,..,N) in (2) are taken to
be zero, the solution of the punch on a semi-
infinite plane without crack can be obtained. The
first derivatives of (24a) and (26a,b) can be
expressed in the form without integration,
therefore the expression to decide the A, and

stress components does not include any integral
terms so that the numerical integration is not
needed for the calculation of stress components,
stress intensity factors as well as resultant moment
on the contact region. Since the punch is assumed
to be vertical on the semi-infinite plane, the
resultant moment on the contact region is needed
to balance the moment produced by the eccentric

load on the punch. Ga’/(PR) is a non-

dimensional parameter which provides a relation
among the length a of the contact region, the load
P on the punch, the radius R of the punch and the
material constant G of the semi-infinite plane. The
solutions in the present paper can be progressively
used to analyze more complicated problems
related to punch problems with internal crack or
hole, which is very efficient compared to common
computational methods, such as FEM, BEM, etc..
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Not only the analytical property of the punch and
edge crack can be reflected efficiently without
numerical modeling around the contact region, but
the crack and the semi-infinite plane, the stress
intensity factors of the crack and resultant moment
on the contact region can also be obtained directly.

APPENDIX A

The two irrational terms in (1) can be
approximated by the following rational functions

_ -4,
(1+iQ)' = 1+Z[A +1Ha J

J=l

Is_ B
(1-i¢) 1+§(3 +1-1[3ng

The coefficients Aj., a,@(=12..12) and B,,

B,(k=1,2,...,12) can be determined by solving a
nonlinear algebraic equation. The method of
solving the equation was described in reference 6).

Substituting the above expressions into (1),
expression (2) can then be obtained.

APPENDIX B

The first integral in (24¢) can be expressed by

fi(o)
Nj:x+(0)(0 0 ('{

(6 9"
_omic, L log(s - 1/(;0) - log(c -1/ C'")dcs

2mi X(G)((S - Q)

1508

~log(6-1/¢,)
p (9]

) Iuc: do }
e x(o)(o - &)

where ¥ (c)=-y"(c)/ g on M is used, and
=[(x + 1) = ip(x — D]/ [2(¢c + D]

Therefore

o C{log«; /)

log(C—-1/C,)

l/Cm
10 g x(o)(c 0)

F =log(G-1/8) -

In the same procedure, F, can be derived.
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