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This paper presents the modal superposition method in the application of wave-induced response
analysis of mat-like floating plates. This method separates the coupled hydroelastic problem into
uncoupled usual hydrodynamic problem and structural dynamic problem by expanding the motion of the
plate as a superposition of modal functions which include rigid-body motions and bending modes of the
plate. Effects of important parameters such as wave period, direction of incident waves and plate rigidity
on the response of the plate are discussed. Comparisons between the two-dimensional analytical solutions
and the three-dimensional solutions are also made.
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1. INTRODUCTION

In recent years, floating airports have been
attracted considerable attention because of the
fact that it is difficult to find a place on land or
shallow sea for such purposes in Japan. Usually,
pontoon type floating airports have large
dimensions in length and width with compared to
height. For example, the concept design of
floating airport for Kansai international airport
has a length of 4000m, a width of 1250m and a
height of 4.5mb. Therefore such floating
structures must be very flexible and the elastic
deformations due to waves become significant.
The interaction between structural deformations
and waves must be taken into account in the
design of such floating structures.

For solving this problem, several studies have
treated the structure as a beam with free ends in
two-dimensional fluid field, and the numerical
solutions are in good agreements with the
experimental results.2>-7) However, it is impossible

is

to consider the influence of the incident direction
of incoming waves by these method. On the study
of floating structures in three-dimensional fluid
field, Wen?8) has proposed a time domain
integration method for the analysis of a
rectangular plates in linear shallow water waves.
Hamamoto, Takahashi and Tanaka® have
performed the response analysis of a circular
floating plate subjected to wind-waves and
seaquakes. Mamidipudi and Webster!0) have
presented a combined method of singular point
distribution method and finite difference method
for analyzing the motion of a mat-like floating
plate in wave. Newmen!!) has extended the
formulations of the linear potential theory from
the rigid-body motion analysis to the generalized
modal motions of various deformable bodies.
Wang and Ertekin et al.12) have presented a
hydroelastic-response analysis of a box-like
floating airport of shallow draft.

This paper presents the modal superposition
method in the application of wave-induced



harmonic response analysis of mat-like floating
plates. This method separates the coupled
hydroelastic problem into uncoupled usual
hydrodynamic problem and structural dynamic
problem by expanding the motion of the plate as
a superposition of modal functions which include
rigid-body motions and bending modes of the
plate. The diffraction problem and the radiation
problems are solved by the boundary integral
equation method, and the hydroelastic equation
of motion is solved by the Galerkin's method. The
method is based on the assumptions of the linear
wave theory and small amplitude motion of the
structure. Some numerical examples show that
this method converges rapidly.

Effects of some important parameters such as
wave period, direction of incident waves and plate
rigidity on the response of the plate are observed
by the proposed method. Comparisons between
the two-dimensional analytical solutions”) and the
three-dimensional solutions by the proposed
method are also made.

2. GOVERNING EQUATIONS

The fluid-structure system is shown in Fig.1.
The two horizontal coordinate axes, x and y, are
set to be parallel to the two sides of the plate and
x-y plane is on the mean position of the free
surface of the water. The z-axis is pointing
upwards and passing the center of the plate. The
fluid is assumed to be incompressible, inviscid
and irrotational so that the velocity potential
exists. The waves and the motions of the structure
are of small amplitude and only the vertical
motion is considered.

Under the assumptions stated above, the flow
can be expressed by a velocity potential,

D(x,y,z,1), as

®(x,,2,1) = Re(9(x, y,2)e™) (0

and the steady-state vertical motions of the
structure, W(x,y,t), should be harmonic and can be
expressed as

W(x,,t) = Re(w(x,y)e ™) 2)
where i is imaginary unit, ¢ is time, ¢ is the
circular frequency, 0(x,y,z) is the complex

potential, and w(x,y) is the vertical complex
displacement of the plate.
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Fig. 1 Fluid-structure system

The complex potential is governed by the
Laplace's equation in the fluid domain
V=0 3
and must satisfy the boundary conditions on the
free surface, on the bottom and on the wetted
surface of the body as

2
%‘Z? = —E;- on T, 4)
-aa%— =0 onz=-h 5)
op [—iow on T,
on {O on T, ©

where g is the gravity acceleration, h is the water
depth, and

——a—"n —a—+n i%—n _3_ @)
on  “ox ’dy ‘oz

in which (ny,ny,n,) is the unit normal vector
pointing from the fluid domain into the body, I'y,
and I', denote the wetted surface on bottom and

side of the plate, respectively, T is the free surface
of the water.

The motion of the plate is governed by the
thin-plate equation

(DV*w)- " mw+kw=p (8)



where D is the plate rigidity, m is the mass per unit
area of the plate, k is distributed restoring force
factor,
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p is the wave pressure on the bottom of the plate
given by the linearized Bernoulli's equation!®

p=1ipcod (10)

and p is the density of the fluid.

3. EXPANSION OF MOTION

Exact solutions of the coupled hydroelastic
equation (8) are generally difficult. On structural
dynamics, the modal superposition method are
widely used for analyzing the coupled vibrations
of multi-degree of freedom system or continuous
structures.. On hydrodynamics, this modal
superposition scheme is successfully used by
Newmen!D, Fathi9 and Wu et. al.”) to solve two-
dimensional hydroelastic problems, and it is also
employed by Wen®) to analyze the response of a
plate in linear shallow water waves.

The modal functions employed in this paper
are as same as those which are used by Wen®8). The
displacement of the plate, w(x,y), is expanded by
the approximate natural functions of free-edge
plates

M N
W) = X, 3 Lo £, () (11)

m=1n=1

where {,, is the complex amplitude to be
determined, and f,(x)f,(y) is the mn-th mode of
the plate. The f,(x) and f,(y) are the natural
functions of free-free beam, wherein the f,,(x) is
given by

1/2 m=1
1 | cosh{p,x/a
mm=—%—£¢ﬁ (12)
2| coshu,
+@£M_/¢z)} 3.
cosp,,

3s

Fig.2 Modal functions of free-free beam

‘_F’;f_ m=2
2 a
1 |sinh{p,,x
am=~&fﬁ4@ (13)
2| sinhp,
+sﬂ&ﬁ£ﬂ} m=s6,..
sinp,,

where a is the half length of the structure in x-
direction, fn(x) (m=1,2) are the modes
corresponding to the rigid-body motions, fn(x)
(m=3,4,...) are the bending modal functions, and
W, (m=3,4,..) are the positive real roots of the
following equations

m=3,5,...

tany, +tanhp, =0
Ky, Ky L a4)
m=4,6,...

tanp,, —tanhp,, =0

The modal functions expressed in the equations
(12) and (13) are orthogonal each other in the
interval (-a,a)

0 i#j

a2 s

jymmmw%

The f(y) is similarly defined as f,(x). Fig. 2
shows some lower modes of the free-free beam,
and Fig. 3 shows some bending modes of the
plate.

4. HYDRODYNAMIC SOLUTIONS

Under the assumption of linear wave theory, it
is possible to express the complex potential,

&(x,y,2), in the form!D



(h) m=3,n=6
Fig. 3 Bending modes of free-edge plate

(g) m=3,n=5

(16)
a7

M N
q) = ¢D + ZECnmq)mnR

m=ln=1

Op=0,+0s

where ¢p, @7, ¢s and 0, are the potentials of the

diffraction wave, the incident wave, the scattering
wave and the radiation wave corresponding to the
unit-amplitude of mn-th mode, respectively.

The incident wave potential ¢; is given by

€,g coshx(h+2z)

o= *l_;; coshxh

eix(x cos8+ysin6)

(18)

where &, is the amplitude of incident wave, 6 is the

incident angle of the wave, and ¥ is the wave
number which follows the dispersion relation

2
—(L:Ktanhl(h.
8

(19)
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Each of the diffraction potential ¢p and the

radiation potentials ¢,,g must satisfy the
governing equation (3), the boundary conditions
(4)-(6) and the following radiation condition

lim 7 % _ ixg |=0 (20)
re or
where
r=1}x2+y2. 21)

By the expansion of Eq. (16), the boundary
conditions on the wetted surface of the body can
be rewritten as

90 _ —iof,(x)f,(y) on T,

n 0 pooe
5&9—:0 on I (23)
on

where I'=I",+I", is the total wetted surface of the

plate.
According to Green's function method, the

potentials, ¢g and ¢,,,z, can be expressed by the
integral equation!3)

oG , 90(x,y,2)
2105 10+ [ 00x, )52 ds = [ G2 ds.
(24)

The function, G(x,y,z,§,m,L), is the Green's
function given by

11

— + ——

R R

o ]m (1 + v)e ™ cosh p(z + k) cosh (& + h)J, (1r) p
0 Wsinh(ph) — vcosh(ph)

G(x,y, ;61,0 =

C2m(kE=vH)

1m coshk(z + h)cosh k(§ + h)J,(xr)

(25)

where Jj is the Bessel function of the first kind of
order zero, and

R=r+(z-0)* (26)

R =+rt +(2h+z+0)’ 7
2

v=" = ktanh(ih). (28)
g




The integral equation (24) can be solved by the
boundary element method. In this paper, the
constant element is employed. That is, if we divide
the wetted surface of the body into a finite

number of panel elements, AS; (=1,2,...,N), and let

Eq.(24) is satisfied at the center of each panel
element, then the integral equation can be
replaced by the following linear equation sets

i=1,2,..N  (29)

N B N aq’}
;%%”gman

where ¢; is the velocity potential at the center of
Jj-th panel, and

> - aG i (2572 £ >
o = 2md(i —J)+”Asj —E’—}%j——@ds@o)
By =[], Cxivnz&ndS (3D
N LY
5(:—1)—{0 i (32)

If the coefficients, o and {3, defined in Egs. (30)
and (31) are evaluated, it is not difficult to obtain
the numerical solutions of scattering and radiation
potentials by solving Eq. (29). Fortunately,
Watanabe, Wu and Utsunomiyal4) have presented
an effective method for calculating the integrals
in Egs. (30) and (31). Once the diffraction
potential and the radiation potentials are obtained,
the wave pressure can be evaluated by Egs. (10)
and (16).

5. SOLUTION OF MOTION

Substituting Eqgs.(10), (11) and (16) into Eq.
(8), the hydroelastic equation can be rewritten as

M N
Y ¥ [ DV (£ 0 f,00) + (k= 0%m) £, (0 £, ()]
m=1n=1

= ip(’[‘bo + i ﬁ‘, Cnmq)mnR]'

m=In=1

(33)

In order to obtain the unknown constant in the
above equation, the Galerkin's method is applied.
Multiplying the above equation by fi(x)fi(y) and
integrating over the bottom surface of the plate,
we can obtain
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M N
Z;lz-:lgmn(Kmnlj lGCmnb (anlj +Mamn 11))2 FZJ
1=1,2,..M, j=1,2,..N (34)
where
Kmn,lj = _”;.b [DV4 (fm (x)fn(J’))
+k( £, LO)AEFD)dxdy  (35)

My = If, ml 5 LGN AF 0))dsdy (36)

g = U (G (i (X)) )xdy (37)
Con =P f [, Re@uad £ f;()dxdy  (38)
Fy=ipa[[_ op(A(0f;0))dxdy.  (39)

The Kp,;jp Myn,jand Fj; are the generalized
stiffness, mass and exciting force, respectively,
and M, ; and G, are the generalized added-
mass and damping coefficient, respectively. The
{mn» can be obtained by
solving Eq. (34), and the displacement of the
plate can be determined by the equation (11).

unknown constants,

6. NUMERICAL EXAMPLES AND
DISCUSSIONS

It is expected that the size of the numerical
models should be as same as the actual structures
for investigating the behaviors of the floating
airports in waves. For an actual structure having
several kilometers, however, large computer
memories are required. Considering the capacity
of the computer used herein, we consider a model
which will be used for ocean test.

The model is designed by the Committee of
Mega-Floating Structure of Japan. The ocean test
will be performed in the Yokosuka bay where the
mean water depth is 9m approximately. The
structure is a box-like pontoon having a length of
300m, a width of 60m and a height of 2m. The
mass of the plate per unit area is 0.5ton/m2, and
the stiffness of the plate is 7.5x106kNm2/m. The
draft of the plate is 0.5m. The plate is moored by
dolphing system. In this analysis, the plate is
considered to be constrained in the horizontal
direction but the motions in the vertical direction
are free. In order to investigate the influence of
plate rigidity, the plate rigidities of 7.5x105,
7.5x107, 7.5x108, 7.5x1010kNm?2/m and infinite



Table 1 Modal amplitude of displacement of plate

conditions m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8
n=1 0.1035 0.2252 0.1907 0.3454 0.3659 0.0986 0.0198 0.0i29
0=0° n=2 0.0000 0.0000  0.000  0.0000 0.0000 0.0000 0.0000 0.0000
=65 n=3 0.0006 0.0010 0.0012 0.0042 0.0079 0.0038 0.0030 0.0016
D=7.5x106 n=4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
n=1 0.2739  0.5137 0.5303 0.7159 0.3099 0.1535 0.0730 0.0203
6=0° n=2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
=125 n=3 0.0005 0.0009 0.0064 0.0080 0.0016 0.0018 0.0026 0.0021
D=7.5x106 n=4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
n=1 0.4309 0.7756  0.7493 1.3477 0.6684 0.1597 0.0081 0.0113
=0° n=2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
t=18s n=3 0.0006 0.0006 0.0032 0.0040 0.0019 0.0003 0.0006 0.0002
D=7.5x106 n=4 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
n=1 0.7432 0.5655 2.1470 1.660  0.4787 0.0284 0.0224 0.0031

9=0" n=2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1=24s n=3 0.0001 0.0005 0.0037 0.0035 0.0022 0.0000 0.0010 0.0001
D=7.5x106 n=4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
n=1 0.1607 0.1687 0.3695 0.1521 0.0356 0.0062 0.0038 0.0010

6=0° n=2 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
t=6s n=3 0.0001  0.0001 0.0004 0.0005 0.0007 0.0002 0.0005 0.0001
D=75x107 n=4 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
n=1 0.1090 0.2138 0.0847 0.0089 0.0015 0.0006 0.0002 0.0001

6=0" n=2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1=6s n=3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D=75x108 n=4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
n=1 0.1239  0.2165 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000

0=0" n=2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1=6s n=3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D=7.5x1010  n=4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
n=1 0.0346 0.1294 0.0714 0.1580 0.1789 0.0373 0.0144 0.0044

0=45" n=2 0.3243  0.2066 0.4036 0.0928 0.1884 0.0258 0.0769 0.0154
1=6s n=3 0.0025 0.0025 0.0055 0.0047 0.0040 0.0034 0.0030 0.0025
D=7.5x106 n=4 0.0005 0.0003 0.0003 0.0001 0.0004 0.0001 0.0007 0.0002
n=1 0.8542 0.0000 0.0443 0.0000 0.0745 0.0000 0.0032 0.0000

6=90° n=2 1.8820 0.0000 0.2931 0.0000 0.1354 0.0000 0.0553 0.0000
1=6s n=3 0.0368 0.0000 0.0048 0.0000 0.0054 0.0000 0.0046 0.0000
D=7.5x106 n=4 0.0042 0.0000 0.0003 0.0000 0.0003 0.0000 0.0002 0.0000

* Q=incident angle of incoming waves, #=wave period, D=plate rigidity (kNm2/m)

rigidity are also analyzed. The exciting forces due
to incident and scattering waves and the vertical
displacement response of the plate are
investigated for incoming waves of different
incident angles (6=0°, 45° and 90°) and different
periods (r=6sec, 12sec, 18sec and 24sec). To
examine the effects of three-dimensional analysis,
two-dimensional analyses based on the matched
eigenfunction expansion method (MEEM)? are
carried out and comparisons are made. In the
three-dimensional analysis, the wetted surface of

6s

the plate is divided into 864 panels in which on
the bottom is 720 panels and on the side is 144
panels, and 32 modes (M=8, N=4) defined in the
equation (11) are used. In the two-dimensional
analysis, 20 terms of eigenfunction expansion are
employed and 20 modes are used.?)

To verify the convergence of the solution, the
modal amplitudes defined in the equation (11)
are shown in Table 1. When the incident wave
propagates along the positive direction of the x-

axis (6=0") and the plate rigidity, D, is
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Fig. 4 Amplitude of diffraction wave pressure on bottom of
plate (kN/m2)

7.5x106kNm?2/m, the modal amplitudes of m=8

are less than 3.5%, 2.7%, 0.8% and 0.1% in
comparison with the corresponding maximum
values for wave period of 6sec, 12sec, 18sec and
24sec, respectively. This result indicates that the
convergence becomes fast as the wave period
increaese and it can be considered that the
solution is converged approximately.

Table 1 shows the influence of the plate
rigidity on the convergence of the solution also.
When the plate rigidity is 7.5x106, 7.5x108 and
7.5x106kNm?2/m, the modal amplitude of m=8 is
less than 3.5%, 0.3% and 0.04% in comparison
with the corresponding maximum values,
respectively. In the case of D=7.5x1019%kNm?2/m,
bending modes are approximately vanished from
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Fig. 5 Amplitude of displacement of plate

the motion. This indicates that the expansion
of motion converges rapidly with increasing the
plate rigidity.

From Table 1, we can also see that the modal
amplitudes corresponding to diagonal bending of
the plate become significant when incident angle

of incoming waves is 45 degree (8=45") and the
modal amplitudes corresponding to bending
modes almost disappear when the incident waves
propagate along the shorter side of the plate
(6=90°). the case of

propagating along the longer side of the plate

In incident waves

(8=0"), the modal amplitudes corresponding to
bending modes in y-direction are very small.



Table 2 Added-mass and damping coefficients due to
unit heaving motion of plate

Period (s)  Added-mass M, /pV  Damping C/pV./g
6 414 411
12 85.6 12.55
18 106.5 15.98
24 112.0 17.52

*V=water displacement

Table 2 shows the generalized added-mass and
hydrodynamic damping due to unit heaving
motion. The added-masses are about 40-110
times of the physical mass of the plate, and the
hydrodynamic damping is quite larger than
general mechanical damping. This indicates that
the plate mass and the mechanical damping
appear to be relatively unimportant and have little
effect on the plate response.

Fig. 4 shows the amplitude distribution of
diffraction wave pressure on the bottom of the
plate. It appears that the amplitude distribution of
diffraction wave pressure depends greatly on the
incident angle of incoming waves and it decreases
rapidly from bow to stern.

The amplitudes of displacement of the plate for
unit wave amplitude are shown in Fig. 5. The
response of the plate is sensitive to the direction

of incoming waves. When 6=45°, the diagonal

bending of the plate becomes significant. In the
case of incident waves propagating along the

shorter side of the plate (6=90"), the plate moves

with heave and roll approximately. When the
incident waves propagate along the longer side of

the plate (6=0°), the plate moves like a beam. For

different wave period, the amplitudes of
displacement of the plate at y=2.5m are shown in
Fig. 6. The displacement increases with
decreasing the wave period. Fig. 7 shows the
amplitude of displacement of the plate at y=2.5m
for different plate rigidity. The displacement
increases with decreasing the plate rigidity. In
case of the plate rigidity of D=7.5x1010kNm2/m,
the hydroelastic responses are very closed to the
rigid-body responses.

In order to investigate the effect of three-
dimensional and two-dimensional analysis,
comparisons of the amplitude of displacement of
plate between three-dimensional and two-
dimensional solutions are shown in Fig. 8. In the
case of incident wave propagating along the

longer side of the plate (8=0°), the three-
dimensional results are less than the two-
dimensional solutions except at bow when the
period of incident waves is shorter than 18sec.
However, when the wave period is 24sec, in which
the wave length is 223m and the structure length
in the direction of wave propagation is 300m,
there is a good agreement between the three-
dimensional and two-dimensional solutions. The
agreement can also be observed when the incident
wave propagates along the shorter side of the
plate for the wave period of 6sec, in which the
wave length is 47m and the structure length in the
direction of wave propagation is 60m. Therefore,
the two-dimensional solution will have a good
approximation when the incoming waves
propagate along the symmetric axis of the plate
and the wave length is closed to or longer than the
structural length in the direction of wave
propagation.

7. CONCLUSIONS

This paper presents the modal superposition
method in the application of wave-induced
response analysis of mat-like floating plates. The
solution of the method consists of a solution of
wave field by boundary integral equation method
and an approximate Galerkin’s solution of the
plate. This method leads to a straightforward
extension of the analysis of a rigid floating body
in waves and converges rapidly.

Effects of some important parameters such as
wave period, incident direction of incoming waves
and plate rigidity on the response of the plate are
discussed through some numerical examples.
Comparisons between the two-dimensional
analytical solutions and the three-dimensional
solutions by the proposed method are made.
Summarizing the major results, the following
conclusions are obtained.

1) In the analysis of interaction between ocean
waves and large floating plates, the plate
mass and mechanical damping appear to be
relatively less important and have little effect
on the plate response than the added-mass
and hydrodynamic damping.

2) The amplitude distribution of diffraction
wave pressure depends greatly on the
incident angle of incoming waves. The
pressure due to diffraction wave decreases
rapidly from bow to stern.
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significant. g o075 o
5) Except at the bow, the three-dimensional g 050 e el e
solutions are usually smaller than the two- & oask
dimensional solutions so that the three- % P SUUUE FUUTR DUUIE FUURE SOV
dimensional analysis is expected for a short A 150 -100 =50 R (?n ) 50 100 150
wave length. However, the two-dimensional
solution will have a good approximation when (d) =07, =245
the incoming waves propagate along the E 150 ¢
symmetric axis of the plate and the wave length § 125 £ :g_ng%
is closed to or longer than the structural length = 100 \ - o x=1Bsm
in the direction of wave propagation. g 075 \\&g\ e
2 050 b TN o~
£ E R o«
g 025 L D ;7/
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