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In identifying structural parameters, errors in prescribed model parameters influence the value of
identified parameters. This paper proposes a formula to estimate the confidence region of identified pa-
rameters based on the propagation law of errors and the sensitivity of identified parameter with respect to
the model parameter errors, Numerical experiments with a simple model proved that the estimated values
were in good agreement with the results of identification analysis, thus verifying the validity of the formu-
la. Using prior information about unknown parameters is thought to effectively minimize the effects of
prescribed parameter errors in the identification. Therefore, this study also formulated and theoretically
verified a method of estimating the confidence region of identified parameters based on prior information.
In this second approach, numerical experiments again demonstrated the validity of the method proposed.
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1. INTRODUCTION programming filter®), and other filters. On the other
hand, the effects of prescribed parameter errors have

Evaluating structural parameters is an effective Dot been studied much, except for the study by Koh
means of assessing dynamic behaviors of the ground ~ and Seel0). Applying the extended Kalman filter to a
and structures in seismic engineering. A number of structural system with an error in one of the masses,
studies have been conducted to acquire valuable ~ unknown parameters are identified. They demon-
knowledge and have proposed various approaches for strated that the converged values differ from their true
this purpose. See references 1) to 7) for example. Al- values and advocated the importance of introducing
though methods of identifying structural parameters ~ System noise. To compensate for the discrepancy,
have improved through these efforts, the parameter  they proposed the concept of system noise. Yoshida
identification greatly relies on accuracy of measure- ~ and Hoshiya!D) proposed a method of inverse analysis
ment. Thus, further advancement in measurement which took into consideration uncertainties of known
technology is required. Numerous uncertainties are conditions for a static problem, and discussed the ef-
involved in structural identification problems, which fects of known and unknown conditions, including the
inevitably influences identified results. Both input degree of certainty of prior information. In a study to
signals and output responses of a given structure will identify dynamic structural parameters, the authors!2)
contain some observation noise. Parameter values  Proposed a method of evaluating the effects of model
given as known are not free from errors. Past studies parameter error and observation noise on the results of
have proven that observation noise can be eliminated ~ identified unknown parameters, along with their sen-

to some extent by using a Kalman filter®, dynamic ~ Sitivity with respect to errors, and confirmed the valid-
ity of the proposed approach through numerical ex-

This paper is translated into English from the Japanese pa- periments.
per, which originally appeared on J. Struct. Mech. Earth- This paper deals with the effects of errors in pre-
quake Eng., JSCE, No.537/1-35, pp.267-275, 1996. 4. scribed parameters on the identified parameters based
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on the probability theory, and proposes a method of
evaluating these effects as a confidence region of iden-
tified parameters, using the sensitivity of unknown
parameters with respect to the model parameter er-
rors'?. In past studies, the confidence regions of
identified parameters were evaluated with respect to
observation noise based on actual identified results.
In contrast, this method evaluates the confidence re-
gion of the parameters to be identified without actual-
ly conducting identification.

This paper presents a method to evaluate the influ-
ence of errors in prescribed parameters on identified
parameter values in the form of confidence region.
The validity of the method is confirmed through
numerical experiments with a simple model. Further-
more, similar formulation is made to evaluate the con-
fidence region of parameters identified by a probabil-
ity based approach and its validity is verified by
numerical experiments.

2. CONFIDENCE REGION OF IDENTI-
FIED RESULTS

(1) Theoretical Formula
Eq. (1) is the equation of motion in a linear multi-
degree-of-freedom system under a seismic load.

Mi(t) + Ci(t) + Kz(H) = -M13,(H 1)

where M, C and K are mass, damping and stiffness
matrices, while 7(¢), 7(r) and z(¢) are relative accelera-
tion, relative velocity and relative displacement vec-
tor, respectively. The symbol 1 is a vector whose com-
ponents are all 1.0. j,(» is a scalar quantity which
denotes the seismic motion (acceleration) of the
ground surface. Unknown model parameters to be
identified are expressed as X = {Xl,Xz,...,XM}T and
prescribed parameters as ¥ = {¥,7,,.. ,YL}T. As the
observed value, a time history of acceleration is used.
If the observed value ii(r) at the observation point i,
its corresponding analysis value 7(r) and observation
error e(r) are known, the following relationship ex-
ists.

i€A 2)
When the least square method with Eq. (2) is utilized,
the evaluation function can be defined as

ift) = 7(1) + €1

3

th

2wy X.DYd (3)

€A

J(XY)——-[

0

where 1, is the analysis time interval. w,is a weight
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coefficient, the value of which depends on the degrees
of importance and reliability of measured data!?),

Let the prescribed model parameter value Y, devi-
ates from its true value ¥, by 4Y,.If AY, is sufficiently
small, its effect on the values of identified parameters
remains small and thus can be written as

X=xX+39X

ay, Y

4

where X is the mean value or the true value of X.
When the variance and covariance of the prescribed
parameter are given, Eq. (4) and the propagation law
of errors' give the variance-covariance matrix of
identified results as

= A;YEYYAXY &)

Z,y signifies the variance-covariance matrix of the
prescribed parameter, which is expressed as

Oyvivt Oviyz -+ Oyiyr
Ory1 Oyays

Zyy = : (6)
Oyiyi OyiyL

Ayy is the sensitivity of the identified parameter with
respect to model parameter errors.

oX, 0%, o,
T Ay e Ay 3)’2 gﬁ: T
P I S A @
Ay e A a;(l " ax,
37, v, |

The element of Eq. (7) can be calculated from the fol-
lowing sensitivity equation!?),

M n 1
az, az, _ az, Bz,
;{I Z 'aX X d}lﬂ - ‘L Z Wigy, 0%,
€=1,.,L)
k=1,..,M) (8

When the distribution type of identified results are as-
sumed to be normal distribution, the probability den-
sity function is expressed as

e[ LD ZR D] ©)

M

(27)7 12,2

When the confidence level is 1-e, therefore, the
confidence region of identified results is given as!4

(X-B)7Z3% (X-X) < x2,, (10)

PX) =

where %, is the limit value at the confidence level of
1-e and M degrees of freedom. Eq. (10) describes the
inside of a probability ellipsoid. This equation gives
an ellipse for M=2, ellipsoid for M=3, and hyper-
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Fig.1 Analysis Model

ellipsoid for M=4.

In actual problems, X in Eq. (10) is a parameter
which should be identified using the population mean
Y of prescribed parameters. Although Y is unknown
in actuality, it is possible to evaluate the error in its es-
timated value by the Bootstrap method!3) or other sta-
tistical methods. This makes the proposed theory ap-
plicable to actual problems.

(2) Numerical Example

This theory was verified as explained below,
through numerical experiments with the two degree-
of-freedom system shown in Fig. 1.

The input wave was the El Centro wave (NS com-
ponent) of the Imperial Valley earthquake in 1940,
with maximum acceleration adjusted to 300 gal. Time
history responses were analyzed using the values of
structural parameters in Fig. 1. The results were
adopted as the observed data in this study.

Prescribed structural parameters were masses m,
and m,. Unknown parameters were damping coeffi-
cients ¢, and ¢, and stiffness &, and k,. First, the ef-
fects of prescribed masses on the identified results
were discussed, based on the following assumptions:
masses m, and m, are normally distributed with er-
rors, some statistical characteristics, and mean values
1, and 7, respectively; 7, and ©,, and %, and %, are
the identified results that agree with true values when
masses are 77, and 7, and the weight coefficient is
w;=1. To confirm the validity of the theoretical formu-
la, structural parameters were actually identified by
the modified Marquardt method!® with 1,000 pairs of
normally distributed random numbers as the masses
with mean values 77, and 7, respectively, for com-
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parison with theoretical values. The masses are as-
sumed not to be correlated and to have a coefficient of
variation COV=0.05.

The histograms in Fig. 2 show the distributions of
prescribed masses and identified results. The curves
show the probability density function of normal dis-
tribution. Fig. 2 confirms that masses generated by
random numbers have the specified mean value and
standard deviation. Due to the dispersion of pre-
scribed masses, the identified resuits disperse with a
coefficient of variation of 0.03 to 0.07 under a normal
distribution. Fig. 3 compares the identified and
theoretical values. The probability ellipse in Fig. 3
represents the confidence limit with two degrees of
freedom and a confidence level of 95%. Small circles
in the figure indicates identified results. Since there
are four identified parameters, their confidence region
makes a hyper-ellipsoid with four degrees of freedom,
which cannot be graphically represented. Therefore,
six pairs of two different parameters are composed, for
each of which a probability distribution with two de-
grees of freedom is drawn in Fig. 3. The analysis
proves that the identified results vary widely accord-
ing to the prescribed parameter errors. The distribu-
tions of the two damping coefficients (¢,—¢,) are
only slightly correlated with the identified results.
Correlations between other parameters are more or
less positive. Fig. 3 proves that the identified results
are in good agreement with probability ellipses. The
numerator of the fraction framed in Fig. 3 shows the
number of identified parameters that fall in the proba-
bility ellipse. The ratio of the number of identified pa-
rameters that are in the probability ellipse to the total
number at the confidence level of 95% is near
950/1,000 in each case. This proves that the identified
parameters are in good agreement with the theory.
Table 1 shows the sensitivity of identified parameters
with respect to mass errors which was used to calcu-
late the probability ellipse. Table 2 compares the val-
ues of variance-covariance and coefficients of correla-
tion of identified parameters with those estimated by
Eqg. (5). They are also in good agreement. Trace(Zyy)
in Table 2 describes the traces of the variance-covari-
ance matrices. Coefficients of correlation of different
parameters show that the two damping coefficients are
only slightly correlated, while other parameters are
correlated to some extent. The above evidence proves
that the effects of prescribed parameter errors on iden-
tified parameters can be evaluated using a confidence
region expressed as a probability ellipse.
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Table 1 Sensitivities of identified parameters with respect to
mass errors
B | dg | ok | ok
Y, 3y, Y, 3, a7,
", 9.56 -3.14 248.26 51.18
m, 2.20 12.94 535.74 536.82

Units

oe; (1/sec)

T Ok : (1/sec?)

om;

»

Table 2 Comparison of variance-covariances and correlation

coefficients
Estimated Identified
O 6.3 6.0
Oun -0.1 0.2
O 231.1 219.9
. G 108.7 103.1
§ s 115 11.6
<
>
g O 400.4 399.4
5]
g Oria 441.6 441.5
8 O 22689.1 22240.6
o 19542.7 19334.1
k1k2
O 18924.1 18846.2
trace(Zyy) 41631.0 41104.4
- Parcr -0.0120 -0.0192
.2
g Pt 0.6131 0.6018
§ Pz 0.3156 0.3065
g o 0.7826 0.7869
“5 <2kl
g Poris 0.9450 0.9448
o o 0.9431 0.9444
k1k2

3. REDUCTION OF THE CONFIDENCE
REGION BASED ON PRIOR IN-
FORMATION

In parameter identification, there exists the problem
of compromising reciprocal requirements for model
resolution and estimation errors. According to avail-
able study results!7:18), this drawback is eliminated if
a solution based on the minimum variance criterion is
obtained by applying prior information. This ap-
proach may effectively identify parameters with high
precision when prescribed parameters have errors,
such as in the present case. As discussed above with
respect to an example problem, the effects of pre-
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scribed parameter errors can be evaluated as the confi-
dence region of identified parameters. Therefore, the
theory presented in this paper will be able to evaluate
the precision of identified results, which is improved
by a solution based on the minimum variance criterion
obtained by applying prior information. When the
problem is non-linear, this solution is the one obtained
by the Bayesian estimation method!®), which is an ap-
proach based on the probability theory. Therefore, the
sensitivity of identified parameters with respect to
model errors is not applicable as it is, because the eval-
uation function discussed there is different from the
one to be applied to this case. First, therefore, a formu-
la will be introduced below to determine the sensitiv-
ity of identified parameters with respect to model er-
rors; this sensitivity can be treated with Bayesian
estimation. Next, the confidence region of identified
parameters affected by prescribed parameter errors
will be introduced by applying the sensitivity thus ob-
tained to an example problem similar to the one above.

(1) Formulation of Sensitivity Equation

As prior information, it is assumed that identified
parameters are normally distributed with the follow-
ing mean value and variance-covariance.

WSS

where E[-] is the expectation. When the statistical
characteristics of the observation error €,(r) in Eq. (2)
are expressed as Eq. (12), Eq. (13) gives the evalua-
tion function by Bayesian estimation.

E[X] = (11

Elel =0, E[ee’] =R (12)

1

_1
J..zj
0

+ %(X.-Y)TM*'(X—X')

{3 X) YR i-#(X) Yt (13)

When a model parameter Y, whose true value is Y,
has an error of AY,, substituting Eq. (4) into Eq. (13)
gives

T
i X+ XAy, 7, + av, |} R
3v,

; X + -——AY,, 7, +AY,)}

X + & AY,)-X} M—l{(f + X AY,)-X}

(14)



where % is an observed value which doesn’t contain
observation noise. Taylor expansion approximates
Eq. (14) as

b

)

< #-#(X)-Hy A AY ~H, AY Jdt

(-2{X)-Hy A AY ~H;AY ) R

S T — —
+ (X + 2,47} XY M(X + 2,4v )X} (15)
where

90X, 0X, " Xy

HX - 6X| 8X2 .
aX, 0X 11
r&\ razlw
aY, oY,

A, =43, , H, =<0} (16)
aY, 3Y,
. P . S

(¢ =1,..L)

and A, is the sensitivity vector of identified parame-
ters with respect to model parameter errors. After ma-
nipulation using the identity #=%X), Eq. (15) is re-
duced to

J= %(A Yy’ j (-Hx A~ Hy) R (~Hy A ~H)dt

0

+ %(A Y)ATM 4, an

The condition to minimize Eq. (17) irrespective of the
prescribed parameter errors AY, gives

11
ar = di,” _[ HIR-HyA~Hy)dt + M, p =0
0
(18
Eq. (18) gives the sensitivity equation as
1 1)
I HIRHydt + M }A, = - I HIR'Hydt
0 0
(€ =1,..,L) 19)

The solution of the simultaneous Eq. (19) gives the
sensitivity. The propagation law of errors in Eq. (5)
determines the variance-covariance matrix of identi-
fied parameters.
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(2) Numerical Example

The theory was verified with the two degree-of-
freedom system and prescribed masses used in the ex-
ample problem in 2.(2) through numerical experi-
ments.

To adjust conditions to those in 2.(2), the compo-
nents of variance-covariance matrix of observation er-
rors were set as R; = 1.0,(i = 1,2) and R; = 0.0,
(i = j). Asprior information, mean values of both the
damping coefficient and stiffness along with their
COV’s = 0.005 are assigned. Such a confidence level
with a COV as small as 0.005 doesn’t normally neces-
sitate identification analysis. The reasons for setting
the prior information this way are as follows: First,
R'and M in Eq. (18) can be regarded as weighted
coefficients to show the reliability of the observation
values and prior information, or parameters to deter-
mine which term (first or second) on the right side of
Eq. (13) should be weighted more heavily, or to adjust
the balance between them. Namely, they only have a
relative significance. (For such cases, the extended
Bayesian estimation!) multiplies the second term on
the right side of Eq. (13) by a scalar quantity.) In this
case, the variances of all observed values were set to
1.0 to adjust the conditions to those of the previous ex-
ample. To make the second term on the right side of

"Eq. (13) significant, therefore, it is necessary to make

the variance of the identified parameter small, as men-
tioned above. In this paper, this value is used only to
verify the theory. In actual problems, however, an ap-
propriate value should be adopted based on the covari-
ance matrix of observation errors.

Fig. 4 compares the identified and theoretical val-
ues. The probability ellipse in the figure represents
the confidence region, obtained from Eq. (10), fortwo
degrees of freedom with a confidence level of 95%.
The sensitivity of identified parameters with respect
to mass errors were obtained by the sensitivity equa-
tion (19). Small circles plotted in the figure indicate
the results from identification. Application of prior
information gave a small variance for identified re-
sults for all parameters. This suggests that the vari-
ance of identified parameters given as prior informa-
tion worked as a constraining condition. The damping
coefficients (¢,—c,) , which were only slightly
correlated when prior information was not given, are
now positively correlated due to the prior information.
Coefficients of correlation between other parameters
also increased in comparison with the case without us-
ing prior information. The figure shows that the dis-
tribution of identified parameters and the theoretical
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Table 3

Sensitivities of identified parameters with respect to

mass errors
O O I T
Y, 3, 37, a7, 37,
n 424 115 23733 | 4646
1

m, 4.65 3.99 628.93 384.11

ac; k,

Units  ~— : (1/sec) o (1/sec?)
j ’ j

Table 4 Comparison of variance-covariances and correlation

coefficients
Estimated Identified

Feicl 26 2.5

Oc1e2 1.5 L5

O 255.8 250.7
8 O 129.0 127.0
g O L1 11
§ Oan 181.3 178.9
3
§ G 103.3 102.3
> o 29406.9 28895.5

k1k1

Cun 16438.7 16242.9

[+ 9% 9742.0 9671.4

trace(Zyy) 39152.6 38570.5
- Paa 0.8965 0.8969
S oo 0.9290 0.9250
g Pun 0.8142 0.8100
-;g P 0.9968 0.9969
E 0.9872 0.9852
3 Pk

ez 0.9712 0.9716

probability ellipse are in good agreement. The numer-
ator of the fraction framed in the figure shows the
number of identified parameters that fall in the proba-
bility ellipse. The ratio of the number of identified pa-
rameters that are in the probability ellipse to the total
number at a confidence level of 95 % is near
950/1,000 in each case. This proves that the identified
parameters are in good agreement with the theory.
Table 3 shows the sensitivities of identified parame-
ters with respect to mass errors, which is smaller than
those in Table 1 in most cases. This also shows that
the variance of identified results is smaller when prior
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information is applied. Table 4 compares the vari-
ances, covariances, and coefficients of correlation be-
tween identified and theoretical values, and demon-
strates good agreement between them.

The variances of identified parameters except k, are
smaller when prior information is used. The variance
of k, has slightly increased, presumably because the
prior information on k, (variance), which was not
small enough, didn’t work as a weight. The traces of
variance-covariance matrices of identified parameters
with and without prior information were compared.
Those with prior information were smaller. This dem-
onstrated that the solution obtained is based on the
minimum variance criterion that minimizes total vari-
ance. The coefficients of correlation, which are all
near 1.0, quantitatively show the high degrees of cor-
relation between parameters.

4. CONCLUSIONS

This paper has proposed a method of evaluating the
confidence region of identified parameters under the
influence of errors in prescribed parameters, and veri-
fied the theory through numerical experiments. Con-
clusions regarding the formulated theory and numeri-
cal experiments are summarized as follows.

(1) The confidence region of identified parameters
under the influence of prescribed parameter errors can
be evaluated as a probability ellipse.

(2) Inorder to minimize the effects of prescribed pa-
rameter errors on identified parameters, a theoretical
formula was introduced to estimate the confidence re-
gion of identified parameters when an evaluation
function was formulated based on prior information.
(3) The confidence region of identified parameters
estimated by the method proposed in this paper satis-
factorily agrees with the distribution of actual identi-
fied results.

(4) Identification that takes prior information into
consideration reduces the variance of identified pa-
rameters generated by prescribed parameter errors.
(5) When prescribed parameters have errors, prior
information enhances the correlation between identi-
fied parameters.

This study dealt only with the effects of prescribed
parameter errors. In actual problems, however, ob-
served values contain observation noise, which
should be taken into consideration when evaluating



the confidence region of identified parameters. The
proposed method can be expanded to evaluate ob-
servation noise as well.
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