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Records of strong motion are often used as the ground motion inputs in earthquake response
analysis and in the design of structures. The design of underground structures, however, requires
more than just the time history at any particular point on the earth’s surface. It also requires the
space-time variation of the ground motion. We have therefore developed a method for generating
a space-time variation that includes a strong ground motion recorded at a observation point. This
simulated variation is characterized by an apparent velocity and by a coherence function. Here we
presented a case study using motion recorded during the 1940 Imperial Valley earthquake.
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1. INTRODUCTION

In the dynamic analysis and design of long un-
derground structures such as tunnels, pipelines
and buried pipes, the structure, soil and base-
ment rock should be modeled and the seismic in-
put motion should be determined at the soil or
basement rock level as shown in Fig.1. Engi-
neers are required to give input seismic motions
at several points along the underground structure
because the structural response is greatly affected
by relative ground motion.

From this point of view, estimating simultane-
ous motion is an important problem to be solved,
and techniques to simulate the space-time varia-
tion should be developed. In previous structural
designs, records obtained from the one site near
epicenters caused by earthquakes, such as the Im-
perial Valley, Taft, Tokachi-oki and Niigata earth-
quakes, have been used. Further, one of the fol-
lowing has frequently been assumed in establish-
ing relative motion and in estimating space-time
variation.

(1) One previously observed time history prop-
agating horizontally with a finite constant prop-
agating speed without distortion of wave form.

(2) Waves propagating horizontally with an in-
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Fig.1 Physical model of underground
pipelines (after Kubo?))

finite speed. Therefore, input motions are the
same at all locations including their arrival times.
Even when (1) is assumed, a problem still ex-
ists as to what value should be used for horizontal
wave speed. This value differs greatly depending
on whether the shear wave velocity of the sur-
face layer is used as indicated by the standards?
for gas pipelines in Japan or whether the value
estimated from calculated cross-correlation func-
tions using array records is used. For example,
at alluvial sites, shear wave velocities are several
hundred m/s, while the latter is several thousand
m/s¥~%). Using conventional theory®) strain on
the pipeline can be approximately estimated by

(Strain on pipeline) = (Particle velocity of soil)
/(Horizontal wave speed)
(1)

It can be understood that these two kinds of
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wave speeds will give us strains which differ as
much as ten times. Even though the latter speed
seems more rational, because distortion in the
wave form has been neglected, strain will con-
sequently be underestimated”).

Assumption (2) has mainly been applied to
sites with greatly varying horizontal soil struc-
tures. However, at some sites where horizontal
soil structures have been found to be uniform as
a result of geophysical exploration, vertically in-
cident seismic waves do not create strain on the
ground surface. Consequently, assumption (2) is
also unsafe in estimating such sites”. In addition,
distortion in the wave form has been neglected in
both assumptions (1) and (2). However, in re-
cent studies based on an analysis of seismic array
records”) distortion in the wave form has been
shown to have a considerable effect on ground
strains®)9).

Several methods have been proposed to solve
the above-mentioned problems. Shinozuka et
al. 1911 Naganuma et al.!?), Hoshiya et al.'¥:19),
Harada et al!®~17) and Deodatis et al'®) de-
veloped simulation methods for space-time vari-
ations with cross-correlation functions and cross-
spectra equal to assumed ones. These studies
were based on the random process theory, and
space-time variation is interpreted as a function
of time lag, the distance between two points, fre-
quency and wavenumber. Further, simulation
was conducted by taking wave propagation and
distortion into consideration.

However, space-time variations obtained by
each of these methods have not directly taken
observed records into account, and consequently
are too unrealistic and unconvincing to be used in
actual design. Therefore, these simulated waves
have not often been used as input motions, and
one observed record and assumption (1) or (2) are
still frequently being used in practice.

Such a tendency is also true in the design of
buildings, and observed actual records, such as
those from Imperial Valley, Taft and Tokachi-
oki, have often been used as input seismic mo-
tions rather than simulated time histories based
on random process theory. This tendancy is due
to the idea that the observed must be more real-
istic than the simulated. Furthermore, in the de-
sign of underground structures, not only observed
time history records but also space-time varia-
tions around the structure are required, because
relative motion is the main cause behind strain in-
duced in the structure. Because of reasons such as
these, one seismic record is insufficient in design-
ing, and space-time variations are still required.
In particular, several representative space-time

variations including well-known observed records
are believed to be essential when designing under-
ground structures such as in building extensions.

The authors have already proposed a method
using a double Fourier series for the rational sim-
ulation of space-time variations considering the
distortion of wave forms during propagation'?).
The objective of this paper is to develop an-
other method extending the theory of multiply-
correlated random processes instead of the double
Fourier series and to demonstrate the effective-
ness of the proposed method.

In this paper, space-time variation is repre-
sented by multiply-correlated random processes
U;(t) in which ¢ and t denote location and
time, respectively. Also, similar to our previous
papers!9:20) | the following conditions have been
assumed for simulated space-time variation.

Condition A: Auto-correlation functions of
both simulated space-time variation and observed
record should be identical. Based on the auto-
correlation function of the observed record, wave
propagation speed and the degree of wave distor-
tion, cross-correlation functions or cross-spectra
have been assumed. Cross-correlation functions
of simulated space-time variations should also be
identical with assumed ones.

Condition B: Simulated space-time variations
should include the observed record.

In this paper, regarding condition A, cross-
correlation functions have been assumed to rep-
resent wave propagation in the positive direc-
tion and a decrease in correlation with increasing
distance between two points. Concerning con-
dition B, space-time variation whose component
Us(t) matches the observed record has been sim-
ulated. A case study is presented using the El
Centro record during the Imperial Valley earth-
quake, satisfying the above two conditions.

2. THEORY

(1) Simulation of space-time variation
with continuous cross-spectra

Space-time variation of earthquake ground dis-
placement is expressed by m cross-correlated sto-
chastic processes U;(t) (i=1,...,m), where ¢ and ¢
denote location and time, respectively. The for-
mulation presented in this paper is applicable not
only to displacements but also to velocities and
accelerations.

Shinozuka et al.?!) and Hoshiya?? have shown
that stochastic processes U;(t) (i=1, ...,m) can be
expressed by using one-sided continuous cross-
spectra Sxr(xg,w), where w and zy respectively
denote the angular frequency and distance be-
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tween two points, as follows.

i N

Uz(t) = Z

| Hip(wn) |V2Aw
p=1n=1
-cos{wnt + O5(n) + dpn}

(i=1,2,---, m) (2)

where ¢, are mutually independent and uni-
formly distributed random variables from zero to
2T, wy, is the nth discretized angular frequency,

2nm
wn:n-Aw:__._..

(TL:L2,~--,N) (3)
and T is the duration of the record. In this paper,
the constant component has been neglected, and
the stationarity of the random process has been
assumed over the period from 0 to T.

Term Hy,(w) can be obtained by factoring the
matrix as follows.

S11(w) Sim(w)

Sorem ()
Hi(w) 0

St (@)

Hiy ()
Hu(w) -

Hipn (@) |
Hml(w) 1
: (4)

0 Hpym(w) |
where * indicates the complex conjugate, and
Sij(w) = Sxr(zolsjy w) (%)

where zg|;j=2; — x; is the relative distance be-
tween two points ¢ and j. Further, term 6;,(n) in
Eq.(2) is given by

R _1 [ Im[Hip(wn)]
Bip(n) = tan™! (m) ©)

where R, and I, indicate real and imaginary
parts, respectively.

(2) Simulation of space-time variation
with line cross-spectra

To discretize Eq.(2), Hip(wn)vAw has been
considered as a group, and Eq.(2) has been
rewritten as

i N

p=1n=1
-cos{wnt + Oip(n) + dpn}
(i:LZ)”"m) (7)

where Hip(w)v/Aw can be obtained by factoring
the line cross-spectral matrix

S’ll(w)Aw Slm(w)Aw
St (@) A S () A
Hf (w)VAw ’ 0 1
AWVBS e HipoWBS
Hu)VAw -+ Hm(w)VAw |
: (8)
0 Hypn (W) VAW |
where
Sij(w)Aw = Sxr(zolij, w)Aw 9)

Phase 0;5(n) can also be given by

i VA
fip(n) = tan~t ————————————-————-Im[HZP(Wn) vl (10)
Re[Hip(wn)V Awl
and ¢y, represent mutually independent and uni-
formly distributed random variables from zero to
2m.

(3) Power spectrum of observed record
As mentioned in condition A in 1, simulated
space-time variation should have the same power
spectrum as the observed record. The Fourier
series expansion of the observed record is given

as
N

F(t)= Z {an cos(wnt) + by sin(w,t)}  (11)
n=1
From Eq.(11), ground motion at time ¢ + 7 can
be expressed as
N
F(t+1) = [ @pncos{wn(t+7)}
n=1
+ b psin{wa(t+7)} ] (12)
where 7 is time lag. By considering the product of
F(t) and F(t+7) and taking the temporal average
from 0 to T, auto-correlation function Rx7(0;7)
is obtained as

Rx7(0, T) = F(t) . F(t—H‘)

1N
=3 Z(a?2 + b2) cos(wnT) (13)
n=1
where 7 indicates the temporal average. The
Fourier transform of Eq.(13) yields the two-sided
power spectrum

1 00 :
e / Rx7(0,7) exp(—twT) dr
2T J_oo

N
= 1 (@ + ) {B(wwn) + St}
n=1
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(14)
where §(w) denotes Dirac’s delta function. There-
fore, the one-sided power spectrum Sy (w) can be
given by
1 X,
Sr() = 5 Y (@ +8) slw-wn)  (15)
n=1
and is indicated by the arrows in Fig.2. By inte-
grating Eq.(15) from wy, — Aw/2 to wy, + Aw/2, a
relationship can be established between the one-
sided power spectrum and Fourier coefficients.

St(wp) Aw = (an J2r ) (16)
(4) Assumptions of cross-spectra

Simulated space-time variation should have an
identical power spectrum to that of the observed
record as mentioned in condition A, and the cor-
relation between two simulating points should de-
crease with wave propagation. From previous
studies?®~25) on comparisons between two actu-
ally observed time histories, correlation is known
to decrease with increasing distance between ob-
servation points, |zg|, and with increasing fre-
quencies.

Hence, one-sided cross-spectrum Sxr(zg,w) is
assumed as

qu{woyw)=:5h(w)eXP(—iwxo/C%4ﬂwH$0¥C%
17
where A() is a function of frequency |w| and travel
time |zg|/c. Further, ¢ and Sp(w) are the hor-
izontal speed of the propagating wave and the
observed one-sided power spectrum, respectively.
Function A() is called coherency, and by referring
to a previous study??), it can be assumed to be
written as

A(lwllzol/c) = exp{—alwllzo|/(2mc)}  (18)
where o denotes the degree of distortion of time
history due to propagation, or the distortion

coefficient”)19):20), By definition, a zero value for
a is free of distortion, whereas a large value for o

greatly decreases the correlation between the two
time histories.

(5) Cross-spectrum of space-time varia-
tion
Multiplying both sides of Eq.(17) by Aw, the
relationship between line cross- and power spec-
tra can be given by

SXT(CEO s wn) Aw = ST(wn) Aw
-exp{—alwnl|zo|/(2mc) } exp(—iwnzo/c)
(19)
Then, substituting Eq.(16) into Eq.(19), the
cross-spectrum of space-time variation yields
0,2 + b2
Sxr(zo,wn) Aw = -(——’i—i-—"—)
-exp{—a|wp||zo|/(27e)} exp(—iwnzo/c)
(20)
An assumed corresponding cross-correlation
function can also be obtained by the inverse
Fourier transformation of the two-sided cross-
spectrum.

1 oo )
R_Q(T(:U()a T) = 5/ Sxr(zg,w) exp(i wr) dw
—00

1 N
=3 > (ah + b2) exp{ —alwllzol/(2mc)}
n=1

-cos{wy (T — zo/c)} (21)
(6) Space-time variation including ob-
served record
Regarding condition B, first process Uy(t) has
been chosen from m processes U;(t) (i=1,...,m)
in Eq.(7),

N
= Z i Hn(wn)ml\/i
n=1

-cos{wpt + 011(n) + 1} (22)
and it has been matched with the observed
record.

In the above equation, terms |Hjj(wp)vAw]

and 611(n) can be estimated as follows. From
Eqs.(9) and (8),

S11{wn) Aw = H3j(wn) VAw - Hyp(wy,) VAw
(23)
S11(wn) Aw = Sxr(0,w,) Aw = St(wn) Aw
(24)
Substituting Eq.(16) into Eqgs.(23) and (24) and
ensuring that Sp(w,)Aw is not a nega,txve value,
we derive

Re[Hii(wn) VAW = /(a2 +8)/2  (25)
Im|Hi1(wn) VAw] = (26)
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Therefore,

|Hiy(wn) VAW| = /(a2 +b3)/2  (27)
f11(n) =0 (28)
Finally, time history Ui (t) yields
N
Ui(t) = Z \/ a2 + b2 cos(wnt + ¢1n) (29)
n=1

However, the Fourier series of the observed
record given by Eq.(11) can be rewritten as

N
Z Ap cos(wpt + )

F(t) = (30)
n=1
where
Ap = /a2 + 82 (31)
= tan "1 (—=b,/ay) (32)

From a comparison between Eqs.(29) and (30),

¢1n in Eq.(22) can be established as

$1n = fn = tan™!(~bn/an) (33)
After all, if ¢1,, in Eq.(33) is used, simulated time
history U;(t) in Eq.(2) is the same as the observed
one.

In previous studies on methods for uncon-
ditional simulations of space-time variation, all
values of ¢, (1=1,...,m, n=1,...,N) have been
simulated as mutually independent and uniformly
distributed random variables. However, in this
study, ¢1, (n=1, ..., N) have been determined by
Eq.(33) to satisfy condition B, and remaining
members ¢, (1=2,...,m, n=1,..., N) have been
simulated as mutually independent and uniformly
distributed random variables.

(7) Summary of algorithm of developed
method

The developed simulation method for space-
time variation including the one observed record
can be summarized as follows:

i) Calculate Fourier coefficients, a,, and by, by
expanding the observed record into a Fourier se-
ries as shown by Eq.(11).

ii) Choose site location z; where the time his-
tory should be simulated as the ith random pro-
cess.

ili) Assume a cross-spectrum by using Eq.(20),
after estimating horizontal speed of propagating
wave c and distortion coefficient .

iv) Factor the cross-spectral matrix into two
triangular matrices as shown by Eq.(8), and esti-
mate |Hip(wy)vVAw| and 0ip(n).

v) Calculate ¢1, (n=1,...,N)
Eq.(33).

by using

vi) Generate mutually independent and uni-
formly distributed random variables for values of
in (t=2,...m, n=1,...,N).

vii) Calculate space-time variation by using
Eq.(7).

(8) Error in cross-correlation function of
simulated random process

In the above theory, a method has been de-
veloped to simulate space-time variations whose
cross-spectrum and cross-correlation function are
”identical” with assumed ones based on observed
time history. However, as the meaning of the
word ”identical” is not particularly clear, it will
be examined in this section.

Cross-correlation function between simulated
random processes at two separated points with
distance x¢ can be given by

RXT($o|z'j, 7) = Uy(t) - Us(t+7)

= Z Z Z | Hip(wn) \/—“H jq(wn) \/—_]

-COS[wnT —{0ip(n) = 0jg(n)} = (Ppn — Pqn)]
(34)

In the above equation, the cross-correlation func-
tion depends on values ¢1, and also on ran-
dom variables, ¢p, and qbqn (p,9=2,...,m,

n=1,...,N), except when i=j=1. The cross-
correlatmn functions of simulated space-time
variation obviously depend on samples, and these
are not exactly equal to assumed omnes. This is
also true for auto-correlation functions Rx7(0, 7),
where 1=j5#1.

However, when an ensemble average is taken
with respect to random variables ¢, and
bqn (p,9=2,...,m, n=1,..,N), all terms except
p=q vanish in Eq.(34). When this occurs,

Min(s,j) N

Z Z lep(wn) ‘/——’

Hjp(wn) VAW COS[wnT — {0p(n) — 0jp(n)}]
(35)
where Min(, j) indicates the smaller value of the

two numbers ¢ and j. Considering the following
relationship,

[RXT(:CO}’LJ7 T)

Sij(-w) = 55(w) (36)

the following equations are derived?D.
Hip(—w) VAw = Hyp(w) VAw  (37)
Oip(—n) = —0ip(n) (38)

Consequently, the ensemble average of simulated
cross-correlation functions in Eq.(35) is identical
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with the assumed one as shown by
E [Rx1 (2o, 7)]
1 Min(i,j) N
D> [;Hi,,(w,,) VA Hyp(wn) VA
p=1 n=1

-cos|wpT — {Bip(n) — O4p(n)}]

+| Hip(—wn) VAW| | Hjp(—wn) VAW
- COS[—wnT — {Bz‘p(_n) - ejp("n)}]
Min(i,j) N
Z le'p(wn) \/ZZ;HHJ‘IJ(WW.) \/E[
p=1 n=-N
-cos|wpT — {Bip(n) — Bjp(n)}]
1 Min(i,7) N
X x
p=1 n=-N
-exp|i{wnT — Q'ip(n) + gjp(n)}}
(" Imaginary part is a odd function

1
2

[Hip(wn) mHij(wn) ml

with respect to w)

1Min(i,j) N
=3 3 H(wn) VAw - Hyp(wn) VAw
p=1 n=-N
-exp(tw,T)
1
=5 > Sij(wn) Aw - exp(iwyT)
n=—N

1 {ore}
o —2-/ Sij(w) - exp(iwT) dw

= Ryr(zolij, ) (39)
In this study, although ¢y, (n=1,..., N) are not
random variables, the above results hold true
even when ¢y, are random variables?!).

From the above discussion, it should be noted
that using the random process theory, which in-
cludes the proposed method, it is not possible
to simulate a sample for the space-time varia-
tion where the cross-correlation function is ex-
actly identical with the assumed one. This means
that simulated space-time variation involves some
errors which have been expressed by the terms
p#q in Eq.(34). However, these terms vanish
when an ensemble average is taken, and the en-
semble average of the simulated cross-correlation
functions shown in Eq.(39) is identical with the
assumed one.

3. SIMULATION USING IMPERIAL
VALLEY EARTHQUAKE RE-
CORD

In this section, numerical results are presented
using records taken from the El Centro site during
the Imperial Valley earthquake (May 18, 1940).

s ¥
(W VAR ane

Fig.8 Observed wave during Imperial
Valley earthquake (1940)27

These records are frequently used for the dynamic
analysis of structures. The maximum accelera-
tion of the NS component is 341.7 cm/s?. The
displacement time history estimated from the nu-
merical integration of the acceleration record has
also been open to the public as shown by Fig.8%7,
and the maximum value of displacement is 10.9
cm. During simulation, the first 48 sec of the
record was used, and the first to the 29th Fourier
coefficients were calculated.

Several cases as shown by Table 1 were ana-
lyzed. In Case 1, wave horizontally propagating
speed ¢ and distortion coefficient o have respec-
tively been assumed as 1,000 m/s and 0.2 x 2.
The value of the distortion coefficient was de-
termined based on Ishii’s study®®). Here, the
corresponding cross-correlation function given by
Eq.(21) has been assumed as shown by Fig.4.
The thick line at zg=0 in Fig.4 indicates the
auto-correlation function of observed time his-
tory.

Time histories have been simulated at 31 points
that are distributed over —6 to 4+6 km with an
equal distance between adjacent points of 0.4
km. Among time histories U;(t) (¢=1,...,31),
subscript ¢=1 in U;(¢) denotes the recording point
at =0, and even and odd numbers of { (2 < <
31) denote simulating points located at positive
and negative sides of =0, respectively. The dis-
tance between the simulating point and recording
point =0 increases with increasing subscript <.

Fig.5 shows space-time variation simulated by
following the algorithm summarized in 2(7). It
should be noted that the simulated time history
at point i=1 (z=0) indicated by the thick line in
Fig.5 is completely identical with the observed
record shown in Fig.8, therefore satisfying Con-
dition B. Fig.6 shows cross-correlation functions,
in the space and time domain of —24<7< 4 24sec
and —6<xg< + 6km, calculated from the simu-
lated space-time variation sample in Fig.5.

Fig.7 shows space-time variation obtained in
a similar manner to Fig.5 but by using another
set of random variables for ¢p,. Cross-correlation
functions of the variation in Fig.7 are also shown
in Fig.8. ‘

In Figs.6 and 8, it should be noticed that the
simulated cross-correlation function of each sam-
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Table 1 Used parameters and figure numbers in Cases 1 to 5

Propagation Distortion  Assumed Simulated Cross- Ensemble average
speed coefficient Cross- space-time correlation of 100
c(m/s) a correlation variation of one sample samples
Case 1 1000 0.2x27 Fig. 4 Figs.5 and 7 Figs.6 and 8 Fig. 9
Case 2 2000 0.2x27r Fig.10 Fig.11 Fig.12
Case 3 500 0.2x27 Fig.18 Fig.14 Fig.15
Case 4 1000 0.1x2m Fig.16 Fig.17 Fig.18
Case 5 1000 0.4x2m Fig.19 Fig.20 Fig.21
RYr(z0,7) E [RXT(l'Oy T)]

e Distance zg

Fig.4 Assumed  cross-correlation function
(Case 1)

Ui(t)

< Place =z

0

: .\*\—5"' < ,-,-"':: 7
.o 2 \.\\‘s" v\‘\‘.bv

Fig.5 Simulated space-time variation

(Case 1)

Rxr(20,7)
«* Distance xg

SN
,'; !!‘:'il"l’ \

=
s e
s /2
Y Y
% %
5>

Fig.8 Cross-correlation function of variation
sample in Fig.5 (Case 1)

ple is nearly, but not exactly, equal to the as-
sumed one shown in Fig.4. However, as shown
in 2(8), their ensemble average should be identi-
cal with the assumed cross-correlation function.
To verify this, simulations were conducted one
hundred times and the ensemble average was cal-

* Distance zg

AR
4 A
SN
=S
\ '%: ‘,/m A
. 7

7/
]

%ﬁ. _ S L
\”&\\'\\ "-’;’,f' 2\ » /\\\

N\

{}
R

Fig.9 Ensemble average of cross-correlation
function from 100 samples (Case 1)

Ui(t)
®  Place z

Fig.7 Another sample of simulated space-
time variation (Case 1)

Rxr(20,T)

ca®

Distance zg

Fig.8 Cross-correlation function of variation

sample in Fig.7 (Case 1)

culated. The results are shown in Fig.9, and it
can be noticed that they are identical to those in
Fig.4.

For the other cases (Cases 2 to 5) summa-
rized in Table 1, space-time variations have also
been calculated using different sets of horizontally
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Fig.10 Assumed cross-correlation function
(Case 2)
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Fig.11 Simulated space-time variation
(Case 2)
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Fig.18 Assumed cross-correlation function

(Case 3)

Fig.14 Simulated space-time variation

(Case 3)

E [RxT(20,7)]
=* Distance zg

Fig.12 Ensemble average of cross-correlation
function from 100 samples (Case 2)

propagating wave speed ¢ and distortion coeffi-
cient o. For each of these cases, assumed cross-
correlation function, simulated sample of space-
time variation, and ensemble average of cross-
correlation functions of one-hundred simulated
samples are shown in Figs.10 to 21, and the cor-
responding figure numbers are indicated in Ta-
ble 1.

In Cases 1, 2 and 3, horizontally propagating
wave speed ¢ can be read from the velocity of
the shift of peaks in Figs.5 (or 7), 11 and 14.
Meanwhile, comparisons between Figs.5 (or 7),
17 and 20 in Cases 1,4 and 5 show the effects of
distortion coefficient « on the degree of distortion
during wave propagation.

Similar to the previous comparison between
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Fig.15 Ensemble average of cross-correlation
function from 100 samples (Case 3)

Figs.4 and 6, the cross-correlation function of
the simulated sample in Cases 2 to 5 is also
nearly, but not exactly, equal to the assumed one.
However, the ensemble average of one hundred
samples of cross-correlation functions had a good
agreement with the assumed one, and such results
are shown in Figs.10, 12, 13, 15, 16,18, 19 and
21. The above results mean that condition A is
satisfied in all cases.

Regarding condition B, the simulated time his-
tories at point z=0 indicated by the thick lines
in Figs.11, 14, 17 and 20 are identical with the
observed record in Fig.8. Therefore, it can be
confirmed that condition B is also satisfied.

In this section, several examples of the applica-
tion of the method developed in the previous sec-
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Fig.16 Assumed cross-correlation function
(Case 4)
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Fig.17 Simulated space-time variation
(Case 4)
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Fig.18 Ensemble average of cross-correlation
function from 100 samples (Case 4)

b

Y

tion have been demonstrated, and the effects of
parameters used have been illustrated. However,
the values of parameters are only based on a few
previous studies. To utilize simulated space-time
varjation in the design of structures, the values of
these parameters should be investigated in more
detail by using a number of seismic array records
observed under various ground conditions.

4. CONCLUSIONS

In designing underground structures to with-
stand earthquakes, the estimation of space-time
variations around the structure is an important
problem to be solved. The objective of this paper
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has been to simulate space-time variations that
include observed records.

In this paper, the following two conditions have
been considered.

Condition A is that the temporal auto-
correlation functions (and power spectra) of both
space-time variation and the observed record
should be same. The cross-correlation function
(or cross-spectrum) is assumed using the auto-
correlation function of the observed record and
the following two parameters, i.e., wave hori-
zontally propagating speed ¢ and distortion co-
efficient « related to coherency. The cross-
correlation function of the simulated space-time
variation should be identical with the assumed
one.



Condition B is that simulated space-time vari-
ation should include the observed record.

The authors proposed a method using the dou-
ble Fourier series in their previous papers!9:20),
In this paper, a new method has been developed
to simulate space-time variation based on the the-
ory of multiply-correlated random processes. In
the case study, the Imperial Valley earthquake
record was used, and cross-correlation functions
have been assumed so that seismic waves propa-
gate in the positive direction and correlation de-
creases with wave propagation. Under these as-
sumptions, space-time variation has been simu-

lated and the following conclusions have been de-

rived:

1) Simulated space-time variation includes the
observed record;

2) The auto- or cross-correlation function of the
simulated space-time variation sample is nearly
equal to the assumed one; and

3) Ensemble average of the auto- or cross-
correlation function of the simulated space-time
variation samples is exactly equal to the assumed
one.

Features 2 and 3 above are also true in the
previous simulation methods of the multiply-
correlated random processes, however, they are
not true according to the method shown in the au-
thors’ previous papers'9:20), In other words, the
method developed here has softened condition B,
and this has made it much easier to find the solu-
tion by eliminating troublesome convergence cal-
culations. Because of this, the proposed method
is believed to be one of the simplest and most
effective methods to simulate conditional space-
time variations.
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