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ELASTIC ANALYSIS OF AXI-SYMMETRIC
FINITE CYLINDER CONSTRAINED RADIAL
DISPLACEMENT ON THE LOADING END
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In the usual compression test of a cylinder, there exists friction on the loading end. Accord-
ingly, radial displacement on the end will be constrained to some extent. An elastic analysis of
such axi-symmetric cylinders is presented in this paper using stress function with infinite series.
Distribution of radial displacement on the end was given by the Fourier-Bessel expansion. Nu-
merical results were obtained for some combinations of size ratio, confining pressure and degree of
constraint. Distributions of stresses, strains and displacements in the cylinder were investigated
for several cases, and were compared with the results obtained with the finite element method.
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1. INTRODUCTION

Filon" has presented elastic analyses of fi-
nite cylinders subjected to axi-symmetric axial
loads. He has given solutions for the isotropic
homogeneous elastic cylinders under the condi-
tions of perfectly constrained radial displacement
on the whole face or only the perimeter of the
loading end. Kimura® has supplementarily exam-
ined Filon’s analyses, and has carried out uncon-
fined compression tests using mortar cylinders.
In these tests, he also clamped the perimeter of
the loading end with an iron hoop in order to
relate the experimental condition with the ana-
lytical condition. However, in the usual compres-
sion test, free radial displacement on the load-
ing end will be partially constrained according to
the friction between the platen and cylinder. The
stresses, strains and displacements in the cylinder
are considered to differ from those of the friction-
less condition. Therefore, a number of tests and
analyses have been carried out by many investi-
gators changing the conditions of the loading end
and size ratio.

Saito® has presented elastic analyses of cylin-
ders subjected to axi-symmetric loads on part of
theloading end and the side surface. Yamaguchi®
has summarized this method, while Ogaki et al.®)
has analyzed one of these using a different meth-
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od. The present paper deals with the problems
encountered in the usual unconfined or confined
compression tests. Namely, when a cylinder is
subjected to an unconfined or confined axial sym-
metrical load, the loading end of the cylinder dis-
places toward the axial direction retaining a flat
plane, but a part of the free radial displacement
on the loading end will be constrained by the fric-
tion between the platen and the cylinder. An
elastic analytical solution for this cylinder is de-
rived in this paper. This problem has a displace-
ment boundary condition on the loading end and
a stress boundary condition on the side surface.
An equilibrium equation is also needed. Further-
more, comparisons of the distribution of the side
surface displacement and the contours of stresses
and strains between frictionless and constrained
conditions were made using the numerical results
of the analytical solutions. The numerical com-
putations were carried out under several cases of
size ratio, degree of constraint, pressure ratio and
radial displacement form.

The solution obtained in this paper can be
computed by the finite element method, but
the results obtained for the axial symmetrical
problem are dependent on the mesh and on the
method of treating the [B] matrix. Analytical
solutions were useful to estimate the accuracy
of the results obtained with the finite element
method. Moreover, analytical solutions have the
advantage of providing precise results of stresses,
strains and displacements at any point in a cylin-



der. In addition, in the finite element method
one cannot give force and displacement simulta-
neously at one point as a boundary condition.
Accordingly, when force or displacement are given
as boundary conditions, the results of the finite
element method should be revised. The effects
of the revision method and mesh on the accuracy
of the finite element method are discussed in this
paper.

There exist various theories for the mechan-
ics of fracture concerning unconfined or confined
compression tests of concrete and mortar cylin-
ders. Various tests and both elastic and elasto-
plastic analyses have been carried out to verify
the fracture theories. Elastic analyses cannot per-
fectly describe the fracture mechanism. However,
it is considered that elastic analyses are a basic
requirement for this problem.

2. PROBLEMS AND BASIC
SOLUTIONS

As illustrated in Fig. 1(a), we will assume an
isotropic homogeneous finite cylinder of radius a
and height 2k subjected to uniform loads ¢ on
the ends and confining pressure pp on the side
with no friction on both surfaces. The loading
end will displace uniformly toward the z direc-
tion and the side surface will displace uniformly
toward the r direction like the broken lines shown
in Fig. 1(a). The stresses and strains in the
cylinder are uniform® and are described by the
following equations:

Jz = qo, GT':Ut:pO, Trz = Yrz =0

€ = (—2vpo/qo + 1)q0/E

& =¢={(1-v)po/q0 — v}q/E (1)
wo = (~2vpo/qgo + 1)goh/E

up = {(1 = v)po/qo — v}qoa/E

in which, £ =Young’s modulus, v=Poisson’s ra-
tio, and o,,0,, 0 are normal stresses in the axial,
radial and circumferential directions respectively,
Ty, is the shearing stress in the rz plane, and
€z,€r,€; and 7y, are the strains corresponding to
those stresses. In addition, wg and ug are the
axial displacement of the loading end and the ra-
dial displacement of the side surface respectively.
These stresses, strains and displacements are de-
fined as basic solutions in this paper. When we
use dimensionless distances p and 7 by p = r/a
and 7 = z/h, displacements of any point of the
cylinder toward the radial and axial directions
can be described as u = ugp and w = wgn re-
spectively.
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Fig.1 Definition and typical deformation of cylinders
induced by compression tests.

However, friction exists between the platen
and cylinder in the usual compression tests. In
this case, the loading ends are kept flat but free
radial displacement will be somewhat constrain-
ed. As a result, the uniformity of stresses and
strains in the cylinder will decay, and the side
surface will deform as illustrated in Fig. 1(b).
The factor a shown in Fig. 1(b) indicates the
reduction coefficient of ug or the degree of con-
straint of free radial displacement on the loading
end. This means that a = 0 when the radial dis-
placements on the ends are perfectly constrained,
and a = 1 represents the frictionless condition.
In the usual compression tests, the value of o
lies between them, while the distribution of load
intensity and axial displacement on the loading
end are unknown. However, the relation between
mean load intensity ¢o and total load P can be
written as

P = ralqo @)
Stresses, strains and displacements will no longer
be uniform in this case, and these distributions
will differ from the basic ones. The main objec-
tive of this paper is to obtain an elastic solution
of this case. Loads and displacements have a pos-
itive or negative sign in Fig.1. If we define ten-
sion as positive, P, go, po, wo are negative and ug
is positive.

3. METHOD OF ANALYSIS

(1) Boundary conditions and equilibrium
equation
We assume that the flat platens in Fig.1(b)
displace parallel to the abscissa. The boundary
conditions and the equilibrium equations of this
cylinder are
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on 7=a, oy = po (3a)

on 7 =g, Tz =0 (3b)

on z+h, %1:—‘)- =0 (3¢)

on z=kh, u = f(r) (3d)

on each z, / o.2xrdr = P (3e)
o

(2) Analyses by stress function
Stresses and displacements for the axi-
symmetric problem have been expressed by a
function ¢7

2 (4)
-v)V%p - ?—2}

9 1 8 9?
2 — — e
=t et ez ®)

and ¢ is the function which satisfies the following
equation.

V2V =0 (6)

If the cylinder is subjected to symmetric loads
as shown in Fig. 1, 0,,0,,0; and u are even func-
tions with respect to z axis, and 7,, and w are
odd functions. Now, we define the size ratio as
k = hfa, and we shall use a stress function ¢
given in the following equation:

K
¢ = goa® {AO“"‘“‘ + Co 'r]p

+ Z smﬂn?”?) {A Io(ﬂnp) + Bnﬂanl(ﬁ'ﬂp)}

n=1

Jo(As
+ Z D( p) {Cssinhy;m + Dsvs7m cosh 737]}]
s=1
()

in which, A, is the s-th zero of Ji(z), B, =
nT /K, ¥s = Ak, and Ag,Co, An, Bp,Cs,Ds are
coefficients determined from the boundary condi-
tions.
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Substituting Eq.(7) into Eq.(4), we obtain

/o = 3 sin(nrn)[Au Ty (Bup)

n=1
+ Bn{(2 - 2’/)11 (IBnP) + ﬁnPIO(ﬂnp)}]
+ z Ji{(Asp){Cs sinh y,n
s=1

+ D,(2v sinhy,m + 7,7 cosh 7,7)}
E
lu;—y/(qoa) = {A4o(1 - 2v) + Co(4 = 4v)}xn

+ i M{Anlﬂ(ﬂnp)

n=1 ﬂn
+ Bo{(4 — 4v)Io(Bnp) + BrpIi(Brp)}]

> Jo(As .
+ Z ()(/\—p)'["cs sinh 7,7
s=1 s
+ D,{(2 — 4v) sinh v, — ¥sn cosh y,7}]
(8)

We obtain the following equations from Egs.

(8),(3a),(3¢c)

Anfl _ BnIl =G
2-2+4 B0/ -1 "
C, sinh 7, _ Dssinhy, H ©)
2 — 4y — y,cothy, 1 o
in which, I = Io(Bn), I = ©h(B), and

Gn, H; are unknown coefficients which replace
Ap,B,Cs,D,. Considering Eq.(9) and substi-
tuting Eq.(7) into Eq.(4), we obtain the follow-
ing equations for stresses and displacements.

0./ = Ao(1 —v) + Co(4 — 2v)
+3° Gy cos(nmn) {( 245,k ) Io(Brp)

n=1 Il

— Bup Il(ﬂnp)}

oo
+ Z HsJO()‘sP){(‘]- + 2v + 4, coth v;)

s=1
smh Ysh }
M sinh s

cosh Vs
X -
sinh v,
or/q0 = Aov + Co(2v — 1)

V5 ot -1 1

n=1 Il
+ ﬂanl(ﬂnp)
Iy Il(ﬁnp) 1
+(2 2 ”"11) A ﬂnp}
+ 3 B[ Jo(up){ (3 — 20 — v coth )

s=1



sinh v, sinh 7,
J1(As
+ li p/’) {(_3 + 4v + 75 coth v,)
X cosh VsT _ sinh YsN }]
sinh v, sinh v,
oi/qo0 = AoV + Co(2v - 1)
+ Z Gy cos(nﬂ'n){( — 9y)=0np) O(ﬁnl’)
n=1
+ (~2 + 2~ B )
/6 Il ﬂnp
- cosh 737))
H s Cosh N
! s; ’ [JO(/\ 2 (2V sinh v,
+ M{@ — 4y — v, coth ;)
% cosh VsT rsinh YsM }]
sinh 7y, *""sinh Vs
Iy LB,
rrz/% = Z G, Slll(nrn) (ﬂn 0 1(2 P)
n=1
I
= Bap O(Iﬁnﬂ))
1
x
+3 HsJ1(z\sp){(2 — 2v — 75 coth ;)
s=1
sinh 7,7 cosh ysn }
sinh 75 sinh v,

1 oy /(qoa) {40(1 = 2v) + Co(4 — 4v) }sn

+36, Sm(m" {(—2+2V+ﬂn£q>

n=1
Io(ﬂn/)) "y Il(ﬂnp)}
- Jo(Asp) ( sinh y,7
-+ f;l H, X s coth v sinh 1,
B cosh %77)
& sinh 7y,
ukE _ ., cos(nwn)
/o) = ~Copt 326"
«{ (2420, 12) B0
I 1
To(Br
+ Bup o8 P)}

Er i
=1 ¢

cosh vsm sinh v }
X -
sinh 7, sinh 7,
(10)

We obtain the following equations from Eq.(10),

by using the Fourier expansion and the Fourier-
Bessel expansion.

on p =1,
or/qo = Agv + Co(2v — 1) + Z H,P,
s=1
+3 cos(nn) (Gutrn+ zH Q)
n=1
(- 1 <np<l)
on n=x=lI,
— = JI(ASP)<
= ijl " CQJ + H,Q,
+ Z GnRsn) (0 <p< 1)
n=1
(11)
in which, Jo = Jo(As) and
A ={2=2v+pn? = B (Io/1)*}/Bn

Qs = (3 — 4v) coth v,
= (2 QV)JQ/’)IS
n (1 =v)ys* 4+ (2 = v)(nr)?
Qns = (=1)"475Jo {7: 2 + (n7)2)2

(=D)™X2 (2-v)B 2 4+ (1 -v)A,?
ﬂnJO (ﬂn 2 + As 2)2

— 7, cosech?

R, =

(12)

Substituting Eq.(10) into Eq.(3e) and using
Eq.(2), we obtain the following equation:

Ao(l - l/) + 00(4 - 21/) =1 (13)

Using the Fourier-Bessel expansion, we shall ex-

press the displacement function u(p) on the load-
ing end in Eq.(3d) by the following formula.

u(p) = e Y ash(Ap) (0<p<1) (14)
=1

Next simultaneous equations are obtained as the
results of substitution of Egs.(1),(11),(13),(14)
into Eqs (3a) and (3d)'

coj + H,Q, +2G Ron
(1“’/)290/(10*1//\3“8
14+v
GnAn + Z HsQns =0 (15)
s=1
1—-v &
Cy — H,P,
0 1+y;
v
=177 141_1/(270/@0)

The solutions of Eqgs.(13) and (15) are Ag, Co,
G, and H;. The number of equations for Cp and
m unknowns G, and H, is (2m + 1).

Two displacement functions were used in this
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Fig. 2 Forms of radial displacement on the
loading end.

paper, which are shown in Fig. 2 as @ and @).
The coefficients a, in Eq.(14) for these functions
are as follows:

@ For the case u(p) = augp,

-2

a; = _—_—/\SJO(/\s) (16)
® For the case u(p) = aug(2p — p?),
-2 8
= xaey(taz) oD

When we use @ = 1, the radial displacement u for
case (D coincides with that of the basic solution,
which is useful to estimate the accuracy of the
numerical results. The broken line in Fig. 2 indi-
cates the radial displacement on the loading end
obtained with the finite element method. This
line resembles line 2. The boundary condition
of this result with the finite element method was
u = ug/2 at p = n = 1. However, the actual dis-
tribution of radial displacements on the loading
ends in the usual compression tests is unknown.

(3) Numerical method

Numerical computations were carried out with
the above analytical solutions. The series sum-
mation in Eq. (10) converged very slowly on the
boundary lines 7 = 1 and p = 1, but they varied
cyclically. Accordingly, series summations were
replaced by the mean value of those of each cycle
and the computations were continued until these
mean values converged to a prescribed accuracy.
The error of numerical results thus obtained could
be estimated by comparing those with the values
of the boundary conditions. The cycle of series
depended on the value of p and 7, but the least
common multiple was » = s = 40. Hence, the
convergence in all points of the cylinder was es-
timated by n = s = 40. However, the computa-
tions were terminated at n = s = 400, regardless

of the convergence. With the exception of point
p = n =1, the results thus obtained were almost
the same as those of n = s = 800. Numerical
results for the analytical solution cannot be ob-
tained at the point p = 1 = 1, because Eqs.(11)
and (14) are not defined at this point. Numer-
ical results agreed with the boundary condition
by four digits at the point n = 1 and p = 0.95,
but a slight error was seen at the point p = 1
and 7 = 0.95. In any case, the point p =9 =1
is an analytically singular point, then the numer-
ical displacement u used at this point was that
of a boundary condition in the following chapter.
The series summation of o, did not oscillate at
the point p = 7 = 1 when «a < 1, but it continued
to increase with the increases of 7 and s. In this
connection, it is commonly known that the value
of o, at the contact end of a rigid plate with a
semi-infinite elastic body is infinite.

An asymptotic expansion equation and an
approximate equation were used in the numer-
ical computation to prevent exponential over-
flow. The numerical computations were carried
out with double precision using subroutines SSL
II and NUMPAC of FACOM in Kyoto University.

4. NUMERICAL EXAMPLES AND
DISCUSSION

Numerical computations of the analytical so-
lutions were carried out for » = 0.20. Sever-
al values of k, a and pg/go were selected, and
two radial displacement functions on the load-
ing end were used. Some of these numerical re-
sults were compared with those obtained with the
finite element method using the program EPIC
IV®. This program is based on the triangular el-
ements with constant strains and stresses in each
element where r and z in matrix [B] have been re-
placed by the average values of those at the three
nodal points. The accuracy of this program was
verified for the basic solutions mentioned above,
and the solution was correct up to the fourth sig-
nificant digits.

(1) Effects of size ratio and degree of
constraint on the radial displacement
of the side surface

The distributions of u/up on the side surface
shown in Fig. 3 were computed under the condi-

tions of Eq.(16), and x = 0.17 - 2.0, po = 0.0,

a =0.0 and 0.5. The abscissa indicates the ratio

of radial displacement compared to that of the

basic solution. When s > 1, it is seen that the

radial displacement of the side surface in the mid-
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Fig. 3 Distribution of relative radial displacement
on the side surface. Lower graph shows
details of the upper one. (v =0.2, po=0.0)

dle part of the height was slightly larger than
that of the basic solution. In particular, a large
bulge appeared when the degree of constraint was
large. Details of this phenomenon are shown in
the lower graph of Fig.3. On the other hand,
when x < 0.5, radial displacements at all places
on the side surface were smaller than those of the
basic solution, and a small bulge appeared for the
larger degree of constraint.

As illustrated in the lower graph of Fig.3,
the side bulge for k = 2.0 did not increase
monotonously from the loading end to the mid-
dle part of the height. The bulge was largest at
a height near 7 = 1/3 and decreased toward the
center. Such double bulges have been reported as
the results of experiments using aluminum cylin-
ders of k =2.50 and 2.75. The cylinders in these
experiments were compressed uni-axially to the
plastic limit and elasto-plastic analyses were also
carried out with the finite element method®.

(2) Axial displacement of the loading end
When free radial displacement on the loading
end was partially constrained, the axial displace-

Table 1 Relative axial displacement of
loading end (wn=1/wo)

Analytical FEM
a a
K 0.0 0.5 0.5 0.5

(n=1) (m=0)
2.00 0.9891 0.9946 0.9980 0.9943
1.00  0.9781 0.9899 0.9922 0.9885
0.50 0.9555 0.9778 0.9805 0.9794
0.17  0.9197 0.9588 0.9594 0.9563

v=0.2, pe=0.0

ment of the loading end (wy=1) became smaller
than that of the basic solution (wg). The values
of wy=1/wg for po = 0 are shown in the 2nd and
3rd columns of Table 1. The axial displacement
of the loading end decreased when the degree of
constraint of the radial displacement on the load-
ing end increased.

When the radial displacement on the loading
end is constrained, the axial displacement and the
average load intensity on this end are initially un-
known. Hence, in the finite element method, it is
impossible to give the axial displacement on the
loading end as a boundary condition correspond-
ing to the prescribed average load intensity. If
the value of wq is used as a boundary condition,
the resultant of o, computed from nodal reac-
tions on the loading end will disagree with that
of the basic solution. Now, we will introduce a
modification coefficient &k defined in the following
equation:

a
k:/ o, 2nrdr/goma® (18)
0

The value of 1/k coincides with that of the dis-
placement ratio wy=1/wo. Such k values can also
be obtained from nodal reactions on the plane
7 = 0, but these coefficients usually disagree. The
displacement ratios thus obtained are shown in
the 4th and 5th columns of Table 1. The equa-
tion for obtaining the value of ¢, on the nodal
points of the loading end in the finite element
method will be described in section (7) of this
chapter.

(3) Distribution of axial stress on the
loading end

The distribution of o, on the loading end is
shown in Fig.4. The analytical solution of o,
at the point 7 = p = 1 cannot be obtained for
the above mentioned reason. The numerical re-
sults of the finite element method at this point
are also beyond the scale of Fig.4. Therefore,
the graph was omitted near this point. Contours
in this part shown later were omitted for the same
reason. Figs.4(a),(b) indicate results obtained
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Fig. 4 Distribution of o on the loading end.
(¥ =10.2,p0 = 0.0)

under the conditions of @ = 0 and 0.5, respec-
tively. The non-uniformity of o, on the loading
end appeared more strongly when the degree of
constraint of radial displacement on the loading
end was larger. The distribution of o, for k = 1.0
was almost the same as that for x = 2.0. Ac-
cordingly, the results for k = 1.0 were omitted.
All curves in Fig.4(a) and the three curves in
Fig. 4(b) indicate results for Eq.(16). It can be
seen in these results that the minimum value of
o, appeared at the point p = 0 when x = 2.0,
but this appeared at a point near p = 0.7 when
% = 0.5. On the other hand, the curves for the
disc-shaped cylinder of k = 0.17 were different.
The value of 0, at p = 0 was larger than go, and
the minimum appeared at a point near p = 0.85.
Examples of the results obtained with the finite
element method are shown by broken lines in
Fig. 4(b). Although the results obtained with
the finite elements method for the basic solution
were very accurate, those for the constraint con-
dition contained error.

One of the broken lines in Fig. 4(b) is the re-
sult for Eq.(16) while the other is for the bound-
ary condition that the radial displacement only
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on the perimeter p = = 1 was given. As shown
in Fig. 2, the distribution of « on the loading end
for Eq.(17) was similar to that from the finite ele-
ment method when radial displacement was given
only on the perimeter. However, less similarity
between them was shown in the distribution of
0,. The boundary condition for the broken line
in Fig. 2 coincides with that for the broken line
marked ’1 point fixed’ in Fig. 4(b).

(4) Distribution of stresses and strains

In the following, the stresses and strains are
shown in percentage relative to qo; those for the
basic solutions will be shown by broken lines. The
contours of the stresses and strains in a quarter
of the cylinder of x = 2.0, @ = 0.5 and py = 0.0
are shown in Fig. 5. These contours were drawn
from the values at 496 grid points. The & shown
in Fig. 5(a) is the equivalent stress and was com-
puted by the following equation?®:

7= \/{(01 = 02)* + (02 — 03)? + (03 — 01)?}/2

(19)
in which, 01,092,053 are the principal stresses. A
relation between & and the octahedral shear-
ing stress 7, has been proposed'® as T, =
(v/2/3)7, and a relation between 7 and the octa-
hedral shearing strain 7,.: has been proposed®® as
EYoet = (2v/2/3)(1 + v)7. The relation between
shearing strain strength 5 and 7, has also been
proposed® as § = 0.6127,,. These equations
imply that the shapes of contours of 7,e;, Yoc: and
S perfectly coincide with that of 7.

It can be seen from Figs. 5(a),(b) that the
absolute maxima of & and 7,4, took place at the
point p = 7 = 1, and the maxima on the line
p = 0 took place at about n = 0.46. Those max-
ima at both points were greater than the values
of the basic solution and the line between them
formed a ridge. The minima of & and 7,4, took
place at the center of the loading end. The distri-
bution of Fe; shown in Fig. 5(c) was similar to
these, but the maximum on the line p = 0 took
place at about 7 = 0.33. It is interesting that
the shape of the ridges of &, T and Fe; re-
sembles the conical fracture frequently observed
in the usual compression tests.

The contour of E'¢; shown in Fig. 5(d) was dif-
ferent from the other three. The value of Fe; at
the relative height 7 > 0.5 was smaller than that
of the basic solution, but was larger at n < 0.5.
The maximum of E¢; on the line p = 0 took place
at about 7 = 0.33. The maxima of F¢; on the side
surface was seen also at about % = 0.33. This
point corresponded to the position of the maxi-
mum bulge shown in Fig. 3.
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Fig. 5 Contours of stresses and strains in a quarter of a cylinder. Broken lines
represent the values of Eq.(1). (v = 0.2, £ = 2.0, @ = 0.5, po = 0.0)
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Fig. 6 Effect of the ratio of height to diameter on the
Tmaz and Ee;. Broken lines represent the values
of Eq.(1). (v = 0.2, a = 0.5, po = 0.0)

(5) Effects of size ratio

Numerical computations for the cylinders of
k = 1.0 and 0.5 were carried out under the same
conditions as in Fig.5. Those results are shown
in Fig. 6. The figure of 7,4, for & = 1.0 generally
resembled in shape the upper half of Fig.5(b).
However, the position of the contour on the mid-
dle part of the height was slightly different from
that of the relative height about n = 0.5 for
x = 2.0. In contrast, the position of the con-
tours for k = 0.5 were different from those for
% = 2.0 and 1.0. There appeared only one con-
tour for the basic solution and, except near the
point p = 7 = 1, Tier was smaller than that of
the basic solution. Similar results were seen in

& and Ee;, but the figures were omitted. Analo-
gous phenomena were seen in the contour of Fe;.
However, the value of Ee; in all parts of the cylin-
der with k = 0.5 was smaller than that of the ba-
sic solution (0.200). This fact is related to the side
bulge shown in Fig. 3. Namely, when the radial
displacement on the loading end was constrained,
the radial displacement on the side surface of the
cylinder of K > 1 was somewhat larger than the
basic solution, but such phenomenon did not ap-
pear in the cylinder of x < 0.5. The phenomena
were seen more evidently when & = 0.17 than
when £ = 0.5.

Stresses and strains in some portions of the
cylinder of kK > 1 were larger than those of the
basic solution, but in another part they were
smaller. However, stresses and strains for almost
all parts of the cylinder with k < 0.5 were smaller
than those of the basic solution. Accordingly, if
we use stresses and strains as fracture criteria,
the effect of size ratio on the strength will be am-
biguous for the cylinder of x > 1, but will be
distinct for the cylinder of x < 0.5. Experimental
results'¥*%) have supported these discussions. In
other words, when the size ratio £ was smaller
than 0.5, the strength of the cylinder increased
evidently with the decrease of &.

(6) Effects of degree of constraint and
confining pressure

The contour of T,q, under the conditions of
po = 0.0 and a = 0.0 is shown in Fig. 7(a). This
is an example showing the effect of degree of con-
straint on the loading end. The position of the
contour for the basic solution coincides with that
for po = 0.0 and & = 0.5 shown in Fig. 5(b). The
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position of contours of another set of stresses and
strains indicates the same results, but the differ-
ences in stresses and strains between the condi-
tion for o = 0.0 and those of the basic solution
were twice that for the case for @ = 0.5. It can
be seen from Eq.(1), that uo = 0 and Trz = 0
are satisfied on the loading end when the follow-
ing equation is satisfied because, regardless of the
value of a, the equation u = 0 in all parts of the
cylinder is satisfied.

po/go=v/(1-v) (20)
Fig.7(b) is an example of the contour of Trmaz
under the condition of

po/go <v/(1-v) (21)

The position of the contour of the basic solu-
tion in this figure was also the same as that of
Fig. 5(b) and Fig. 7(a). The same conclusions
were obtained for other values of & and po /qo sat-
isfying Eq.(21).

As a result, it can be concluded that all con-
tours of stresses and strains in any cylinder sub-
jected to a load satisfying Eq.(21) will be sim-
ilar despite the value of o and Po/qo. Further-
more, the shape of the contours will coincide with
those of the cylinder whose radial displacement
on the loading end is perfectly constrained. How-
ever, the reasons for these phenomena are still
unknown. When the radial displacement on the
loading end was given by Eq.(17), the contours
were very different from those shown in the above
figures, but these are omitted in this paper.

(7) Modification and accuracy of the

finite element results

The mesh used in the finite element method
is chosen referring to a reported example®. In
the cylinder of k = 2.0, the 300 squares with
336 nodes were divided into.600 right triangles
by diagonals starting from the bottom left cor-
ner of each square. The given boundary condi-
tions on the loading end were the axial displace-
ment wo and radial displacement on the load-
ing end. When the stresses and strains thus ob-
tained were divided by the value k computed from
Eq.(18), the boundary conditions of these solu-
tions will coincide with those of the analytical
solutions. Now, the relation between the nodal
reaction F; and the normal stress o, of Eq.(18)
of the axi-symmetric problem differs from that of
the two-dimensional problem. The relation be-
tween load intensity go of a uniform load and
nodal loads P; and P, has been shown by the
following equations!™, which were verified by the
basic solutions:

P = n(re + 2r;)(rk — 7:)q0/3 } 22)
P, = 7r(-2rk + ’I‘,')(’I‘k - T{)qo/3

The nodal load P is equivalent to the nodal reac-
tion F} and qp is also equivalent to 0. Therefore,
one has the following equation:

o, = F,q/P (23)
Stresses in the small interval were regarded as
uniform, and the k value was computed by sub-
stituting o, of Eq.(23) into Eq.(18). The com-
putations of the finite element method were car-
ried out by HITAC of Tottori University, and the
Newton-Cotes 9 points rule was used for the in-
tegration of Eq.(18).

As shown in Table 1, the value of 1/k com-
puted on the lines n = 1 and 5 = 0 disagreed
slightly. Stresses and strains modified from the
same finite element results using these k values
also slightly disagreed. As a result, when the
gradients of stresses and strains were small, the
position of the contour having the same value
was greatly different. An example of such phe-
nomenon is shown in Fig. 8. Fig. 8(a) indicates
the contour of 7,,,, modified by the k value on the
line # = 1 while Fig. 8(b) indicates that modified
by the k value on the line = 0. Even though the
relative error of both 1/k values shown in Table
1 was 0.8%, the positions of the basic solution il-
lustrated in Figs. 8(a),(b) were very different.
Among these figures, Fig.8(b) almost agreed
with the analytical results shown in Fig.5(b).
Fig.8(b) illustrated the modified results using
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nodal reactions on the line 7 = 0. The linep =10
lies away from the loading end of = 1. Hence,
according to Saint-Venant’s principle, the distri-
bution of o, on the line n = 0 will approach uni-
form. Consequently, the degree of agreement of
Egs.(22) and (23) on the line 7 = 0 was higher
than that on the line n = 1. The computations
by the finite element method were carried out for
finer meshes than those mentioned above. The
region was divided into the 800 squares with 861
nodes, and each square was divided into two right
triangles by a diagonal starting from the bottom
left corner of each square. The accuracy of re-
sults for these elements was higher than those
shown above. The value of 1/k on 7 = 0 was
0.9945, which was very close to the analytical
value 0.9946. Contours near the loading end were
also close to those of the analytical solution.
Contours of stresses and strains in the isotropic

homogeneous elastic body have no singular points.

in nature. Accordingly, the tangent of these con-
tours on the line p = 0 should be parallel to
the abscissa, but Fig.8 was inconsistent with
this prediction. The [B] matrix in the finite ele-
ment method for the axi-symmetric problem has
a characteristic form, so this is considered one
of the reasons for such inconsistency. Even with
densely divided elements, the results of the finite
element method were still incondistent. However,
the contours in Figs. 5-7 obtained from the ana-
lytical results did not indicate any inconsistency.

The computations under the same boundary con-
ditions mentioned above were carried out by the
finite element method for the right triangle el-
ements made by a diagonal of squares starting
from the bottom right corner. However, the de-
gree of accuracy of these results was lower than
those described above.

5. SUMMARY

The derivation of analytical elastic solu-
tions and the numerical method about them
for isotropic homogeneous circular cylinders sub-
jected to unconfined or confined axi-symmetric
loads through a rigid platen were described. It
was assumed that radial displacement on the
loading end was partly or perfectly constrained.
Numerical computations were carried out under
several cases of size ratio, degree of constraint,
pressure ratio and radial displacement form. The
basic solutions of these problems are those for the
frictionless condition on the loading end. Surface
displacements, reaction distribution on the load-
ing end and contours of stresses and strains un-
der the constraint condition were compared with
those of the basic solutions. Accuracy of the re-
sults by the finite element method was also dis-
cussed. Results obtained are summarized as fol-
lows.

(1) Elastic solutions for the cylinder shown in
Fig.1(b) were obtained using Love’s stress func-
tion. Boundary conditions and equilibrium equa-
tions are shown by Eq.(3). If the values of Ag,
Co, and m sets of G, and H, are obtained by
solving simultaneous Eqgs.(15), stresses and dis-
placements at any point of the cylinder can be
calculated by Eq.(10). Distributions of radial
displacement on the loading end were given by
Eq.(14) using the Fourier-Bessel expansion; the
coefficients for this equation were calculated by
Eqs.(16),(17).

(2) When radial displacement on the loading end
was constrained, the radial displacement at the
middle part of the side of the cylinder with the
size ratio K = h/a > 1.0 were greater than that
of the basic solution. A large side end bulge
appeared when a great value of degree of con-
straint on the loading end was given. The maxi-
mum side end bulge in the cylinder with size ratio
& = 2.0 appeared at the relative height of about
n = z/h = 1/3. However, when k was less than
0.5, the radial displacement on all parts of the
side end was smaller than that of the basic solu-
tion. Moreover, the radial displacement for the
cylinder of k < 0.5 was small when the degree of
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constraint was large.

(3) The minimum value of o, on the loading end
in the cylinder of k > 1.0 appeared at the rela-
tive radius p = r/a = 0, but for the cylinder of
& = 0.5, the minimum appeared at near p = 0.7.
When a disc-shaped cylinder of &k = 0.17 was
used, the minimum o, on the loading end ap-
peared near p = 0.85, and the value of o, at p = 0
was larger than the average load intensity go.

(4) When the radial displacement on the loading
end of a cylinder of k = 2.0 was constrained, the
ridges of the contours of &, 7,4, and €; formed
a conical shape. The value of ¢; near the loading
end was smaller than that of the basic solution,
but its value at the middle part of the cylinder
was larger than that of the basic solution. In
addition, the maximum ¢; appeared at the inner
part of the cylinder.

(5) Distributions of stresses and strains in the
cylinder with size ratio x = 1.0 were analogous
to those near the loading end of k = 2.0. Stresses
and strains in all part of the cylinder with size
ratio & < 0.5 were smaller than those of the basic
solution

(6) When the radial displacement on 7 = 1 was
assumed to be proportional to the radial dis-
tance from the axis, the distributions of stresses
and displacements in the cylinder were similar to
those of the cylinder with a perfectly constrained
radial displacement on the loading end. This phe-
nomenon was independent of the degree of con-
straint and pressure ratio po/qo.

(7) Boundary conditions used in the analytical so-
lutions shown in this paper cannot be applied to
the finite element method because the relation be-
tween load and axial displacement of the loading
end is initially unknown. Accordingly, modifica-
tions of the finite element results were required.
However, positions of contour lines of stresses
and strains thus obtained greatly disagreed with
those of the analytical solution where gradients of
stresses and strains were small. The accuracy of
the finite element method was better with a finer
mesh, but inaccuracy of the results near the axis
still remained.

The boundary conditions shown by Eq.3(c)
indicate that the cylinder is in contact with rigid
platens, but the Young’s modulus of the platen
used in the usual compression tests has finite
value. Therefore, Eq.3(c) does not perfectly co-
incide with the boundary condition of the usual
compression test.

The author would like to thank Professor Oku-
mura of Kitami Technological College for his kind
advice on this manuscript.
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