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Time-domain modeling of bridge deck flutter is examined. The frequency dependent aerodynamic self-
excited forces acting on a bridge deck are approximated in the Laplace domain by rational functions. Two
matrix formulations of the rational function approximation, namely least-squares and minimum-state, are
applied to aerodynamic data experimentally or theoretically obtained for various bridge decks. The
precision of the approximations and the comparison of the critical wind speed computation by the
conventional method and the proposed method are presented.
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1. INTRODUCTION

The rapid development of technology made
construction of bridges with the main span beyond
2000m possible. In design of very long bridges,
wind induced phenomena become increasingly
important; the critical condition is due to the flutter
instability similar to one encountered in the
aerospace structures. This paper is primarily
devoted to derive a time-domain description of
flutter of a bridge deck.

Flutter problem for airplane wings was solved by
Theodorsen " in 1930s. The solution was derived
from potential flow theory and describes the
unsteady aerodynamic forces in terms of frequency
dependent function. Roger ? proposed the modeling
method which can transform the aeroelastic
equation of motion of an airplane into time domain.
The method approximates aerodynamic force
coefficients by rational functions of Laplace
variable. The size of the equation after
approximation is extended, but the overall analysis
is greatly simplified.

The augmented system, in Roger’s formulation,
have relatively large number of added aerodynamic
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states and modifications of his method were
proposed by Dunn ” and Karpel *’ Further
improvement of approximation performance was
achieved by Tiffany et al. ¥ by optimization of both
linear and nonlinear coefficients of the
approximating functions.

Most of constructed bridges have bluff girders and
hence Theodorsen’s approach results in significant
modeling error. Scanlan ® suggested a method
which expresses self-excited aerodynamic forces
with use of so-called flurter derivatives which can
be determined for each type of a bridge deck by a
specially designed wind tunnel experiment. The
resulting equation of motion contains the flutter
derivatives that are functions of reduced frequency,
thus, the conventional analysis requires iterative
search for a critical flutter wind speed. Moreover,
material and geometrical nonlinearities in the
structural system cannot be incorporated into the
analysis and the dependence on reduced frequency
limits the design of vibration suppression system to
frequency domain methods.

Applicability of the rational modeling approach to
the bridge flutter problem has not been examined in
the field of bridge aerodynamics. This paper is



devoted to derive a state-space realization of the
flutter equation of motion of a bridge deck.

The first part (Sec. 2) discusses the classical
coupled flutter. The model for analytical analysis is
simplified to the two-degree-of-freedom system.
The unsteady aerodynamic forces for bluff (Sec.
2.1) and streamlined bridge deck cross-section (Sec.
2.2) are formulated and the governing equations of
motion is derived. In Sec. 3 the concept of rational
function approximation (RFA) is presented. The
matrix formulations of RFA and resulting state-
space equations are discussed in Sec. 4. Finally, the
modeling method is applied to theoretically
determined flutter derivatives and to experimentally
obtained aerodynamic data of various bridge decks
(Sec. 5).

2. EQUATION OF FLUTTER OF
A BRIDGE DECK

Flutter is a self-excited oscillation. A structural
system by means of its deflections and their time
derivatives taps off energy from the wind flow. The
critical flutter condition is the theoretical dividing
line between the decaying and divergent self-excited
motion with the certain speed of an oncoming
smooth flow. The motion of the system subjected to
an initial disturbance will either be damped or will
grow indefinitely. The state of the system between
the decaying and divergent motion, namely,
sustained sinusoidal oscillation, is recognized as the
critical flutter condition. The wind speed associated
with the critical flutter condition will be referred
to as flutter wind speed.

Fig.1 2DOF model of a bridge deck

A bridge deck (Fig. 1) is assumed to have two
degrees-of-freedom: bending displacement, &, and
torsional displacement, ¢ . The modes will be called
heaving and pitching, respectively. The equation of
motion is:

mh+cyh+k,h=-L 0
I d+c,G+kyoa=M"
where a unit span of the system has mass m and
mass moment of inertia is /,, vertical and torsional
restoring forces are characterized by spring
constants k, and k,, and coefficients of viscous
damping are ¢, and ¢,. Forces L and M represent
the aerodynamic lift and moment about the rotation
axis per unit span. The above equation describes a
classical coupled bending-torsional flutter. Coupling
between modes is due to the right-hand side of (1),
i.e., unsteady aerodynamic forces. This coupling is
the main reason for a very quick amplitude build up
after the occurrence of the flutter condition, and it
ultimately leads to total collapse of a bridge.

(1) Aerodynamic Lift and Moment on a Bluff
Bridge Deck

Flutter describes the complex structure-fluid
interaction and practically in all cases involves non-
linear aerodynamics. However, it has been possible
to treat the problem successfully by linear analytical
approaches, mainly because: the supporting
structure is usually treatable as linearly elastic and
its action dominates the form of the response, and
because the flutter condition may be treated as
having only small amplitudes.

The expressions for L and M for not "streamlined"
bridge deck have not been possible to develop
starting from basic fluid-flow principles. However,
it has been shown by Scanlan ® that for small
oscillations the self-excited lift and moment on a
bluff body may be treated as linear in the structural
displacement and rotation and their first two
derivatives, and that it is possible to measure the
aerodynamic coefficients by means of wind tunnel
tests. The aerodynamic coefficients are determined
as functions of the reduced frequency K.
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where p is air density, U is the uniform approach
velocity of the wind, B is deck width, and reduced
frequency K is

k=22 3)



A circular frequency of oscillation is denoted by @.
The coefficients H,' and A, (i=1,2,3,4) are non-
dimensional functions of K. Inserting (2) into (1)
and rewriting it in the matrix form yields

. . B .
Mg+Cq+Kqg= UVleq +V,Qqq, 4)

where the vector of unknowns q is selected as
a=[l%p o, (5)

and is of size n. Coefficient matrices in (4) are
defined as follows:

mB 0 2&,00,mB 0
M= , C= ;
0 1, 0 28,01y

K= wmB 0 V. - -0.5pU*B 0
0o ol | 0 0.5pU° B>

0, - 2KH, 2K>H, \= 2K,H, 2K,H,
| * * b - * ® |

2K?A, 2KZA, 2K,A 2K,A
(6)

Uncoupled natural frequencies of heaving and
pitching mode are denoted by ®, and w,, and
damping ratios are &,, &,, respectively. Since the
flutter derivatives are obtained from the wind tunnel
tests for specified values of the reduced frequency,
they are not explicit functions of K. The coefficients
of matrices Q, and Q, are determined for the
selected set {K,}, and are available in the form of
tabular data.

(2) Aerodynamic Lift and Moment on
a Streamlined Bridge Deck

Aeroelastic behavior of a streamlined bridge deck
may be assumed to be similar to a thin airfoil. The
theoretical description of unsteady aerodynamic
forces on an elasticity supported thin plate was
derived by Theodorsen . The expressions for L and
M are linear in & and ¢, and their first and second
derivatives, i.e.,

L=mpb*{i+Uc}+ 27tpUbC(k){/z + Uoz+-€~o'z}

M= npb3{—£2]-d—%d} + npUbZC(k){/z +Ua +_§d}
(7

where b is the half-chord of the airfoil and C(k) is
the complex function known as Theodorsen's

circulatory function. The terms in A and & in
equation (7) are important in aeronautical
applications, but in wind aerodynamic problems
they are negligible, and are therefore omitted. Then,
equation (7) can be transformed into the form of (2).
The coefficients H and A, (i=1,2,3,4) ‘are now
determined analytically and are found to be:

s 1 2F . Inm 2G
H =20 mi=-Zlisre 22
YT Tk 2 Sk( k)
% & 2
Hz:l.ZZE[P__’EQ} H4=_l.~.”£,
T8k 2 4k ®
A =L 1E Agz_’_._”_@ F+£}

8 & 16 2k k
A;:L%(F_KQ} A;:_lfﬁ,
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where k=Bw/(2U). F and G denote the real and
imaginary parts of Theodorsen's function,

H{ (k)

Cthy=Fk)+iGlh) = ————5—.
HE (k) + H2 (k)

&)

Hf(k) is a combination of Bessel functions of the

first J, and second Y, kinds,
H (ky=J,-i¥,, n=0,1. (10)

The equation of motion of a flexible bridge with

the aerodynamic forces determined by Theodorsen’s
approach can be written in the form of equation (4).

| Select wind speed U |a—
v
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_ v
l_l)etennine flutter derivatives H;*, Ap* }

v

l Complex eigenvalue analysis ]

Compute natural frequncy A
and damping ration &
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\\//
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E_, —0 q No
S /
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lDetermination of flutter wind speed

Fig.2 Algorithm for computation of critical flutter wind speed
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(3) Solution for flutter critical wind speed

Since the equation of motion of flutter (1) has the
frequency dependent components in the terms
describing unsteady aerodynamic forces (2), the
solution for the critical flutter wind speed has to be
done in an iterative way. The algorithm for
conventional determination of critical flutter wind
speed is presented in Fig. 2.

3. RATIONAL FUNCTION APPROXIMA-
TION TO UNSTEADY AERODYNAMIC
FORCES

The notation of the flutter equation (4) can be
further simplified by combining matrices Q, and

Q, into the complex form,

Q- [21@};1}{ +i2K,2H, 2K,*H; +i2K, H;

2K, 2A; +i2K,2A] 2K,2A; +i2K,2A; |
(an
Thus, the equation of motion becomes
Mg+Cg+Kq=V,Qq . (12)

The tabular data which describe the unsteady

aerodynamics is now represented by matrix Q.
Taking Laplace transforms in equation (12) with

assumption of zero initial conditions gives

(Ms* +Cs+K)L(q)=V,QL(g), (13)

where L denotes Laplace operator.

Approximation of unsteady aerodynamic forces as
rational functions of Laplace variable allows the
aeroelastic equation of motion to be cast in a linear
time invariant state-space realization. The most
common form of the approximating functions used
currently in aeronautics for each generalized force
coefficient Q, of Q is a rational function of the
nondimensional Laplace variable p:

n

A 1
Q,:,'([?) Z(AO)U +(Al),'jp+2(A(’+l),-j
f=1

—— 14
Py (14)

where the hat over Q; denotes approximation and

p=§s=iK (15)

The partial fractions, A ,, /(p+4,), are commonly
called lag terms, because each represents a transfer
function in which the output "lags" the input and

permits an approximation of the time delays
inherent in unsteady aerodynamics. The coefficients
of the partial fractions A, are referred as lag
coefficients. Addition of each partial fraction results
in introducing into the state-space realization,
obtained through rational modeling, new states,
referred as aerodynamic states. The number of
partial fractions is denoted by », and this number is
found as a compromise between the precision of the
approximation and the size of aerodynamic
dimension. Aerodynamic dimension is defined as a
number of newly added aerodynamic states.

In view of (15) the approximation is performed
only for oscillatory motion since p is purely
imaginary. In order to obtain solutions on the
Laplace domain for both growing and decaying
motion it is necessary to express the forces as a
function of s for the entire complex s-plane, or
equivalently for the nondimensionalized complex
p-plane. To overcome this, the concept of analytic
continuation is often used *, which justifies
extending these functions, to the entire complex
plane by finding analytic functions which agree with
the aerodynamic forcing functions at all values of
frequencies. However, there are only a finite
number of frequencies at which tabular data are
available; hence, this process is at best an
approximate analytic continuation into the region
near the portion of the axis containing the tabular
data. Since flutter phenomena occurs for points in
the complex s-plane which lie along the iw-axis,
approximations into the region near the axis are
sufficient for most studies.

Formula (14) assumes approximation of each
element of Q independently, and therefore imposes
separate selection of the lag coefficients for each
Q. However, such approach results in unnecessary
big state-space realizations and significantly
increases computational burdens. More convenient
handling of approximation can be obtained by
application of selected matrix formulations of
RFEA’s.

4. MATRIX FORMULATIONS OF
RATIONAL FUNCTION
APPROXIMATION

There are several variations of the matrix form of
the rational function approximations (RFA’s) for the
unsteady aerodynamic force coefficients. Two of
them, namely the least-squares and minimum state
formulation, are considered. Each matrix
formulation results in different aerodynamic state
vectors. ‘



(1) Least-Squares (LS) RFA Formulation

Roger ? and, later Abel ”, formulated the rational
function approximation so as to use the same
denominator coefficients A, for all the elements Q.
of the matrix @ in order to reduce the number of
aerodynamic states resulting in state-space. The
above condition allows the "per element"
expressions of (14) to be valid for the whole matrix

Q:

ne
~ 1
Qr=Ag+A p+ Y Au YN
=1

+A, (16)

Each matrix in (16) is square, with dimensions nxn
(n is the dimension of the vector of unknowns). To
derive -state-space representation, equation (16) is
inserted into Laplace domain equation of motion
(13) ie.,

(Ms2+cs+K)L(q)=
| .37

VelAg+A p+ > A, —— | L(q)
£| Ao T Ay Z, (+]p+2.,/

If the aerodynamic states are defined by

B )=~ L i), (18)

+ 2,
the Laplace domain equations becomes

(Ms?+Cs+K)L(q) =

\A [AOL(q) +A, pL{qQ)+ 2 Ay, L(Xap)J.( 19a,b)

i=]

L(Xa,)p+L(Xa,; )4, = L(g)

Thus, taking the inverse Laplace transforms in
(19) gives time domain equations of the form:

Mg+Cq+Kq=

B , S
ViApa+ VA, q+V; ) Ay xa, (20ab)

=1

gf(a,, + leaf =4q

Equation (20) is not dependent on reduced
frequency K and represents a linear time invariant
system. The second equation, i.e. equation (20b)
gives the mathematical description of newly
introduced aerodynamic states. They are governed
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by first order differential equations with vertical and
torsional displacements considered as inputs. Each
aerodynamic vector xa, is of the same size as vector
q. The aerodynamic states can be looked as states
which model the air behavior of the incoming flow
around the bridge deck.

A state-space realization of equation (20) can be
selected as:

4q -m7¢, -M7K, M'V1I M7V ([ 4
q I 0 0 0 q
X =] 0 Ug-a, =Upar - 0 Xa
Xa, 0 %AA”‘ " 0 - %.,1"’ 1| %,

@n

were C, =C-(B/U)V,A, and K,=K-V,A, are
the bridge deck total damping and stiffness,
respectively. Since A,,, is of the size n, there are
exactly n states for each ¢=1,...,n,. This implies that
the number of added aerodynamic states
(aerodynamic dimension) for state-space realization
of the least-squares RFA formulation is

(22)

n,=n-n .

(2) Minimum State (MS) RFA Formulation

In reference ¥, Karpel suggested a method in order
to find a minimal augmented state vector, the
process of finding aerodynamic approximations and
the determining the state-space equations should be
reversed.

The derivation starts with the general form of the
state-space equation defined by

= 1 0 0 q
0 U/ BE (U/B)R || Xa
(23)

r} -M7[C-(B/UV,A,| -M[K-V,A] M7'V,D r}

where D and E are rectangular matrices of size
nxn, and n, xn respectively, and R is a diagonal
matrix of the form

R=|: . . 24)

Thus, the aerodynamic approximations which
satisfies equations (23) and (24) results in the
formuta

Q(»=Ao+A, p+D(PI-R)'E . 25)



Rewriting Eq. (25) for a single element of Q gives:

Qp); -<A0>,,+<Al>,,p+2 By 20)

A’l

Since R is of dimension n, xn, the aerodynamic
dimension for the minimum-state RFA formulation
is:
=n, . 1))

ny

For each additional lag term the size of the resulting
state-space realization is bigger only by one
aerodynamic state. Thus, introduction of lager
number of lag terms does not increase the state-
space realization significantly.

(3) Multilevel Optimization: Linear and
Nonlinear ’

Minimization of approximation errors can be
achieved by increasing the number of lag term, but
as shown in previous sections, it adversely increases
the number of equations required to define the
aerodynamic system. Improvement can also be
obtained by reducing the frequency range over
which the fits are required, but this narrows the
applicability of the approximation. The additional
improvements may be gained by an optimization of
the lag coefficients.

From (14) it is clearly seen that the coefficients
(Ao);s (A1) and (Asy), may be found through a
linear optnmxzatmn e.g., 'in the least-squares sense,
but the lag coefficients must be searched via a
nonlinear optimization method. Determination of
parameters of approximation functions (16) and (25)
is divided into two parts: optimization of
coefficients (A, )y Gi=lem m= 0,...,n, +1) and
search for 4,. Each process requires a multxlevel
optimization in the sense that closed form linear
least-squares solution for linear parameters is
performed inside an iterative search for parameters
that enter the problem in a nonlinear fashion. In
edition, each method requires that the characteristic
roots of the system matrix corresponding to the
aerodynamic states are stable.

a) Linear optimization

To determine the linear parameters in the RFA's, a
measure of error between the approximating curve
and the actual tabular data for each aerodynamic
force element is defined by

Qs 6k, - Q; (,)

£, == s

i Mij

2

(28)
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where

2}’

and { kK, } is a set of reduced frequencies for which
tabular data are available.

Each term in the sum in (28) is a measure of
relative error, if the maximum magnitude of
Q,;(ik,) is greater then 1, but is an absolute error
for magnitudes less then 1. This error function
essentially normalizes the aerodynamic data prior to
the nonlinear optimization.

Since the coefficients (A,), are used as design
variables and (28) satisfies the minimum condition,
all partial derivatives with respect to each design
variable must be 0, that is,

M = max {]’NQ@/'("K”)

=0 (f()r m=0,-~-,n,+l) (29)

Then, the resulting system of equations is linear.
Linear algebraic methods may be employed to
determine the exact optimal solution.
b) Nonlinear optimization

The technique employed herein. to optimize 4, is
a nongradient method developed by Nelder and
Mead. In this application the nongradient optimizer
has been found to be numerically stable and to
possess good convergence properties. The nonlinear
parameters are selected so as to reduce the total
approximation error,

= \ zj z,’w’:f Ej -

The weighting factors are used to force some of
the elements to have more priority than others in
determining the lag coefficients.
¢) Side constrains for nonlinear optimization

Since the newly introduced states are governed by
first order differential equations with lags terms as a
coefficients (20), they must be bigger than O, in
order to ensure system stability. Also, it is desired to
restrict the range of variation to that in the
neighborhood of the range of frequencies over
which tabular data are available, e.g.,

(30)

0<L <A <U,

(for ¢=1,..

), @G
where 1, and U, denote, respectively, lower and
upper limit imposed on ¢-th lag coefficient. These
side constraints are enforced by an inverse

sinusoidal transformation of the design space



[ L, U] onto the real line segment [-1,+1]. The
relationship between them is:

U, +L,

5 (32)

u,-L, . =&
A= ”2 ”sm(—z—zy)+

where

—]SZ(/ <1.

This transformation ensures that the side constraints
are always satisfied.

5. APPLICATION OF RATIONAL
FUNCTION APPROXIMATIONS

The unsteady aerodynamic forces of various
bridge girders were approximated by the least-
squares and minimum-state RFA formulation.
Approximations were conducted for the number of
lag terms from [ to 6. In both formulations the
weighting factors in the total approximation error
(30) were chosen to be 1.0, and the fits were done
over the entire frequency range for all elements.
The approximations were performed through linear
and nonlinear constrained optimization.

The following results are presented only for the
number of lags equal to 1, 2 and 3, since it was
found that for all the cases such size of the
approximation function provides sufficient precision
of the fit. The increase of lags beyond 3 reduces the
approximation error, however, the computation
burden is considerably increased. Especially, the
nonlinear optimization of lags becomes troublesome
since it requires careful selection of its initial values.

The aim of this simulations is to determine the
necessary size of the approximating functions for
given cross sections and to evaluate a more
convenient RFA formulation.

(1) Approximations of Aerodynamic Forces
of Various Bridge Decks
The approximations were performed on the
aerodynamic data, obtained form experiment, of the
following types of girders: flat box, bluff box,
conventional truss, truss with vertical stabilizer and

439 m,

Fig.3 Flat box cross-section proposed for Akashi Bridge

central barrier, flat and bluff rectangular cross
section. The RFA’s were also applied to
theoretically determined flutter derivatives of
streamlined girder. The complete results of the
approximations are presented in reference ¥.

a) Flat and bluff box girder

The geometry of a flat box cross-section is shown in
Fig. 3. A bluff box had the analogical shape with
depth of 8.07m. Both cross sections were proposed
for Akashi Kaikyo Bridge and tested in wind tunnel.
The unsteady aerodynamic data is presented by
Fujino, Iwamoto, et al. in *. The flutter derivatives
were determined for wind angle of attack 0 and 5
degree for the flat box girder, and 0, 3 degree for the
bluff box section. The sets of reduced frequencies
was selected as { K} = {0.360, 0.389, 0.428, 0.469,
0.522, 0.590, 0.681, 0.791, 0.960} for the flutter

0.9 O tabular data
O ~-—--LS (1 lag)
r v | — - - LS (2lags)
0.8 = R LS (3 lags)
i Oy :
< */
£ la——\o .
8 0Oz
= 0
= - /oy 4
N e,
L e ]
/7 Oy
0.4 ...
g ;o i
0.3L , . L
0.035 0.0525 0.07 0.0875
real part
a) Least-squares RFA formulation
0.9 @] tabular data
O.N T~~~ MS (1 lag)
i N = - - MS (2 lags)
08 il o MS (3 lags)

imaginary part

0.5 | b

0.4

03l L 1
0.035 0.0525 0.07 0.0875
real part

a) Minimum state RFA formulation

Fig.4 Approximation of pitching moment due to heaving mode,
Q,,, of flat box girder with different number of lag terms
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‘derivatives associated with heaving mode, and
{K,} = {0.36, 0.39, 0.427, 0.470, 0.523, 0.589,
0.676, 0.797, 0.966} for the flutter derivatives
associated with pitching mode. Some of the results
of the approximations by least-squares (LS) RFA
formulation and the minimum-state (MS) method
are shown in Fig. 4. For this girder approximation
of pitching moment due to heaving mode was the
most difficult.

Approximation by the least squares and minimum
state RFA formulation gives similar results with
respect to the number of lag terms in the
approximation functions. It was found that satisfac-
tory approximation precision is obtained by using
two lag coefficients.

b) Truss girder

The flutter derivatives of a conventional truss
cross section (Fig. 5) and its modification with
vertical stabilizer and center barrier, selected for
Akashi Kaikyo Bridge, were obtained by Honshu

3550m
=]
~~~f—>"{'““ it S i Nusotir S S 2
l -
g
<
<
)
K e | HiLY
10)

Fig.5 Truss cross-section proposed for Akashi Bridge

Shikoku Bridge Authority '”. The flutter derivatives
were determined for both sections for the wind
angle of attack 0 and 3 degrees.

0.4
o O  tabular data
| ~ - —--MS (1lag)
D — - - MS (2 lags)
0.3 L MS (3 lags)
5 L ‘o )
f=¥ Y ‘. :
202 = O
R RS
o0 N N
.g. i -Q“i f“%‘\ ]
0.1 . ; O\-% S
" Z St ~
o Og .
0.0 L [ l
-0.0188 -0.0125 -0.0062 0

real part

a) For wind angle of attack 0 degree

T T O tabular data
B ; O — - —--MS (1 lag)
0.30 .. — - -MS (2 lags)
DU EEEEEEEEE MS (3 lags)
5 a0
20.22 N
g S o
£ - X 4
& SN}
E0.15 AN .
; O .
7 SN
|- O\ -
Qi X\
0.08 |- R N\
i i i ] i
-0.015 -0.0075 0 0.0075
real part

b) For wind angle of attack 3 degree

Fig.6 Approximation of pitching moment due to heaving mode,
Q,,, of the truss girder by MS RFA

' O  tabular data
" Oy — = MS (1 lag)
0.25 “ | — - -MS (2lags)
S | MS (3 lags)
g \\G
2019 N _
< N
. NN
Eo13 A KON
; s
i verticql ; % i
0.06 ... Stabitizer %_
1 1 i i i
-0.08 -0.06 -0.04 -0.02 0
real part

a) Approximation of pitching moment due to heaving, Q,,

0.01 . . I . l
- A
- \@ |
.0 é;\(g\ : N \
). _@/ .............. S N \ ol |
5 L \Q N vertical |
=% ; % stabilizér
2001 b N
£ ; \ ; \
%D H O |
B O  tabular data
002 — . — .- MS (1lag) e
— ~ - MS (2 lags) .
-------- MS (3 lags) 1
-0.03L1 1 I | 1 I ! |
0.225 0.2625 0.3 0.3375

real part

b) Approximation of pitching moment due to pitching, Q.

Fig.7 Approximation of the truss girder with vertical stabilizer
by MS RFA
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The approximation of pitching moment due to
heaving mode for the case of conventional truss
girder (Fig. 6a) was the most difficult component of
the aerodynamic force to approximate. The
approximation error of this section with angle of
attack 3 degree (Fig. 6b) was found to be larger.

The addition of vertical stabilizer and central
barrier in the truss section significantly changes the
distribution of the flutter derivatives data. The most
difficult component of the forces, in this case, was
found to be pitching moment due to pitching mode
(Fig. 7b), while pitching moment due to heaving
mode (Fig. 7a) could be easily approximated with
one lag coefficient.

Figures 6 and 7 show differences in the
agreement between the experimental data and the
approximations. Since the approximating function
consists of linear part, a,+a,p (a,a, - real values),
and a set of hyperbolic function, a,,/(p+ 4,) (a,.,
Ay~ real values), it can easily perform the
approximation if data are distributed along line, like
in Fig. 7a, or along the curve with a curvature of a
constant sign (Fig. 4). If the data is such that it
should be represented by a curve with inflection
point, it is necessary to increase the number of lag
terms in the approximation function. The linear
coefficients of the approximation function, A, (i
=12,..), are determined by least squares
optimization, thus, concentration of experimental
points in one region (e.g., Fig. 6) causes that the
approximation provides poor fit in the other regions.
The approximation given in Fig. 6 and 7b could be
improved by limiting the data for RFA’s in the
region where the data are concentrated or by
introducing weightings which would increase the
importance of the regions with small number of
experimental points.

In general, the approximation of conventional
truss section and truss with vertical stabilizer can be
sufficiently represented by RFA’s with three lag
coefficients in the approximation functions. There
are no significant difference in the approximation
error of the least squares and minimum states RFA
formulation with respect to a number of lag
coefficients.
¢) Rectangular cross section

Rectangular cross sections with the ratios of width
to depth 5 and 8 were experimentally tested by
Matsumoto et al. '". The rational approximations of

-pitching moment due to heaving mode by the
minimum state RFA formulation are presented in
Fig. 8. For the section with the ratio 5 the
satisfactory precision of the fit was achieved by
using two or three lag terms in the approximating
functions. However, the approximation of the

aerodynamic forces of the section with ratio 8 (Fig.
8b) was difficult to obtain due to scattered character
of data and limited amount of points.
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Fig.8 Approximation of pitching moment due to heaving mode,
Q,,. of the rectangular cross section by MS RFA

d) Streamlined girder

A streamlined bridge cross-section is assumed to
be a symmetric “airfoil”. The flutter derivatives for
this cross-section were obtained by analytical
method (Sec. 2.2) for the same sets of reduced
frequencies { K} as for the flat box section (Sec.
5.1a). The results of the RFA by LS and MS
formulations are shown in Fig. 9. The coefficients
of the approximation function for MS formulation
were found to be:

I0IS



0.3354 0.8738 0.7989 -0.1875

_[3.4691 3.2670 -0.0145 0.0782
T10.8526 0.8641] -0.2304 0.2595]

4,=0.1912, 1, =0.7477.

{1.3043 3.53341\ \:3.3842 2.3576]
0= O Y s

The results indicate that all the components of Q
can be sufficiently approximated with only one lag
term in the approximation functions. In that case the
overall approximation error (30) is small, but the fit
precision in the isolated points of {K,} may be
poor. Addition of one more lag term guarantees high
approximation precision for all the range of the
reduced frequencies.
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Fig.9 Approximation of pitching moment due to heaving mode,

Q,,, of streamlined girder with different number of lag terms
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(2) Comparison of Least-Squares and

Minimum-State RFA Formulations
The results of approximations show the similar
fitting abilities of LS and MS RFA formulations due
to different number of lag terms. However, the
certain number of lag terms in both formulations
does not result in the same number of newly
introduced states (aerodynamic dimension).
Recalling (22) and (27) the relationship between

aerodynamic dimensions of LS and MS RFA is,

n,=n-n, >

i

tm L -
¥ v

n, =n

Aerodynamic Aerodynamic
dimension of dimension of
LS RFA MS RFA

(33)

where n is the number of degrees of freedom of the
model and n, is the number of lag terms. Thus, the
state-space realizations of MS RFA are significantly
smaller than the realizations of LS RFA.

Figure 10 compares the approximation of the flat
box section of both REA methods solely in terms of
the total approximation errors J (30) as a function of
the aerodynamic dimension. Both methods show the
significant fit improvement between one lag term
and two lag terms, while the addition of third lag
gives small improvement of the approximation
precision. Fig. 11, which shows the total errors of
approximations of the streamlined section, confirms
the above findings. In this case the level of the
errors is 3 times smaller than in case of the flat box
section.
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Fig.10 Error of approximation and error of flutter wind speed
for flat box cross section



Figs. 10 and 11 show also the relative error of
prediction of critical flutter wind speed with respect
to the flutter wind velocity computed by
conventional method (Sec 1.3). The computation of
the critical wind speed, in case of state space
realizations, is straightforward, since for fixed wind
velocity the damping ratios and natural frequencies
can be determined by the complex eigenvalue
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Fig.11 Error of approximation and error of flutter wind speed
for streamlined cross section

analysis. The increase of approximation functions
by additional lag terms does not directly result in the
improvement of flutter wind speed computation. It
was found in this study that the prediction of flutter
wind speed with application of RFA results in small
error with respect to the conventional method. The
prediction can be significantly improved by
weighting the region close to the reduced frequency
related to the flutter wind speed.

6. CONCLUSIONS

The rational function approximations of unsteady
aerodynamic forces acting on the bridge deck
provides the time domain description of the flutter
problem. The resulting state space equation of
motion simplifies bridge deck flutter prediction and
makes design of vibration suppression systems
simple and straightforward. Since the resulting
equation of motion is in time domain, it also gives
the possibility of analysis of aerodynamic problems
with structural nonlinearities.

The proposed approximations can approximate
unsteady aerodynamic forces with high approxima-
tion precision. The minimum-state RFA formulation
provides only slightly larger approximation error
than least-squares method with the significantly
smaller aerodynamic dimension than LS RFA.

To maintain the accuracy, the number of added
aerodynamic states is found to be 1 for streamlined
section, 2 for flat box section and 3 for conventional
truss section.
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