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In this study, a model on the basis of artificial neural networks is developed to predict the
peak horizontal acceleration. The neural network model provides an objective analysis method
which requires neither specifying predictive functional forms nor the independence of the inside
variables. The Joyner and Boore data set (BSSA, Vol.71, pp.2011-2038, 1981), was used for
analysis. For comparison, one- and two-step regression procedures were also applied to the same
data set. Various fitness criteria have been considered. Finally, the proposed procedure showed an
agreeable capability for the required prediction of ground motion parameters.
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1. INTRODUCTION

Seismic hazard evaluation is commonly based
on empirical predictive relations. Such rela-
tions are generally expressed as mathematical
functions connecting a strong motion parameter
to the parameters characterizing the earthquake
source, the propagation path distance and the lo-
cal site conditions. The most important aspect
for mitigation of earthquake hazard is probably
the prediction of strong motion parameters, likely
at a particular site.

One of the special features of the earthquake
ground motion, which is of considerable interest
to engineers and seismologists, is the maximum
peak value of ground acceleration developed at
any specific site during an earthquake.

During the past few decades several attempts
have been made to estimate the peak acceleration
with various pertinent properties of the strong
motion records, e.g. Gutenberg & Richter!),
Housner?), Trifunac®, Campbell?), etc.. In or-
der to predict the peak horizontal acceleration,
various analytical procedures have been intro-
duced by researchers so far. Among these, regres-
sion analysis has been widely used with different
techniques, e.g. Donovan®, Joyner & Boore®),
Campbell”), Fukushima & Tanaka®). Since the

1970s, numerous empirical relations of depen-
dence of peak acceleration on magnitude and dis-
tance have been presented, e.g. Esteva®, where.
reference to many others can be found in the re-
view articles by Joyner'®, Joyner and Boore!l),
and Anderson'?. Hitherto , all of the above-
mentioned published studies use parametric mod-
els.

In an exploratory data analysis, Brilinger and
Preisler!® have applied two different techniques
to the Joyner and Boore® data for prediction
of the peak horizontal acceleration. Carr and
Glass!®) applied the so-called Krieging, a tech-
nique of geostatistics which is commonly used
to estimate mineral resources, to interpolate the
peak acceleration. A nonparametric empiri-
cal description was adopted by Anderson and
Yutain!®), to estimate the peak acceleration.

In general, regression analysis is a technique
for fitting curves (linear or nonlinear surfaces)
to data points. Sympson'®) points out that the
nodal function used in many error correction
learning algorithms of neural networks is a fam-
ily of curves, and the adjustment of the weights
that minimizes the overall mean-squared error is
equivalent to curve fitting. In this sense, the
back-propagation algorithm is an example of an
automatic nonlinear regression technique. With
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this notion, neural networks could be applied to
the predictive issues in earthquake engineering.

In this study a model on the basis of artificial
neural networks with the back-propagation algo-
rithm is developed to estimate the peak horizon-
tal acceleration. Neural network models provide
an objective analytical outlook which requires
neither specifying predictive functional forms nor
the independence of the inside variables. The in-
side variables, for example earthquake magnitude
and distance, are somehow related in the observed
data, despite their theoretical independence from
each other. This fact has a negative effect on
the prediction based on the conventional regres-
sion procedures. To improve traditional regres-
sion procedures (one-step regression), new pro-
cedures, e.g. Joyner and Boore®), has been de-
veloped to overcome this problem by introducing
the so-called two-step regression procedure. In
our model, this complexity resulting from the de-
pendence of the inside variables, has no impact
on the estimation of the peak horizontal acceler-
ation.

In this paper, in order to demonstrate the po-
tential capability of the neural network models
in predicting the peak horizontal acceleration,
three different analytical procedures - the conven-
tional regression method (one-step procedure),
the Joyner and Boore®) method (two-step pro-
cedure), and a neural network model - have been
applied, and compared with each other. The un-
certainty involved in the prediction of the peak
horizontal acceleration was examined through the
analysis of residuals.

2. THE DATA

To demonstrate the reliability of the artifial
neural network model for prediction of the peak
horizontal acceleration, the Joyner and Boore
data set®) was used in this study. A broad
variety of functional forms for such data have
been proposed by Joyner and Boore®, Bolt and
Abrahamson!?, and Brillinger & Preisler!?).

The data set consists of 182 recordings of the
peak acceleration from 23 earthquakes, and is re-
stricted to shallow earthquakes in the western
North America with moment magnitudes My
greater than 5.0. The number of records for
each event vary, with six events having only one
record. The magnitude of the earthquakes ranges
between 5 and 7.7, but most of the earthquakes
are in the range 5.5 to 6.5. The distance in which
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Fig.1 Distribution of the observed data with respect to
distance and moment magnitude

the data are obtained ranges from less than 1 km
to 300 km. This distance is defined as the closest
distance to the fault rupture in kilometers. The
larger of the peak horizontal accelerations of two
components is selected in each case. The distri-
bution of peak horizontal acceleration data over
the magnitude and distance ranges is shown in
Fig.1.

3. ANALYTICAL PROCEDURES

The aforementioned three analytical proce-
dure - i.e. the single- and two-step regression
analyses®), and also the nonparametric neural
network approach developed in this article - are
examined for the selected data to estimate the
peak horizontal acceleration. )

A conventional regression analysis begins by as-
suming the form of the analytical expression for
the peak acceleration (Amqz) as a function of
magnitude (M) and distance (R), and possibly
other parameters. The analysis then estimates
unknown coeficients in this equation which min-
imize the average misfit of observation. The de-
tailed explanation of traditional analytical proce-
dures can be found in Campbell'®), Kawashima
et al.1®, and Joyner and Boore?).

Regression analysis has important limitations.
First, it requires a formal expression and sec-
ond, its inside variables should be fully indepen-
dent from each other. The latter is of consider-
able importance from the analytical point of view.
Therefore, some functional forms and regression
procedures have been introduced so far to reduce
the effect of the coupling between magnitude and
distance dependence (e.g., Joyner and Boore®).
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processor

On the other hand, neural network models pro-
vide an analytical method which requires neither
a functional form nor the independence of vari-
ables. Such models are based on the function of
biological neurons?!),

(1) The neural network model

The concept of artificial neural networks is in-
spired from neurological system of human body,
which consists of a large number of simple pro-
cessing units. These processing units or nodes
have interconnection in the various artificially de-
signed structural models, with varying degrees of
analytical strength as indicated by their connec-
tion weights. A typical multilayer neural network
structure is organized into several layers: an in-
put layer, one or more hidden layers, and an out-
put layer. Each layer is made up of one or more
units (neurons). The number of the hidden lay-
ers and their nodes would be selected during an

effort of trial and error. Neural networks vary in
physical design, training model and functionality,
depending on the nature of application.

In our approach, a multilayered, forward-
chained, and partially connected neural networks
is used. Partially connected means, that the neu-
rons in a layer are not connected to each other.
It is proven that this kind of network is most
useful in engineering applications. Fig. 2 illus-
trates a typical architecture of a multilayer neural
network, with back-propagation error correction,
that consists of an input layer, two hidden lay-
ers, an output layer, and three levels of adaptive
connections.

Each neuron of a network can be considered as
an operator, receiving the real numbers as inputs
and transforming them into a single output value.
In our network transformation is done through
the squashing sigmoidal function as,

N; =}:Wj;Ii+9j (1)
=1

1

next - Y =
5 F(N3) 14 exp(—alN;)

)

where N; is the weighted sum of the units ¢
of the input from a previous layer with n units;
W;; is the weight between units j and ¢; I; is the
input element from unit 4; @; is the bias; I}‘”t
(unit output) is the transformed output from unit
7 which is considered as an input for next layer;
and « is a constant which defines the steepness
of the transfer function. A schematic view of an
exemplary artificial neuron is shown in Fig. 3.

The output is transmitted by a link to connect
to the other neurons. For each link a real number
and a weight is defined. Before an output value is
transmitted, it is multiplied by the corresponding
weight. The output from a unit is then transmit-
ted by the link to connect to the other neurons.
Finally, the transformed values from the output
layer is compared with the corresponding desired
value for error calculation, based on the follow-
ing equation. Let O, be the output value, for the
rth pattern , and let T, be the desired or target
component of the output pattern for this neuron.
P and L are the number of samples and units in
the output layers, respectively. The error (mis-
fit value) E, depending only of the weights W, is
defined to be
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Modifying the weight values by repeated ap-
plication learning rules allows the networks to
approximate the functional mapping of the in-
puts on the desired outputs. The classic back-
propagation learning algorithm of neural net-
works was used in our analysis to train a feed-
forward network for prediction of the peak hor-
izontal acceleration. The ability of this learn-
ing method to automatically capture the nonlin-
ear mapping is significant. The back-propagation
learning algorithm uses a least squares error
minimization criterion to minimize the error
E(W). This can be accomplished by adjusting the
weights according to the negative gradient of the
error with respect to the weights.

OF
Id _
AW = *naWoId

Wnew — Wold + Awold

(4)
(%)

where W is a typical weight which could belong
to any layer, and is adjusted from its old value
W2 to the new value W™ during an itera-
tion procedure based on the learning rules. The
term 7 is the learning rate which is usually con-
stant during a training. Rumelhart et al?!) who
already provided a detailed description of back-
propagation learning algorithm.

Analysis and interpretation of neural network
behavior is inherently difficult due to the high
dimensionality of the solution space. Recent re-
search (e.g. Dennis and Phillips??), Hutton®),
Ripley“)), has focused on the use of nonparamet-
ric and parametric statistical techniques to ana-
lyze and interpret the neural network behavior.
It has been shown that a forward-chained, multi-
layer network using a back-propagation learning
algorithm is mathematically equivalent to a non-
linear least squares regression fit of the data2®).

Our network model consists of three layers with
twelve sigmoidal nodes in the hidden layer and
a sigmoidal output unit. Inputs to the network
are the earthquake magnitude (Mag.) and dis-
tance (Dis.) with three additional combinations
(Mag.xDis., Mag./Dis., and Mag.P**"). These in-
puts were chosen through an effort of trial and er-
ror. As Sympson'® has pointed out, creating the

Table 1 Values corresponding to (a) the Input -
Hidden, and (b) Hidden - Qutput
connection weights.

a: Input - Hidden weights

Hidden Bias Input] Input2 Input3 Input4 Input$
1 0.531 -1.777 1.704 0.070 2.246 -0.406
2 -4.054 6.138  -1.941 0.698 -0.386 -1.202
3 0.371 -1.277  0.865 0.656 1.288 0.043
4 -0.302 -2.454 -6.592 -4.783 6.214 2.394
5 0.439 0.834 0.203 0.805 -0.046 0.747
6 -1.172 1.464 -0.673 0.765 -0.985 0.335
7 -1.917 1.852  -3.425  -0.845 2.499 0.950
8 0.492 0.523 0.50% 0.817 0.656 0.755
9 0.553 0.589 0.430 0.283 0.801 1.154
10 -0.057 0.898 0.266 0.747 0.731 1.065
11 0.737 0.328 0.648 0.024 0.089 0.632
12 0.869 0.912 1.012 1.029 0.464 0.798
b: Hidden - Output weights
Bias Hidden1 Hidden2 Hidden3  Hidden4 Hidden s
-2.5831 -1.099 1.964 -0.676 2.756 0.038
Hidden 6 Hidden7  Hidden 8§ Hidden 9  Hidden 10
1.053 1.301 0.203 0.398 0.474
Hidden 11 Hidden 12
0.059 -0.119

Table 2 Fitness criteria and their values for various
analytical procedures

Analytical method Mean square  Standard error  Coefficient of

error of estimation _defermination __©'°
Neural network model 0.047 0.217 0.822 0.461
One step regression 0.063 0.251 0.767 0.451
Two step regression 0.064 0.254 0.770 0.483

(Joyner & Boore, 1981)

best possible set of features and properly repre-
senting those features is the first step toward suc-
cess in any neural application. Peak horizontal
acceleration is expressed as the logarithm of ac-
celeration (cm/s?) which was normalized accord-
ing to the maximum value, and was considered as
a target. The input data to the network were also
normalized based on maximum values of each in-
put parameter in order to homogenize the weight
values. The network has been examined through
many training pracedures to find out the suitable
structure, and finally to get a better adjustment
for the root-mean-square error cost function. The
trained network results in terms of weights are
presented in Table 1 (a and b).

4. RESULTS AND DISCUSSION

To evaluate the accuracy of the analytical mod-
els, several statistical parameters are calculated,
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Fig.4 Plots of residuals as functions of distance
analytical procedures

such as the correlation of determination (R?),
mean-square-error (MSE) and standard error of
estimation (SEY). The fitness results of analy-
sis for applied methods are given in Table 2.
The results show that the neural network model
is comparable with, and partly superior to the
conventional methods. A correlation of determi-
nation (the measure of the goodness of fit) of 0.82
is achieved for the neural network model. In com-
parison, for the Joyner-Boore data®, the correla-
tion of determination values of 0.76 and 0.77 are
found for the one- and two- step regression pro-
cedures, respectively.

In order to test for potential biases in the pre-
diction regarding magnitude, distance or pre-
dicted accelerations, plots of the residuals with
respect to these three parameters were carefully
inspected. The residual was simply defined as the
ratio of the observed to predicted values. Two ex-
amples of these plots appear in Fig.4 (a,b,c,d,e
and f). If there were systematic trends in the
data not accounted for by our statistical analy-
sis, it should be evident from these plots. How-
ever, the residuals were found to be uniformly
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(a,b,c) and magnitude (d,e,f), according to three

distributed with respect to magnitude , distance,
and the predicted accelerations. A correlation
analysis confirmed that the residuals were uncor-
related regarding to these variables.

Neural networks can effectively provide an ac-
curate estimate if there is reasonable correlation
between input and output data. However accu-
racy is limited by the available data. Since the
neural network system is sensitive to the distri-
bution of training data, the best results can be
obtained if the data is well distributed over the
magnitude and distance range.

The scatter plot, shown in Fig.5, provides a
convenient means for assessing the variations in
the error of prediction. Prediction curves of the
neural network model for magnitudes 6.0 and 7.0
are compared with results of the one- and two-
step regression analyses in Fig.6. As can be de-
duced from this Figure, the neural network model
is in good agreement with the observed data. For
distances less than 10 km, the estimation from
one-step regression appears at higher values than
other two models, while the estimated acceler-
ation of our model is nearly similar to that of
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model- based predictions for magnitudes 6 and 7

Joyner and Boore®). We point out that the graphs
prepared by Joyner and Boore® and our study, in
the case of M=6.0 and 7.0, show that the curves
do not differ dramatically. Fig.7, is constructed
in accordance with our proposed neural network
model, and might be used to estimate the peak
horizontal acceleration.

5. CONCLUDING REMARKS

The main purpose of this paper was to point out
that the neural network model can be directly ap-
plied to the earthquake ground motion data. The
performance of the neural network model in es-
timating the peak accelerations can be evaluated
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Fig.7 Predicted values of peak horizontal acceleration
as a function of distance and moment magnitude,
using the neural network model

from the results of this study. This evaluation
proves that our approach is capable to predict
earthquake ground motion parameters.

A general advantage of this method is that no
commitment has been made to prespecified func-
tional forms. Our approach is an objective ana-
lytical method which dose not require the inde-
pendence of estimator parameters, an important
condition in conventional analytical procedures.
Considering the set of the data used, it is possi-
ble to show the capability of the neural network
model compared to over conventional predictive
methods.

In this paper, the local site effects were not
considere because of the lack of available data.
However, the neural network model can also
take into account the site condition as an in-
put parameter.

Finally, we conclude that the model has the ca-
pability for prediction of other ground motion pa-
rameters such as estimation of velocity, displace-
ment and acceleration response spectra. The neu-
ral network method will be extended to these no-
tions in our future studies.
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