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Methods for mixed discrete-integer-continuous variable nonlinear optimization are reviewed for structural design -

applications with focus on problems having linked discrete variables. When a discrete value for such a variable is
specified from an allowable set, the values for other variables linked to it must also be used in all the calculations.
Optimum design of steel frames using commercially available sections is an example of this class of problems. A
general formulation for this type of problems is developed. Approaches for solving such practical optimization
problems are described and classified into single and multiple design variable formulations. Many approaches use
two phases in their solution process before the final discrete design is obtained : In the first phase, a continuous
variable optimum is usually obtained, and in the second phase, the continuous solution is somehow utilized to
obtain the final discrete solution. Some of the basic optimization methods used in these approaches are also
described.

Nomenclature :

BBM Branch and bound method

D; A set of discrete values for the ith Type
2 variable. Three different types of
variables are defined as
Variable Type 1 : Continuous variable
Variable Type 2 : Discrete variables
(including integer, zero-one) whose
allowable values are given explicitly
Variable Type 3 : Linked discrete
variables (a discrete variable whose
value specifies a group of other values
linked to it)

di; The jth discrete value for the ith Type 2
variable

E; A set of discrete values for the ith Type
3 variable

ei The jth discrete value for the ith Type 3
variable

f Objective function to be minimized

g The ith constraint function

P Integer programming

LP Linear programming

LBB Linearized branch and bound

m Total number of constraints

MDNLP Mixed-discrete nonlinear programming

n Total number of design variables of all

types
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Number of Type 2 variables

Number of Type 3 variables
Nonlinear programming

Number of equality constraints
Number of allowable discrete values in
D;

Number of properties for the ith Type 3
variable

Number of allowable discrete values in
E;

Simulated annealing

Sequential quadratic programming
The property table for the ith Type 3
variable. It is a matrix of s; rows and 7;
columns. Each row of T contains
property data for one allowable design
alternative for the ith Type 3 variable
The kth property of 7

The jth row of the property table T'%
A vector of design variables of dimen-
sion #

Lower bound for the variable x;
Upper bound for the variable x;

- (y(n,:+1)’ o y(m+ng) )T ; a matrix
whose each row is the chosen property
vector (one for each Type 3 variable) ;
these are used in function evaluations



1. INTRODUCTION

(1) Motivation

Optimization problems in engineering design
often have variables that can only assume some
pre-determined values, such as the plate thickness
must be selected from available ones, the number
of anchor bolts must be an integer, the number of
reinforcing bars must be an integer, the number of
teeth on a gear must be an integer, member cross-
sectional areas must be selected from available
ones, etc. To deal with optimization problems with
mixed discrete-integer-continuous variables, sever-
al solution approaches have been developed and
tested since 1960s. A detailed review of general
approaches that are applicable to a wide variety of
discrete variable engineering optimization prob-
lems has been presented recently by Arora ef al.
(1994), Huang (1995), and Huang and Arora
(1995, 1996a).

The need for discrete variable structural opti-
mization has been recognized since 1968 (Toakley,
1968). However, since the continuous variable
optimization algorithms were not fully developed
at that time, emphasis shifted to the development
of algorithms for such problems. There were very
few papers on discrete variable structural optimiza-
tion at that time. The integer variable linear

programming (LP) methods (called integer prog-.

ramming (IP) or 0-1 programming), and the branch
and bound methods had been developed for
general discrete optimization problems, and so it
was natural to apply these methods for discrete
structural optimization. Toakley (1968) applied a
few of these methods for optimal design of plastic
and elastic structures. Design of plastic structures
was formulated as an LP problem which was
transformed to a mixed integer-continuous variable
LP problem. The elastic design of determinate
trusses subjected to displacement constraints was
also formulated as a mixed integer-continuous
variable LP problem. The algorithms used were :
Gomory’s cutting plane method (Gomory, 1960),
branch and bound method (implicit enumeration)
and heuristic techniques.

~ Reinschmidt (1971) used a branch and bound
method to solve the problem of plastic design of
building frames (which is a linear programming
problem). The problem was transformed to an IP
problem and a branch and bound method, based on
Geoffrion’s implicit enumeration approach (Geof-
frion, 1967), was used. Elastic design of trusses
subjected to stress, displacement, and member size
constraints was also considered (which is a
nonlinear programming (NLP) problem). The NLP
problem was linearized and solved as a sequence of

linear IP problems using the same branch and
bound algorithm. ’

Cella and Logcher (1971) solved the nonlinear
problem of designing trusses subjected to stress
constraints using the branch and bound method.
The nonlinear problem was attacked directly
without linearization or introduction of integer
variables. A filtered pattern search was used during
the branching phase of the algorithm. The method
simply evaluated each trial design and either
accepted it or rejected it. Since each trial design
required structural response, an approximate
reanalysis approach was used to reduce the
computational effort. ,

A direct method combining Box’s algorithm and
Hooke and Jeeve’s method was use by Lai and
Auchenbach (1973) for structural optimization.
Liebman er al. (1981) transformed the discrete
variable optimization problem to a sequence of
unconstrained problems that were solved using an
integer discrete gradient algorithm. A special
enumeration algorithm for discrete variable opti-
mization of trusses with stress and displacement
constraints was developed by Hua (1983). The
methods exploits the structure of the problem to
develop heuristics that reduce the size of enumera-
tion.

It is seen that the literature on discrete variable
structural optimization is quite sparse. More
recently, interest in this class of applications has re-
surfaced because the optimum design methodolo-
gies are beginning to be used in practical applica-
tions where discrete variables are encountered
naturally. Therefore the main purpose of this paper
is to review the modern literature on this topic. The
main motivation is to understand features of the
methods (limitations and positive aspects) so that
further research can be performed to develop
better methods.

(2) Linked discrete variables

Since the term linked discrete variables is used
throughout the paper, it is important to understand
the meaning of it. A linked discrete variable is
defined as the one whose value specifies the values
for a group of parameters related to it. As an
example of linked discrete variables, consider the
use of standard sections available in the American
Institute of Steel Construction (AISC) manual for
design of steel frames. Some of these sections are
given in Table 1. The section number, section area,
moment of inertia, or any other section property
can be designated as a discrete design variable for
the frame member. Once a value for such a
discrete variable is specified from the AISC table,
each of its linked variables (properties) must also
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Table1 A partial list of AISC standard sections

A d tw b te I N I, S, 1

W36x300 88.30 36.74 0.945 16.655 1.680 20300 1110 15.20 1300 156 3.830
W36x280 82.40 36.52 0.885 16.595 1.570 18900 1030 15.10 1200 144 3.810
W36xK260 76.50 36.26 0.840 16.550 1.440 17300 953 15.00 1090 132 3.780
W363x245 72.10 36.08 0.800 16.510 1.350 16100 895 15.00 1010 123 3.750
W36x230 67.60 35.90 0.760 16.470 1.260 15000 837 14.90 940 114 3.730
W363x%210 61.80 36.69 0.830 12.180 1.360 13200 719 14.60 411 67.5 2.580

1W36xx194 57.00 36.49 0.765 12.115 1.260 12100 664 14.60 375 61.9 2.560
A : Section area (in?). I, :Moment of inertia about the x-x axis (in%).

d :Depth (in). S, : Elastic section modulus about the x-x axis (in3).

ty : Web thickness (in). r, : Radius of gyration with respect to the x-x axis (in).

b : Flange width (in). I, :Momentof inertia about the y-y axis (in%).

te :Flange thickness (in). S, : Elastic section modulus about the y-y axis (in’).

be assigned the unique value. For example, the
data in the first row of Table 1 must be used when
the standard section W36 X300 is selected during
the optimization process. These variables affect
values of the cost and constraint functions for the
problem. Certain value for a particular property
can only be used when appropriate values for other
properties are also assigned. Relationships among
such variables and their linked properties cannot be
expressed analytically, and so a gradient-based
optimization method may be applicable only after
some approximations. It is not possible to use one
of the properties as the only design variable
_because other section properties cannot be calcu-
lated using just that property. Also, if each
property is treated as an independent design
variable, the final solution would generally be
unacceptable since the variables would have values
that cannot co-exist.

(3) Scope of the review

The purpose of this paper is to focus on the
review of methods for an important class of
practical structural optimization problems with
discrete variables that are linked to each other,
such as the section properties of an I-section in the
table of available sections. Since the previous
review paper (Arora et al. 1994) does not discuss
the treatment for linked discrete variables in any
detail, the current paper is viewed as an extension
of that paper.

It is important to note that the discrete structural

: Radius of gyration with respect to the y-y axis (in).

optimization problems using available steel sec-
tions, discussed in the foregoing paragraphs, occur
in many other engineering applications also. These
include, selection of components from available
ones ; e.g., bolt type, gear type, crank shaft type,
automotive engine type, electric motor type, etc.
Some of the methods and strategies described in
this paper can be used for such applications as well.

Section 2 contains definitions of the mixed
variable nonlinear programming problems with
linked discrete variables. Section 3 describes single
and multiple design variable formulations for
problems with linked discrete variables. Section 4
contains an overview of the basic optimization
methods used in various strategies for discrete
variable optimization. A review of the recent
approaches for discrete structural optimization
based on different treatments for the design
variables, is presented in Section 5. Finally, Section
6 contains some concluding remarks.

2. PROBLEM TYPES

To define three types of nonlinear structural
design optimization problems, let # be the total
number of design variables including continuous,
discrete and linked discrete variables, #; the
number of discrete variables, and 7, the number of
linked discrete variables. The variables types are
defined as follows:

Variable Type 1:
Continuous variables (z;;i=n;+n.+1,.., n).
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Variable Type 2 :
Discrete variables (including integer, zero-one)
whose allowable values are given explicitly (z;; ¢
=1, ..., #4). Some of the discrete variables may
be treated as continuous variables during the
solution process, but their final values must be
specified from the available set. Some of the
discrete variables cannot be treated as con-
tinuous variables during the solution process, so
they must be kept discrete for all calculations.

Variable Type 3:
Linked discrete variables- discrete variables
whose values specify a group of properties (z;; ¢
=pns+1,..,ns+n). It may or may not be
possible to treat a linked discrete variable as a
continuous variable during the solution process.
Now the three types of nonlinear design

optimization problems are defined as follows :

a) NLP : Nonlinear Programming Problem

A structural design optimization problem can be
expressed as a general nonlinear programming
(NLP) problem of the following form (note that #,
=0 and #,=0 in this case) :

minimize f(x)

subject to g (x)=0;i=1, .,p
gi(x)<0;i=p+1,..,m
Tiulxilzip;1=1,..,n

where f and g are objective and constraint
functions respectively, xi. and xip are lower and
upper bounds for the variable x;, and p and m are
the numbers of equality constraints and the total
constraints, respectively. The cost function f and
each constraint function g; are usually assumed to
be twice continuously differentiable with respect to
all the design variables. Each variable is assumed to
be continuous which can have any value within its
specified range.

b) MD-NLP : Mixed-Discrete Nonlinear Program-
ming Problem

When some of the variables are discrete and
others are continuous, we get the mixed-discrete
nonlinear programming problem which is defined
as (note that #,=0 in this case):

minimize f(x)

subject to gi(x)=0;i=1,..,p
gi(x)<0;i=p+1, . .,m
€D, Di=(di, diz, ..., dia) ;
i=1,..,n;

Xy Sxi Sz i=nat1,..,n

where D; is the set of allowable values for the ith
discrete variable, ¢; is the number of allowable
values for the ith discrete variable, and d;; is the jth
allowable value for the ith discrete variable. In
general, the number of available discrete values for
each variable may be different.

¢) LD-NLP : Linked Discrete Nonlinear Program-
ming Problem

A precise mathematical formulation for the
linked discrete and other design variable nonlinear
programming problems has not been presented in
the literature. Therefore, such a formulation is
proposed and described here. Let T be a matrix
whose each row contains values for the variables
that are linked to a discrete design variable. Let
one of the properties of Type 3 variable (such as
the moment of inertia, area, section modulus, etc.)
or the section number in the table of commercially
available sections, be designated as a design
variable x; for the ith variable (i=n,+1, ..., n,+
#n.). Let each row of a matrix ¥ contain the current
selection of design properties for each Type 3
variable (such as the current selection of a member
of the structure from the allowable sections) ; the
number of rows in the matrix ¥Y'is #,. Then a mixed
variable optimization problem having continuous,
discrete and linked discrete variables is defined as
follows :

minimize f(x, ¥)
subject to gi(x, ¥Y)=0;i=1,..,p
gi(x, Y)L0i=p+1,..,m
€D, Di=(dn, dn, ..., di) ;
=1, .., %
LE€EL Ei= (e, e, ..., i) ;
=ng+1,.. 0ntn,
Y= (yos+b, | yoernoyT
y(i)TerOW(T(i)) ;
=ng+1, ..., 0tn,
(Xf z;=e,; then the jth row of T is
chosen as y®7)
where TW= (", ..,
=, .

in);éxig-ril] 5 i:ﬂd+ne+l, LR

é:‘) T and t}(i)T

’tl(;‘z) 7]217 sy S

where D; and E; are the sets of discrete values for
the ith Type 2 and ith Type 3 variables, respective-
ly, di; and e;; are the jth allowable discrete values
for the ith Type 2 and Type 3 variables, respective-
ly, integers ¢; and s; are the numbers of allowable
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discrete values in the sets D; and E;, respectively,
and 7; is the number of properties for the ¢th Type 3
variable. Matrix 7' is the allowable property table
for the ¢th Type 3 variable. It is a matrix of s; rows
and #; columns. Each row of 7% contains property
data for one allowable design alternative for the ith
Type 3 variable. An example of T% is given in
Table 1 in which each row of data gives section
properties of an allowable AISC steel section. In
design of steel structures using commercial sec-
tions, if the moment of inertia is chosen as a Type 3
-variable x; for the ith steel member, then the
allowable discrete values for the moment of inertia
form the set E; for the ¢th member. Other
properties (such as the section dimensions, moduli,
and area) for each section are used to construct the
matrix T% of allowable sections for the ith
member of the structure. When x; is assigned one
of the values in E;, say ej;, the jth row of T® that
contains properties of the jth AISC section is also
chosen to be the ith row of matrix ¥. The matrix ¥
that contains selected sections for the entire
structure, is then used to analyze the structure and
evaluate the cost and constraint functions.

3. DISCRETE STRUCTURAL OPTIMI-
ZATION: PROBLEM FORMULA-
TIONS

Design variables for problems with linked
discrete variables, such as design of steel frames

using commercial sections, can be defined in.

several ways leading to different solution
approaches. Most approaches are based on defin-
ing only one design variable for each member.
Some approaches have also been developed using
multiple design variables for each member. These
formulations are described in the following sec-
tions.

(1) Single variable formulations
a) Single Design Variable Formulation 1

For each steel member, one of the section
properties is chosen as a Type 1 design variable and
other properties are related to it via some
interpolation scheme (instead of using the matrix 7'
directly). A separate procedure is needed to select
members from the available sections. All the
design code constraints are difficult to impose since
the interpolation scheme may not provide enough
information about all the section properties.

b) Single Design Variable Formulation 2

For each steel member, one of the section

properties is chosen as a Type 3 design variable.
The problem is formulated as LD-NLP and all
design variables are of Type 3. It may or may not
be possible to impose all the design code con-
straints, depending on how the section properties
are treated.

c) Single Design Variable Formulation 3

None of the section properties is used as design
variable. Instead, for each member, an integer
design variable is used (with allowable values as 1,
2,3, ...). The value of this integer variable indicates
the selected section from Matrix T (i.e., a row from
Table 1). The problem is formulated as LD-NLP
and all design variables are of Type3. All the
design code constraints can be imposed.

(2) Multiple variable formulations
a) Multiple Design Variable Formulation 1

For each member, multiple section properties
are treated as Type?2 design variables. The
problem is formulated as MD-NLP and all design
variables are of Type 2. Matrix T is not used since
there is no Type 3 variable. The final selection of
sections from the ones available in the matrix T
must be implemented separately. All the design
code constraints cannot be imposed.

b) Multiple Design Variable Formulation 2

For each member, multiple section properties
are treated as Type 1 (continuous) design vari-
ables. The problem is formulated as a standard
NLP. Matrix T'is not used since there is no Type 3
variable. The final selection of sections from the
ones available in the matrix T must be im-
plemented separately. Depending on the design
variables chosen, it may or may not be possible to
impose all the design code constraints.

4. BASIC OPTIMIZATION METHODS

In Section 2, different types of mixed-discrete-
continuous variable optimization problems are
defined. In Section 3, different design variables
used to formulate the mixed variable nonlinear
programming problem with linked discrete vari-
ables are presented. This section contains, an
overview of some of the basic methods that have
been used either as stand-alone, or as part of an
overall solution approach for problems with linked
discrete design variables. Many of the methods
have been described in more detail in Arora et al.
(1994). This section concentrates only on those
method that are suitable for problems with linked
discrete variables and the implementations by
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recent researchers.

(1) Nonlinear programming methods

Many methods have been developed in the
literature for solving nonlinear optimization prob-
lems. These methods are described in Arora (1990)
and in many textbooks and other references cited
in there. Many solution approaches for structural
optimization problems use these methods. For
example, Balling and co-workers have used a
hybrid generalized reduced gradient method (Ha-
ger and Balling, 1988). Arora and co-workers have
used sequential quadratic programming (SQP)
methods (Arora, 1989, 1990; Al-Saadoun and
Arora, 1989 ; Huang and Arora, 1995, 1996). Still
others have used generalized reduced gradient and
feasible directions methods (Arora, 1990). Work
continues in this area to develop still better solution
approaches, especially for large scale problems.

For problems with large number of design
variables, the computational effort for various
structural analyses becomes massive. This is even
more burdensome for mixed variable optimization
since the analysis part has to be repeated numerous
times. Thus the way the problem is formulated can
greatly affect the time required to obtain the
solution. Two approaches are often used to reduce
the computational effort. One is to use approxima-
tion concepts for function evaluations (Barthelemy
and Haftka, 1993). This speeds-up reanalysis of the
structure. Some discrete optimization methods
(e.g., branch and bound method) solve several
continuous subproblems The well-known SQP
methods have been used often as the subproblem
solver. However, for large scale problems in which
function evaluations are expensive, a sequential
linear programming (SLP) method which uses
linearized functions can be more suitable.
Although the SLP method does not converge as
well as the SQP method, the number of SLP
iterations can be limited to obtain the solution
faster since the accuracy of the subproblems is
often not critical. Several implementations of the
linearization approach have been discussed in
Arora et al. (1994).

Another approach to reduce the computational
effort is to use some known characteristics of the
problem and thus obtain a better convergence rate.
One such approach is called the optimality criteria
methods in which an iterative procedure based on
the behavior of the structure is derived and the
optimum is found when this criterion is satisfied.
Optimality criteria methods (OC) are often
referred to as the indirect methods. Compared to
the direct methods which minimize the objective
function by a search procedure, the indirect

methods work based on an iterative solution of the
optimality conditions. For each class of the
structural design problems, the optimality condi-
tions are reduced to a simple criterion based on the
structure type and the constraints considered. An
iterative scheme is then developed for each class of
problems to make design improvements. These are
usually called the scaling procedures. For optimal
design of trusses subjected to stress and displace-
ment constraints, the optimality conditions lead to
the conclusion that the strain energy density must
be uniform throughout the structure (Venkayya
1971). This criterion is then used to make design
improvements and obtain an optimal design. For
some truss structures, the optimality conditions are
interpreted to imply that the optimal design is
obtained when each member is fully-stressed under
at least one loading condition. Thus this condition
can be used to devise a numerical procedure to
obtain an optimal design. For more realistic
structural design problems, other optimality
criteria related to displacement, stability, natural
frequency, etc., have to be used simultaneously. In
these methods, the design change from one
iteration to another can be large, resulting in a
faster approach to a near optimal solution. The
main disadvantages of the methods are their lack of
generality (since the optimality criterion needs to
be derived for each class of problems) and
guarantee of convergence. Nevertheless, Grierson
and co-workers have extensively used optimality
criterion methods for design of steel frameworks
using commercially available sections (Grierson
and Lee, 1984, 1986 ; Chan et al. 1995).

(2) Branch and bound method (BBM)
a) Basic BBM

Branch and bound is perhaps the most widely
known and used method for discrete variable
optimization. The method was originally developed
for linear problems ; however, it has been applied
to all types of linear and nonlinear problems with
mixed variables. Many variations of the method
have been implemented. When used for linear
problems, the method can be implemented to
converge to a global minimum point. However, for
nonlinear problems, no such guarantee can be
given unless an exhaustive search is performed
which can be quite expensive. In this section, the
basic BBM method is explained, followed by some
of its variations that have been used for mixed
variable nonlinear optimization problems.

The BBM is basically an enumeration method in
which one systematically tries to reduce the
number of trials to reach the minimum point (that
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%=(0,3)
12| £=-30, g=45

Fig.1 Branching and Fathoming Process for the Example Problem

is why it is sometimes called an implicit enumera-
tion method). The concepts of branching, bounding
and fathoming are used to achieve these objectives.
To explain these concepts, consider the following
linear integer programming problem :

minimize f=—20x,—10x;

subject to  g1=—20x;— 101, +75<0
2,=12x;+72,—55<0
2:=25x;+10x,—90<0
zn€1{0,1,2}, 2,€{3,4,5,6}

Z; and x; cannot have non-integer values during
the solution process.

This example is the same as used by Huang and
Arora (1996 a) ; however, the available discrete
sets have been modified to reduce the size of
enumeration. Note that the derivatives of f with
respect to x; and x, are always negative for the
problem. Thus one can enumerate the discrete
points in the descending order of x; and z, to
ensure that the cost function value is always
increased when one of the variables is perturbed to
the next lower discrete value. Fig.1 shows all the
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possible designs for this problem. Since x; has three
and z, has four possible values, there are a total of
12 combinations of designs. In general, the number
of combinations would be (II-, ¢;) for » discrete
variables, each having g; possible values. Each of
the possible designs in Fig.1 is called a node. For
each node, the design variable values (x), the cost
function value (f) and the maximum constraint
violation (g) are shown. For example, Node 5
corresponds to x=(1, 5), f=—70, and g=5. From
each node, one or two nodes are branched out,
shown by arrows, where the function values are
evaluated. This is called branching. The dashed
arrows indicate alternate branching paths which
implies that the process of branching is not unique.
As the branching process continues, a feasible
design is obtained at Node 3. The cost function
value for this node becomes an upper bound for the
cost function values at other nodes. Any feasible or
infeasible node with a larger value for the cost
function need not be branched further because a
feasible design with a smaller value for the cost
function is not possible. For the present example, it
is seen that a feasible design with smaller value for
the cost function cannot be obtained after Node 3



or 4 ; these nodes are said to have fathomed ;i.e.,
reached their lowest point on the branch and no
further branching is necessary from them. This is
shown in Fig.1 by a break in the arrows. If there is
any constraint violation at a node and the cost
function value is smaller than the established upper
bound or an upper bound has not been established
yet, further branching is necessary, as for Nodes 1
and 2 for the present example. In Fig.1, Node 5
need not be branched further because the design is
infeasible with the cost function value higher than
the established upper bound of —80. It is seen that
Nodes 3 and 4 give two global minimum points for
the example with cost function value of —80. The
branch and bound method would find these
solutions in four trials (five trials if Node 5 is
branched from Node 2) instead of the 12 trials for
the complete enumeration.

b) BBM with Local Minimization

For optimization problems where the discrete
variables can have non-discrete values during the
solution process and all the functions are differenti-
able, one can take advantage of the local minimiza-
tion procedures to reduce the number of nodes. In
this BBM procedure, initially an optimum point is
obtained by treating all the discrete variables as
continuous. If the solution is discrete, the process is
terminated. If one of the variables does not have a
discrete value, then its value lies between two
discrete values;e.g., diy <z <dij+:. Now two
subproblems are defined, one with the constraint x;
<d;; and the other with 2; 2d;;,,. This process is
also called branching which is slightly different
from the one explained earlier for purely discrete
problems. It basically eliminates some portion of
the continuous feasible region which is not feasible
for the discrete problem. However, any of the
discrete feasible solutions is not eliminated. The
two subproblems are solved again, and the
optimum solutions are stored as nodes of the tree
containing optimum values for all the variables, the
cost function and the appropriate bounds on the
variables. This process of branching and solving
continuous problems is continued until a feasible
discrete solution is obtained. Once a feasible
discrete design is obtained, the cost function
corresponding to this solution becomes an upper
bound on the cost function for the subproblems
(nodes) to be solved later. The solutions that have
cost function values higher than the established
upper bound are eliminated from further consid-
eration (i.e., they are fathomed).

The foregoing process of branching and fathom-
ing is repeated from each of the unfathomed nodes.
The search for the optimum terminates when all

the nodes have been eliminated due to one of the
following reasons : (1) a discrete solution is found,
(2) no feasible continuous solution can be found, or
(3) a feasible solution is found but the cost function
value is higher than the established upper bound.
Since the BBM applied to mixed variable problems
requires solution of continuous subproblems, there
are two major drawbacks : (1) the number of
continuous subproblems to be solved becomes very
large when the number of design variables is large,
and (2) for problems with linked discrete variables,
the lack of differentiability of the problem
functions limits the use of continuous optimization
solvers. For structural optimization problems with
linked discrete design variables, the first drawback
can be overcome by replacing the original non-
linear problem with an approximate problem which
is more efficient to solve (Barthelemy and Haftka,
1993). The second drawback can be overcome by
transforming the problem to have differentiable
functions. These aspects are explained later in
Section 5.

There are many variations of the foregoing BBM
for nonlinear problems. Many enhancements
enable the method to create fewer subproblems
(nodes) without neglecting subproblems with
possible lower cost function values. BBMs with
enhancements can be found in Tseng, Wang and
Ling (1995), Huang and Arora (1995, 1996 a), and
Huang (1995).

¢) BBM with Multiple Branches

Until now, the BBM has only been used by very
few researchers when dealing with linked discrete
variables, such as the frame design problems using
available sections. With such applications in mind,
Hager and Balling (1988) have proposed a
modified BBM where multiple branches are
allowed from a node. The method uses the basic
concepts of branching, bounding and fathoming,
and solves continuous variable optimization prob-
lems at each node. The method has several levels of
nodes, the total number being equal to the number
of design variables for the problem. The first level
consists of a number of nodes where the first design
variable is assigned an allowable discrete value.
Thus the number of nodes at the first level is equal
to the number of allowable discrete values for
design variable 1. Treating all other variables as
continuous, each node is solved using a local
minimization procedure. The cost function value
for each node is noted, and from a node with the
smallest value for the cost function, many nodes
are branched. For each new node, the second
design variable is also assigned a value from the
available ones. Therefore, the number of new
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nodes created from a first level node is equal to the
number of allowable values for the second design
variable. Each new node is optimized keeping the
first two variables fixed and treating the remaining
variables as continuous. If any of the nodes
corresponds to an infeasible problem, it is
fathomed and no further branching is necessary
from there. Now all the nodes from the first and the
second level are searched for the smallest cost
function value. If this node is at level one, then it is
branched into many new nodes;for each new
node, the second variable is assigned an allowable
value. If the node to be branched is at level two,
then multiple nodes are branched from there, and
the third design variable is fixed to an allowable
value for each new node. This creates nodes at the
third level and the number of nodes branched from
that node is equal to the number of allowable
values for the third discrete design variable. Once
the new nodes are created, the local minimization
procedure is used to solve for the remaining
continuous variables and the cost function value for
the node.

The foregoing procedure of creating new nodes
and new levels is continued until a discrete feasible
solution is obtained. Note that this will occur when
some nodes are created at all the levels. The node
with a discrete feasible solution and the smallest
value for the cost function gives an upper bound for
all the remaining nodes at all the levels. Now all the
nodes at all levels that have cost function value
higher than the established upper bound are
fathomed. Branching is done from the unfathomed
nodes until all the remaining nodes are fathomed or
a discrete solution with the smaller cost function
value is obtained. The new discrete solution
establishes a better upper bound for the cost
function. At the end of the procedure, the best
discrete solution is taken as the optimum design.

The foregoing form of the BBM along with
linearization of the problem has been demons-
trated for steel frame optimization problems
(Hager and Balling, 1988). However, the method
can be applied to other discrete variable optimiza-
tion problems.

(3) Simulated annealing

Simulated annealing (SA) is a simple technique
that can be used to find global minimizer for
continuous-discrete-integer  variable nonlinear
programming problems (Aarts and Korst, 1989).
The approach does not require continuity or
differentiability of the problem functions because it
does not use any gradient or Hessian information.
The basic idea of the method is to generate random
points in a neighborhood of the current best point

and evaluate the problem functions. If the trial
point is infeasible, it is rejected right away. If the
trial point is feasible and the objective function
value is smaller than its current best value, then the
point is accepted, and the best objective function
value is updated. If the point is feasible but the
objective function value is higher than the best
value known thus far, then the question is whether
to accept or reject the point. The answer is that it is
sometimes accepted and sometimes rejected. The
acceptance is based on the value of the probability
density function of Bolzman-Gibbs distribution. If
this probability density function has value (this is’
called acceptance probability) greater than a
random number, then the trial point is accepted as
the best solution even if its objective function value
is higher than the known best value.

In computing the probability density function, a
parameter called the femperature is used. For the
optimization problem, this temperature can be the
target value for the objective function correspond-
ing to the global minimizer. Initially, a larger target
value is selected. As the trials progress, this target
value is reduced (this is called the cooling
schedule), and the process is terminated after a
fairly large number of trials.

The acceptance probability steadily decreases to
zero as the temperature is reduced. Thus in the
initial stages, the method is likely to accept worse
designs while in the final stages, the worse designs
are almost always rejected. This strategy avoids
getting trapped at local minimizers. The main
deficiencies of the method are the unknown rate at
which the target level is to be reduced, and
uncertainty in the total number of trials and in the
number of trials after which the target level needs
to be reduced.

The SA method has been demonstrated recently
for engineering problems with discrete variables.
Kincaid and Padula (1990) have used the method to
determine the arrangement of manufactured
members, having small errors in their lengths, for
the layout of a truss structure to minimize
distortion and member forces. Balling (1991) has
demonstrated the method for optimization of steel
frameworks with linked discrete variables. May
and Balling (1992) proposed a filtered simulated
annealing strategy. Based on the known gradient
information, this method can probabilistically filter
out many of the poorer candidates. An imple-
mentation of the simulated annealing algorithm can
also be found in Huang and Arora (1995, 1996 a)
and Huang (1995).

(4) Genetic algorithms
Like the simulated annealing methods, the
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genetic algorithms are also in the category of
stochastic search methods and use implicit enum-
eration procedures (Goldberg, 1989). Their philo-
sophical basis is in Darwin’s theory of survival of
the fittest. A set of design alternatives representing
a population in a given generation are allowed to
reproduce and cross among themselves, with bias
allocated to the most fit members of the popula-
tion. Combination of the most desirable character-
istics of mating members of the population results
in progenies that are more fit than their parents.
Thus, if a measure which indicates the fitness of a
generation is also the desired goal of a design
process, successive generations produce better
values of the objective function. An advantage of
this approach is that no gradient information is
needed, as for the SA method. Therefore,
differentiability requirements—needed in gradient
based methods—can be relaxed.

In a genetic algorithm, one starts with a set of
feasible designs randomly generated. From this set,
new and better designs are reproduced using the
fittest members of the set. Each design must be
represented by a finite length string. Usually binary
strings have been used for this purpose. The entire
process is similar to a mnatural population of
biological creatures, where successive generations
are conceived, born and raised until they are ready
to reproduce. Three operators are needed to
implement the algorithm : (1) reproduction ;(2)
crossover ;and (3) mutation.

Reproduction is an operator where an old string
is copied into the new population according to the
string’s fitness. Here fitness is defined according to
the objective function value. More highly fit strings
(those with smaller objective function values)
receive higher numbers of offspring. There are
many different strategies to implement this repro-
duction operator.

The next operator —crossover—corresponds to
allowing selected members of the population to
exchange characteristics of the design among
themselves. Crossover entails selection of starting
and ending positions on a pair of mating strings at
random, and simply exchanging the string of 0’s
and Us (for a binary string) between these
positions. This is akin to transfer of genetic
material in biological reproduction processes
facilitated by DNA strings.

Mutation is the third step in this genetic
refinement process, and is one that safeguards the
process from a complete premature loss of valuable
genetic material during reproduction and crossov-
er. In terms of a binary string, this step corresponds
to selection of a few members of the population,
determining a location on the strings at random,

and switching the O to 1 or vice versa.

The foregoing three steps are repeated for
successive generations of the population until no
further improvement in the fitness is attainable.
The member in this generation with the highest
level of fitness is the optimum design. Sugimoto
(1992) used a genetic algorithm for discrete
optimization of truss structures. An operator,
called growth, was proposed to improve the
reliability for some design problems. Lin and
Hajela (1992) implemented a genetic algorithm for
optimal design of structural systems with mixed
variables. In their approach, the constrained
minimization problem was transformed to an
unconstrained problem using the exterior penalty
function formulation. An implementation of the
genetic algorithm can also be found in Huang and
Arora (1995, 1996 a).

5. SOLUTION STRATEGIES FOR LD-
NLP PROBLEMS

Solution approaches for LD-NLP problems can
be divided into four broad categories based on how
the problem is formulated and solved. The first two
approaches use only one design variable for each
member of the structure, the third one uses mixed-
single and multiple design variable formulations,
and the fourth one uses a continuous variable
formulation along with a rounding-off procedure.
These four approaches are described in the
following subsections.

Most of the solution approaches use two phases
to obtain the final discrete solution. In the first
phase, the LD-NLP problem is somehow formu-
lated as a standard NLP problem where all the
variables are treated as continuous. This is also true
for many of the solution procedures for the MD-
NLP problems (Arora et al, 1994). The problem is
then solved using any one of the many available
NLP methods. In the second phase, the continuous
solution is manipulated using a discrete variable
optimization method to obtain the final solution.

The following issues related to the structural
optimization methods using available sections have
been addressed in the literature : (1) Does the
method require the table of available sections to be
re-arranged in any fashion? (2) Does the method
need to be re-derived if a set of new sections
become available? (3) Can the method impose all
the constraints dictated by the design code?
Comments will be made relative to these issues for
the methods reviewed.
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(1) Single variable approaches with approx-
imations

Single design variable formulation for optimiza-
tion of steel structures using available sections has
been the most popular approach in the literature.
For example, one of the section properties (e.g.,
area or moment of inertia) can be treated as a
continuous design variable for each member and
other properties are approximately linked to it.
This corresponds  to Single Design Variable
Formulation 1 of Section 3.(1). It is difficult to use
multiple properties, such the section area (A),

moments of inertia (J; and 7,) and section moduli

(Sz and S,) for each member, as independent
design variables. With such a formulation, it is
likely that the section area will reach its lower
bound to minimize the weight, and the section
modulus S; for a beam element will be driven
upward to satisfy the bending stress constraints.
This will result in a member that is not close to any
of the available sections.

Many researchers use section area as the sole
design variable (continuous) and approximate
other properties using the following relationships :

I;,1,S;, or S,=A" (1)
where 7; for each property is determined using a
curve fitting procedure. An advantage of this
approach is that the relationships represented in
Eq. (1) are continuously differentiable. Therefore
a discrete variable optimization method that uses
gradient or Hessian information can be used. There
are a few drawbacks of this approach, however : (1)
The approach cannot be used for applications
where cross-sectional dimensions and the prop-
erties not represented by Eqs. (1) are also needed,
such as for composite beams, and other applica-
tions where local buckling and member size
constraints need to be imposed explicitly. (2) The
approximation represented in Eq. (1) is not very
accurate for all sections because the number of
available sections is large and they vary in shape as
well as size. It is impossible to distinguish between
different available sections that have same or
nearly same values for the independent section
property. One may get around this dilemma to
some extent by confining the search to the
“economy sections” for beams and a similar sct for
columns. For such sections, the dependent section
properties increase monotonically with the section
area. This, however, implies that all the sections
available in the AISC tables cannot be used for
design. Also, in 3D frames where columns are
subjected to biaxial bending and axial force, it is
not possible to specify monotonic set for all the
needed properties. The limitation about the

accuracy of the relationships in Eqs. (1) can be
overcome to some extent by dividing the available
standard sections into several smaller groups. Each
group contains only the sections (selected from the
matrix 7) for which more accurate relationships of-
the form given in Eq. (1) can be developed for
various properties through a curve fitting proce-
dure.

Grierson and co-workers have extensively de-
veloped and demonstrated procedures for discrete
variable optimization based on the foregoing
philosophy. For example, Grierson and Lee (1984)
formulate the problem of optimal design of 2D
frameworks using the section area as the only
design variable. The moment of inertia and the
extreme fiber distance are related to the section
area through relationships of the type given in Eq.
(1). Database of available sections (wide flange,
tee and double angle) is extensively analyzed and

-divided into several data sets. For each data set, the

constants that relate moment of inertia and fiber
distance to the section area are calculated in such a
way to have more accurate relationship in Eqs. (1).
The members of the structure are divided into
three groups : axial force members, pure flexural
members, and combined axial-flexural members.
The data sets of the available sections are also
identified for each type of the member. These data
sets are re-arranged into selection tables in the
ascending order of the key member property-the
section area for each axial or axial- flexural
member, and moment of inertia for each flexural
member. The entire optimization procedure con-
sists of two phases. Phase I uses 3 iterations of a
continuous variable optimization method (based on
an optimality criterion) to obtain a good starting
point for Phase II. The available sections are not
assigned in this phase. However, as a result of the
partitioning of the available sections into data sets,
the solution at the end of Phase I is likely to be
quite close to a discrete solution. In Phase II, a
discrete solution is sought using a dual algorithm
(Fleury, 1979). A few drawbacks have been noted
for the developed procedure : (1) During Phase T1
where discrete sections are selected, large infeasi-
bility can occur due to the selection process. (2)
The available sections must be divided into suitable
economical groups and for which the analytical
relationships between the primary section property
and the secondary properties are accurate. This
implies that any new section must be analyzed for
inclusion in appropriate data sets. (3) The members
must be identified as axial, flexural and axial-
flexural.

Grierson and Lee (1986) extend their previous
work on discrete variable optimization of steel
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frames to include constraints under ultimate load
conditions. These constraints ensure adequate
safety against collapse. Grierson and Cameron
(1989) describe feature of a computer program
required for practical applications in design of steel
frameworks. Constraints on strength/stability of
members and stiffness of the structure are imposed.
Member buckling constraints are treated by
adjusting the allowable stress limits. The effective
length factors are automatically calculated for
buckling strength calculations. A two phase
procedure for optimal design of such structures
using available discrete sections is presented and
demonstrated for a 2D mill crane building
framework. In the first phase, a member-by-
member procedure is used to assign sections based
on the current analysis results only, and no formal
optimization is performed. This procedure is based
on approximations and heuristics, but it is very fast.
In the second phase, a continuous variable
optimization is performed using the section area as
the only design variable. The problem is linearized
_using Taylor’s expansions for all the constraints and
the cost function. The procedures developed
previously by Grierson and Lee (1984) are used to
relate moment of inertia and extreme fiber distance
to the section area. Also the available sections are
divided into several data sets, as explained
previously. The two phases are executed in
sequence until no changes occur in the weight of
the structure. Cameron, Xu and Grierson (1991)
‘have extended the previous work for discrete
variable optimization of 2D frameworks to design
of 3D frameworks.

Chan (1992), and Chan, Grierson and Sher-
bourne (1995) have developed a procedure for
optimal design of tall building steel frameworks
using available sections. The example used to
demonstrate the procedure consists of a 3D
unsymmetrical frame. Only the section area of
members is treated as a design variable ; all other
section properties are related to the area through
regression analyses. Members of the structure are
grouped together to reduce the total number of
design variables. The entire solution process,
consisting of several phases, is very nicely summa-
rized in a section called “Overall Design
Procedure” (Chan et al. 1995). Initially all mem-
bers are selected to be the largest allowable
sections. Explicit approximate expressions for the
two drift constraints (drift in two directions for 3D
frames) are obtained, assuming the member
internal forces to remain unchanged. Using these
expressions, the members are re-sized to satisfy the
constraints approximately. Analysis of the struc-
ture is then . performed to check the member

strength requirements. The lower limits on the
member sizes are adjusted to satisfy the strength
requirements. In the next phase, all the inter-story
drift constraints are considered, and a numerical
optimality criterion method is used to obtain a
continuous variable optimum solution. The Gauss-
Seidel iterations are used to solve for the Lagrange
multipliers for the constraints while imposing non-
negativity constraints on them. The last phase of
the solution process involves final discrete member
specification. After continuous variable optimum
solution is obtained, penalty on the structural
weight for each member to be specified a higher
available section is calculated. A few members that
have least penalty on the weight are assigned
discrete available sections, and continuous variable
optimization is performed again with the reduced
set of design variables. The procedure is continued
until all members have been assigned discrete
sections. This adaptive member selection proce-
dure works quite well and is similar to the one
proposed by Arora (1989) and demonstrated for
optimum design of truss structures.

Balling (1991) implemented a simulated anneal-
ing (SA) method for optimum design of 3D steel
frameworks using available sections. An unsym-
metric 3D 6-story frame subjected to 3 loading
conditions was considered as an example problem.
Members of the structure were divided into 11
groups to reduce the number of independent
variables. Section number from the AISC table was
used as the basic design variable for each group of
members. To reduce the number of analyses
required in SA, approximation concepts were used
to re-analyze the structure (Vanderplaats and
Salajegheh, 1989). In these approximations, the
nodal displacements, member end forces, and
effective length factors were approximated by a
first order Taylor’s series in terms of the reciprocal
section properties of the members (area, strong
and weak moment of inertia, and strong and weak
section moduli). Complete analysis required 44
seconds, approximate re-analysis 4.7 seconds, and
the initialization for approximate re-analysis (sensi-
tivity analysis) 324 seconds of CPU time. The
approximate re-analysis was used throughout the
SA iterations. The exact analysis was performed
for the final design to check its feasibility. The final
design was found to have acceptable level of
infeasibility. Two files containing tables of econo-
mical sections from the AISC table were prepared:
one for the columns and the other for girders.
These files were arranged according to the
decreasing section area. A member-by-member
search strategy based on random number genera-

tion was used to come up with a good initial design
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for the SA procedure. In this strategy the members
were allowed to change within 4 neighboring
sections. Approximate analysis procedure was used
in this phase as well to evaluate designs. In the
second phase, the SA strategy repeatedly gener-
ated candidate designs in a neighborhood of the
current design. These designs were generated by
randomly perturbing one of the 11 discrete
variables at a time. A cycle was defined to consist
of 11 candidate designs, The SA parameter,
temperature, was held constant while each of the
11 discrete variables was perturbed. The range of
perturbation of a discrete variable was between —2
and +2, and the perturbation was selected ran-
domly. Thus the candidate designs may increase or
decrease the total weight of the structure. If the
candidate design was infeasible while the current
design was either feasible or less infeasible, it was
rejected right away. The final solution for the
example frame was compared to the one obtained
with the lincarized branch and bound (LBB)
method of Hager and Balling (1988) which is
explained later in the paper. For small size of the
neighborhood, the LBB was more efficient than
the SA ; however, the cost function was higher with
LBB. The result was opposite with a larger size of
the neighborhoods ; actually the LBB became quite
inefficient.

May and Balling (1991, 1992) have observed that
the SA strategy generates many designs that are
very poor because they are quite heavy or
infeasible. Such designs should not be considered
for analysis and acceptance in SA. Therefore, they
have developed a filter for the SA strategy that
blocks many of the poor deigns. After a design is
generated, its “potential” is estimated. This
potential is calculated using candidate design’s
weight (which can be calculated without any
approximations) and the maximum constraint
value which is estimated using the approximate
analysis procedure. If the candidate is deemed
feasible and the frame weight is lighter, it is passed
through the filter for SA acceptance check.
Otherwise, a probability of passing through the
filter is calculated as exp(—C/S), where C is the
normalized potential for the member and S is the
filter size. The parameter C is calculated as ratio of
the increase in the weight of the candidate design
and a running average of the weight, and/or the
ratio of the maximum constraint value and a
running average for it. The filter size is calculated
based on a parameter P, (specified by the user) as
—1/In(P;). As P, is decreased, the filter size
decreases, thus more designs are blocked. The
candidate design is passed through the filter if this
calculated probability is larger than a random

number; otherwise the candidate is rejected and a
new candidate is generated. This strategy retains
the essence of the SA method where worse design
are occasionally passed through the filter. The new
method is shown to be more efficient than the
standard SA and slightly more efficient than the
LBB.

(2) Single variable approaches without

approximations ‘

Instead of using Eq. (1), the table containing
data for all the AISC sections can be used directly
in structural optimization. For example, the section
area A can be used as the sole discrete design
variable (Type 2) and, when structural analysis is
needed, the table can be searched to obtained
proper values of other section properties corres-
ponding to the current value of A. Therefore, the
mixed variable optimization for the steel structural
design problem becomes a more general form
represented in the problem LD-NLP in which other
properties are related to the sole design variable via
the matrix T This corresponds to the Single Design
Variable Formulation 2 of Section 3.(1). However,
this relationship (via matrix T) is not continuously
differentiable and hence a gradient-based method
cannot be used. Huang (1995) and Huang and
Arora (1996b) have used this approach during
Phase II of a solution process for optimization of
steel frames with available sections. The proce-
dure, explained later in the paper, uses a branch
and bound method during Phase II.

Another approach would be to use the available
section number (i.e., the row number of the matrix
T) as the integer design variable for each member
of the structure. This corresponds to the Single
Design Variable Formulation 3 of Section 3.(1).
Once the section number is specified, all its
properties can be obtained from the appropriate
row of the table and used in all the calculations.
Liebman, Khachaturian and Chanaratna (1981)
have used this approach for optimal design of steel
frames. The constrained optimization problem is
transformed to an unconstrained one using the
interior penalty functions. The unconstrained
problem is then solved using the integer gradient
direction method of Glankwahmdee et al. (1979).
Three example problems are solved : a reinforced
concrete beam and two framed structures. The
table of available sections needs to be re-arranged
such that the section areas are in an ascending
order. All the design code constraints can be
explicitly imposed. An initial feasible point is
needed to start the search process which may be
difficult to obtain in some applications (Elwakeil
and Arora, 1995). The method is quite simple to
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implement ; however, it can be quite time consum-
ing on the computer because integer gradient
evaluation as well as step size calculation can
require a large number of analyses. Also, the
penalty function approach to impose the con-
straints can be time consuming. :

For mixed variable optimization problems, Amir
and Hasegawa (1989) have also used an approach
that is quite similar to the one used by Liebman et
al. (1981). In their approach, any continuous
variable is also transformed to a discrete variable.
Some modifications of the previous approach are
suggested to improve the search process ; i.e., if the
process fails along the calculated discrete search
direction, then some neighborhood points are
searched for improved solutions. Three example
problems are solved : a hollow rectangular simply
supported beam, a reinforced concrete beam, and a
mill building structure. Weight is minimized in each
case, except for the reinforced concrete beam
where the cost is minimized. For the building
problem, available section number is chosen as
discrete design variable. The members of the
structure are divided into six groups, so there are
six design variables. All the available sections must
be re-arranged in an ascending order for the section
area. All /the design code constraints can be
imposed explicitly.

Two stochastic methods, simulated annealing
and genetic algorithm, can also be used to solve
problems with linked discrete variables, formulated
as LD-NLP. The methods are known to be slow ;
however, an advantage is that the gradients of
functions are not required. Therefore analytical
relationships (such as Eq. (1)) among the prop-
erties need not be provided and the matrix T (such
as Table 1) can be used directly. It is not necessary
to use any one of the properties as the only design
variable ; instead, an integer design variable (the
section number) can be used ;i.e., Single Design
Variable Formulation 3 is used. During the
solution process, values for all other properties are
obtained from the matrix T according to the integer
design variable which is determined by the
stochastic method. All the design code constraints
can be checked since all the section properties are
precisely known. In their pure form, these
approaches have not been used for design of steel
frames because they are extremely time consuming
when the number of design variables is large and
the number of available sections for each member
is large. The techniques, however, have been
combined with other methods to reduce the
computational burden. Such two phase approaches
using the SA and GA algorithms during Phase II,
are explained in Sections 5.(1) and 5.(3).

(3) Mixed single and multiple variable
approaches

Another approach to deal with dependent design
properties is to treat some of them as independent
design variables. For the planar steel frames, the
design variables could be the section area,
moments of inertia and section moduli. As noted
earlier, however, treating dependent variables as
independent design variables often results in an
impractical design.

Hager and Balling (1988) have developed a two
phase procedure for optimum design of planar steel
frames using multiple section properties as design
variables along with a branch and bound method ;
i.e., Multiple Design Variable Formulation 1 is
used. The procedure is demonstrated on a 3-bay, 8
story frame, adapted from the one used by
Liebman et al. (1981). The frame is subjected to
uniform vertical loads including the self weight and
a side load at each story. In Phase I of the
procedure, a continuous variable optimization
problem is formulated using the section area,
strong axis moment of inertia and section modulus
as the design variables. A hybrid-generalized
reduced gradient method is used to determine the
continuous optimum. It is noted that since the final
continuous solution will not be close to any of the
discrete sections, it will not be very useful. This
difficulty is mitigated by adding enveloping con-
straints to the continuous optimization problem.
Using all the “economy sections”, a convex hull is
constructed which essentially defines new linear
constraints for the problem, forcing the final
solution to be close to the available discrete
sections. In Phase I, a modified branch and bound
method (BBM), explained previously, is used to
determine the discrete solution. To reduce the size
of enumeration in BBM, Hager and Balling

- propose to define small neighborhoods consisting

of 3 or 4 sections around the continuous optimum
design for each member. During BBM, the
solution is searched only in these neighborhoods.
Even with this strategy, the number of trial designs
is quite large requiring enormous computational
effort for structural analysis. To overcome this
difficulty, the problem is linearized about the
continuous solution using the three design variables
of Phase 1. With this approach, the problem to be
solved in Phase II becomes a linear programming
(LP) problem, and so the method is called linear
branch and bound (LBB) method. As explained in
Section 4.(2), some members are assigned discrete
sections while others are represented by the
continuous variables. The resulting problem is
solved using the Simplex method of linear prog-
ramming. Then some more members are assigned
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discrete sections, and the procedure is continued
until all the members have been assigned available
sections. Another procedure is developed to
further improve efficiency of the BBM method by
specifying discrete sections to the members with
largest change in the weight at initial stages of the
search. This procedure substantially reduces the
computational times. The difficulty of infeasibility
of linearized problems during BBM is encountered
and a procedure to overcome it is discussed. It is
noted that all the design code constraints cannot be
-imposed with this procedure. due to the selection of
the linearization variables for the problem. The
approach, however, does not require the standard
sections to be ordered in any way, nor does it
require any approximate relationships between the
section properties.

Balling and Fonseca (1989) extend LBB strategy
of Hager and Balling (1988) to discrete variable
optimization of 3D steel frames. Five section
properties are used as design variables instead of
the three for 2D frames. They are : area, two
moments of inertia and two section moduli.

Three procedures have been recently developed
by Huang and Arora (1996 b) for design of planar
steel frames using the AISC standard sections. The
procedures consist of two phases. In Phase I,
multiple design variables (dimensions of the cross
section) are used and the problem is formulated as
a standard NLP;i.e., Multiple Design Variable
Formulation 2 of Section 3.(2) is used. In the first
strategy, an SOP method is first used to find a
continuous solution. A candidate section set (a
subset of the AISC table) for each member is
created based on the continuous solution. This is
done to reduce the candidate discrete designs for
Phase I1. In Phase II, a genetic algorithm (based on
Huang and Arora 1996 a) is used to solve the
discrete variable optimization problem. An integer
variable (the section number) is used as the sole
design variable for each steel member ;i.e., Single
Design Variable Approach 3 of Section 3.(1) is
used.

The second procedure is similar to the first one
except that simulated annealing (based on Huang
and Arora 1996 a) is used for discrete variable
optimization in Phase II.

In the third procedure, an SQP method is also
used to find a continuous solution for the four
design variable formulation, as for the foregoing
two procedures. Then a candidate section set is
created for each member such that the moment of
inertia, section area and section modulus are within
5% of the ones for the continuous solution. In
Phase II, the problem is formulated using the
moment of inertia as the sole discrete design

variable for a member ;i.c., Single Design Vari-
able Formulation 2 of Section 3.(1) is used.
Relationships of the form given in Eqs. (1) are used
at this stage. In these relationships, the values for
the constant 7; are calculated using the section
dimensions corresponding to the continuous solu-
tion of Phase I. The allowable discrete values for
the moment of inertia for each member are
specified by the selected set of sections for the
member. Each selected section set is arranged in
the ascending order of values for the moment of
inertia. The problem is now solved using a branch
and’ bound method (based on Huang and Arora
1996 a) where the discrete variables can have non-
discrete values during the solution process, as
explained in Section 4.(2). After each local
minimization, members are assigned discrete
sections from the selected set according to the
values of the moment of inertia. At the end of the
branch and bound method, when a discrete
solution has been obtained, the allowable section
set is updated based on the final values for the
moment of inertia, section modulus and the section
area of each member. Then, the BBM is repeated
to obtain a new discrete solution. The process is
continued until the solution cannot be improved
further. One drawback of this approach is that all
the design code constraints cannot be checked. A
remedy for this drawback would be to use SA or
GA during Phase II along with Single Design
Variable Formulation 2 of Section 3.(1).

(4) Rounding-off methods

The simplest and fastest way to obtain a discrete
solution is to round-off or round-up all of the
values of the design variables obtained at the
continuous optimum. The problem must be
formulated and solved with continuous design
variables, such as the Single Design Variable
Formulation 1 or the Multiple Design Variable
Formulation 2 of Section3. Then the optimum
design variables are rounded to their nearest
discrete values. The rounded-up solution often
produces a more conservative design, especially for
structural design problems. However, in some
cases, the resulting discrete solution may violate
some of the constraints.

Another approach would be to increase only
some variables to their upper discrete neighbors
and decreased others to their lower neighbors. The
main difficulty with this approach would be the
selection of the variables that can be increased or
the variables that can be decreased.

Huang and Arora (1995, 1996 a) describe a
dynamic rounding-up method which increases only
one variable to its upper discrete neighbor at a
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time. The selected variable is then fixed at the
discrete value and the problem is optimized again,
allowing other variables to change. This process is
repeated until all variables are selected and fixed to
discrete values. This method still does not guaran-
tee a feasible discrete solution but the cost function

value is usually smaller than a simple rounding-off

method.

Al-Saadoun and Arora (1989) have also pre-
sented an approach to optimize framed structures
using AISC sections. In their approach, four design
variables are chosen for each I-section-flange width
and thickness, height of the section and web
thickness. The problem is formulated as a con-
tinuous variable optimization problem to minimize
the weight. Thus Multiple Design Variable
Approach 2 is used. The problem is solved using a
standard nonlinear programming algorithm, such
as the SQP method. Once the final solution is
obtained, each member is selected from the
available ones using one of the following two
criteria : (1) selection based on optimum depth and
section modulus, and (2) selection based on
optimum section modulus and minimum area of
cross-section.

A similar approach is suggested in Arora (1989)
for optimal design of trusses. The discrete member
selection process is dynamic and works as follows :
Once a continuous solution is obtained, a member
that gives the least penalty for the cost function due
to discrete specification, is selected from the
available sections. The problem is then re-opti-
mized using the continuous variable method while
keeping the selected members as fixed. The
process is continued until all members have been
selected from available sections. The sensitivity of
the cost function to design variables is used to
calculate this penalty for the cost function. Chan et
al. (1995) also use a similar procedure for optimal
design of tall steel building frameworks. The Single
Design Variable Formulation 1 of Section 3.(1) is
used throughout. Initially, a continuous optimal
solution is obtained using an optimality criterion

method. Then, the dynamic rounding-up proce--

dure along with the optimality criterion approach
are used to obtain a discrete solution.

6. DISCUSSION AND CONCLUTIONS

This paper contains a review of optimization
methods for mixed variable nonlinear program-
ming problems with linked discrete variables.
Design of steel structures using commercially
available sections is one of the major application
areas where such problems are encountered. These
problems are more difficult to solve due to a large

number of design variables and the large CPU time
required for many structural analyses. While it is
difficult to recommend any one method over the
others, procedures with the following restrictions
are often acceptable : (1) the solution found may
not be a true optimal solution, (2) small constraint
violation is acceptable, (3) user may have to spend
extra effort to simplify the analysis part, (4) the
method may be suitable for only a restricted class
of problems, and (5) large CPU time may be
needed.

There are a few approaches that use the section
number (an integer variable) as the sole design
variable for each member. These are : integer
gradient method, simulated annealing and genetic
algorithms. These are the most general approaches
because all the design code constraints can be
imposed explicitly. However, they are also the
most time consuming ones because they require a
very large number of structural analyses. Approx-
imations can be used to speed-up the computation-
al process but that will loose robustness of the
methods. Thus the approaches appear to be
suitable for small scale problems only. One
advantage of the approaches is that they are highly
suitable for parallel computers which may alleviate
the limitation of large CPU times.

Many approaches use two phases in their
solution process. In Phase I, the problem is
formulated and treated as a continuous variable
problem. Single or multiple design variables for
each member are possible in these formulations.
Depending on the formulation, it may or may not
be possible to impose all the design code con-
straints. The formulation in this phase results into a
standard NLP problem which can be solved using
any one of the many available algorithms. In Phase
11, the solution from Phase I is some how used to
define a manageable discrete variable problem.
This has been usually done by restricting the
number of allowable discrete sections for each
member. The problem is then solved using one of
the discrete variable optimization methods, such as
the branch and bound method, simulated anneal-
ing, genetic algorithms, etc.

Another promising approach is to use a dynamic
member assignment process while performing
several continuous variable optimizations. In such
a process, the problem is formulated -with con-
tinuous design variables, such the section dimen-
sions. All the design code constraints can be
imposed in such a formulation. The problem is
solved using a standard NLP algorithm. Then,
some members are assigned available sections that
give least penalty for the cost function. The
problem is re-optimized for the remaining design
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variables using the standard NLP algorithm.The
process is thus repeated until all the members have
been assigned available sections.

In conclusion, it appears that no one approach
can be declared as ideal at the present time for all
practical applications. Research needs to  be
continued to develop and evaluate computational
strategies that are effective for optimal design of
this important class of problems.
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