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The extended Kalman filter (EK-WGI method) is employed to identify dynamic parameters of a

2DOF linear system with closely-spaced natural frequencies from free-vibration data.
It is found that accurate and stable estimation is possible

is examined through numerical simulations.

when displacement records of both degrees of the model are available.

Its applicability

The simulation results show

that the identification from response data of only one of the degrees is difficult, while the 2-stage
estimation method suggested in this paper is effective in the structure-TMD system, which is a typical

system with closely-spaced modes.
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1. INTRODUCTION

It is necessary to identify the dynamic properties
of structures from field test results when their safety
against wind and earthquake loads has to be
evaluated in detail. Therefore many research works
on the identification techniques have been made
recently . The identification techniques are
broadly classified into two types; one is the
frequency domain technique based on the spectrum
analysis and the other is the time domain technique in
which the dynamic parameters are estimated using a
mathematical model of a structural system such as
differential equations and AR/ARMA models.

As structures are larger and more complex, the
structural systems consisting of main- and sub-
structures with closely-spaced natural frequencies
are increasing. The examples are cable-stayed

This paper is translated into English from the
Japanese paper, which originally appeared on J.
Struct. Mech. Earthquake Eng., JSCE, No.450/1-20,
pp.141-149, 1992.7.

bridges with many cables  and the structure-TMD
systems 3.

Free-vibration tests are often carried out when
examining the dynamic properties of a structure
experimentally.  The free-vibration data on the
closely-spaced modes systems are frequently
accompanied with beatings in time-history responses.
It is difficult to estimate the dynamic parameters,
especially the damping ratios, from such data.
Frequency domain identification methods which are
often used cannot accurately separate modal motions
from the original data.

Shibata and Hara 4 and Sanuki ) proposed simple
time domain methods to estimate the modal
frequencies and the modal damping ratios from free-
vibration data with beatings. In these studies the
time history with beatings is treated as the
composition of damped free-vibration time histories
of two SDOF systems and the modal properties are
calculated from the maximum peak and minimum
peak amplitude values of the beating waves and the
beating period. However, these values observed
from experimental data are not necessarily clear, and
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an error in evaluating them influences the accuracy
of estimating modal properties directly ©. Ota and
Katsuchi 2 proposed a technique to obtain the free-
vibration time history of one mode by superposing
the weighted response waves of two components of a
system, and applied it to estimating dynamic
properties of a cable-stayed bridge.

The time domain techniques above-mentioned are
for estimating the modal properties. However, it is
often the case that we need not the modal properties
but the dynamic properties of each component of a
structure directly; in a case of the girder-cable
system of a cable-stayed bridge, not the dynamic
properties of coupled modes of girder and cable but
the dynamic properties of girder/cable. Direct
identification of the dynamic parameters is necessary
for computing the dynamic response of the system.
Modal properties can be also obtained by an eigen-
analysis using the identified parameters.

In this study direct identification of the dynamic
parameters of the closely-spaced modes system using
free-vibration data is attempted. The extended
Kalman filter (EK-WGI method) 79 is employed
and its applicability is examined through the
simulation; free-vibration data of 2DOF linear
system models of known parameters as shown in
Fig.1 is numerically simulated and used for the
identification study.

2. NECESSITY OF IDENTIFICATION
APPROACH

When evaluating the dynamic properties of a
system from response data with beatings, it is
necessary to treat the system as a 2DOF system and
to apply some identification techniques. However,
the fact is that, if the responses do not have strong
beatings, the system is usually treated as a SDOF
system in practice. Typical example is a structure-
TMD system. TMDs are used for the vibration
control of structures generally. When checking the
effect of a TMD from free-vibration test data, modal
properties of the system such as damping are
evaluated as a SDOF system 19).  Fujino and Abe 'D)
showed that the estimation of the dynamic
parameters of the structure-TMD system as a SDOF
system may bring a large error, and that it is
necessary to treat that as a 2DOF system.

Fig.2 shows free-vibration time histories of a
structure with a TMD simulated numerically and the
modal damping ratios calculated from the peak
amplitude value of each wave in them.  The

A X
mp
Sub-structure
gB Dy

m,

Main-structure

Ex "

Fig.1 Structural model of 2DOF linear system

conditions of the simulation are as follows: the mass
ratio = 0.01, the frequency ratio = 1, the damping
ratio of the structure &g = 0 and the damping ratio
of TMD &, = 0.08 and 0.10. It seems that the

beating in the time histories in the figure is very weak,
but the damping ratios calculated as a SDOF system
are different from the exact values. Additionally, as
the damping ratio seems to vary according to the
amplitude of the response, the system may be
misunderstood to be a non-linear system.

3. EXTENDED KALMAN FILTER
(EK-WGI METHOD)

The extended Kalman filter is a time domain
estimation algorithm obtaining least squares
estimated values. Hoshiya and Saitoh ) proposed
the extended Kalman filter weighted global iteration
method (EK-WGI method). They applied it to
identification problems of structures under seismic
and moving loads and confirmed its usefulness and
accuracy 9!2:13) Yamada et al. 1 and Iwamoto
and Fujino 1% applied the EK-WGI method to the
identification problem of flutter derivatives of bridge
decks.

In order to use the Kalman filter, it is necessary to
formulate the mathematical models both of the
structural system and of the observation. The
extended Kalman filter is based on a nonlinear
continuous state equation and a nonlinear discrete
observation equation as follows.
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Fig.2 Free-vibration waves with beatings and damping ratié‘dir‘éctly measured from the waves

dX
-t = f(X 1
dt ( pt) ()

Y, = h(X,,t)+v, @

in which X,, X, = continuous and discrete state
vectors at t=kAt; Y, = a discrete observation
vector at t=kAt; At = time interval; v, = an
observation noise vector which is represented by a
white noise Gaussian process with E[v,v,"] =
R, 3,; and 8,, = Kronecker delta function. The
extended Kalman filter can estimate the optimal
values )A(k of the state vector X, (' means an

estimated value) sequentially from the observation
vector Y, if the initial state vector X, and the

initial error covariance matrix P, are given.

The weighted global iteration method is an
algorithm for processing finite time histories of
responses.  The first procedure starts with the initial
values X, and P, which arc assumed from the

structural information and the extended Kalman filter
is used until the end of the data. The same
procedures so-called global iterations are repeated
using the final values of the preceding procedure as
the initial values until the estimated state vector
converges. In the beginning of each iteration, the
matrix P is multiplied by a weight coefficient W
for activating the estimated state vector and
accelerating the convergence. We modified the
algorithm for treating free-vibration data which has a
finite duration. Additionally, the U-D factorization

Table 1 Parameters estimated from displacement record of

SDOF system
g € o
0.002 0.00187 (7%) 2.00 (0%)
0.01 0.00989 (1%) 2.00 (0%)
0.05 0.0500 (0%) 2.00 (0%)

filter algorithm ® was used for the computational
stability.

4. IDENTIFICATION OF SDOF LINEAR
SYSTEM

Before the identification of 2DOF systems, the
identification of SDOF linear systems from free-
vibration data were carried out. The numerical
simulation models are three types: the natural
circular frequency ®, = 2rad/s, the damping ratio
€ = 0.002, 0.001 and 0.05.
conditions are as follows: the sampling interval At
= 0.01s and the duration time T = 10s (the number
of data N,=T/At = 1000). The initial
conditions of free-vibration data are the displacement
= 1 and the velocity = 0. Observation noises are
modeled as white noises with the intensity 10% of
root mean square values of response waves.

The sampling
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Fig.3 Free-vibration waves of main-structure simulated numerically

Table 1 shows the parameters estimated from the
displacement record. The SDOF system is so
simple that the parameters are estimated accurately
even in the presence of 10% noise in the record. It
is found that the accuracy of the estimation of & is
better as & is larger. 'When the decay of response

is small, data with a large T are needed for an
accurate estimation. The estimated parameters
converge within about 5 global iterations in all cases.

5. IDENTIFICATION OF 2DOF LINEAR
SYSTEM

(1) Formulation of state and observation equations
The equation of motion of a 2DOF linear system
as shown in Fig.1 can be obtained as follows.

Z, +(2&A(DA +2pE p® B)ZA
20z + (0,7 + 05 )z,
— U0,z =0 > 3

Zp —28,052, +28505Z,

2 2
—0,Z, t0Z; =0

in which z = a displacement; | = a mass ratio =
mg/m,; m=
frequency; £ = a damping ratio; and the subscripts
A and B mean main- and sub-structure, respectively.
Here, unknown parameters to identify are §,, &;,
w, and wy. State variables are introduced to the
state vector X X, =2z,, X, =2Z5, X, =2, and

a mass, ® = a natural circular

X, = Z,. Unknown parameters are also put in
X: x,=€,, x,=8,, x,=0, and X, =0,.
Then the state equation is written from Eqs.3 as
follows.

X = X3, Xy =Xy

X, = ——{(2x5x7 + 21.1)(6><8))<;3 — 2UX XX,

+()<52 + ;.J.xgl)x1 - uxgzxz} -

X, = -—{-2x6x8x3 +2X (XX,

2 2
~Xg X, + X X, }

X, =X =X, =X, =0

Mass ratio p has to be also identified in some cases
because m, and m; are often modal masses of

continuous structures and modal masses of complex
structures, such as a long-span suspension bridge,
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Table 2 Dynamic parameters for simulation models

Model N &g W, Wg u
I (girder-cable) 0.002
II 0.002 0.01 2.0 2.0 0.01
I (structure-TMD) 0.05

Table 3 Initial conditions for identification from displacement records of main- and sub-structure

A ~ A

€, & 2

pz’ p'z pg pco pp,

0.0 0.01 1.0 1.0 0.0

0.01 10x107® 0.01 10x107®

Note: R =0.01; W =100.0.

Table4 An example of parameters estimated from displacement records of main- and sub-structure
( the influence of observation noise level); L is known; At =0.01s, T =10s

g, Noise (%) g, £, N Op
1 0.00193 (4%)  0.00196 (2%)  2.00 (0%)  2.00 (0%)
0.002 5 0.00166 (17%)  0.00183 (9%)  2.00(0%)  2.00 (0%)
10 000132 (34%) 0.00169(16%)  2.00 (0%)  2.00 (0%)
1 0.00193 (4%)  0.00998 (0%)  2.00 (0%)  2.00 (0%)
0.01 0.00165 (18%)  0.00989 (1%)  2.00(0%) 2.0 (0%)
10 000131 (35%)  0.00981 (2%) 200 (0%)  2.00 (0%)
1 0.00194 (3%)  0.0500 (0%)  2.00(0%)  2.00 (0%)
0.05 0.00168 (16%)  0.0502 (0%)  2.00(0%) 2.0 (0%)
10 000137(32%)  0.0504(1%)  2.00(0%)  2.00 (0%)

Note: §, =0.002, o, = w, =2.0.

calculated analytically from the design dimensions
may be uncertain.  Additionally, p of the
structure-TLD (Tuned Liquid Damper) 16 system is
unknown when the effective mass of the TLD is
difficult to estimate. Then in the case when p is

unknown, i is added to a state vector X: x, = |i.

Therefore p in Egs.4 is replaced by x, and the
equation, X, = O is added to Egs.4.

When displacement and velocity responses of
main-structure are obtained for example, observation
equations Egs.2 are written as follows.

{YIk} }Xk . {Vlk}
Yax Vak

1,0, 0,0
= )]

“10,1,0,---,0

(2) Simulation of free-vibration data

We chose three types of the models which possess
closely-spaced modes as shown in Table 2; model I
is a deck-cable system of a cable-stayed bridge and
model III the structure-TMD system. The values of
the damping ratios of sub-structure &, 0.002 and
0.05 in Table 2 correspond to those of a cable and a
TMD, respectively. The initial conditions of free-
vibration data are z, = z; =land z, = z, = 0.
Observation noises are modeled as white noises with
the intensity 1, 5 and 10% of root mean square
values of response waves of the first 10 seconds.
Fig.3 shows free-vibration time histories simulated
numerically. The accuracy of the identification is

77 (778)



Table 5 An example of parameters estimated from displacement records of main- and sub-structure
( the influence of observation condition); L is known; noise level = 10%

~

~

g, AL TE £, £ 04 05
0.01 10 0.00132 (34%)  0.00169 (16%) 2.00 (0%) 2.00 (0%)
0.002 0.02 20 0.00176 (12%) 0.00182 (9%) 2.00 (0%) 2.00 (0%)
' 0.05 50 0.00202 (1%) 0.00222 (11%) 2.00 (0%) 2.00 (0%)
0.1 100 0.00200 (0%) 0.00187 (7%) 2.00 (0%) 2.00 (0%)
0.01 10 0.00131 35%) 0.00981 (2%) 2.00 (0%) 2.00 (0%)
0.01 0.02 20 0.00148 (26%) 0.00957 (3%) 2.00 (0%) 2.00 (0%)
’ 0.05 50 0.00184 (8%) 0.0104 (4%) 2.00 (0%) 2.00 (0%)
0.1 100 0.00228 (14%) 0.00930 (7%) 2.00 (0%) 2.00 (0%)
0.01 10 0.00137 (32%) 0.0504 (1%) 2.00 (0%) 2.00 (0%)
0.05 0.02 20 0.00119 (41%) 0.0495 (1%) 2.00 (0%) 2.00 (0%)
) 0.05 50 0.00152 (24%) 0.0507 (1%) 2.00 (0%) 2.00 (0%)
0.1 100 0.00007 (97%) 0.0475 (5%) 2.01 (1%) 2.00 (0%)
Note: &, =0.002, o, = w, =2.0.
Table 6 An example of parameters estimated from displacement records of main- and sub-structure
(the influence of observation noise level); [ is unknown; At =0.05s; T =50s
g, Noise (%) £, £, 6, . i
1 0.00200 (0%) 0.00202 (1%) 2.00 (0%) 2.00 (0%) 0.00999 (0%)
0.002 5 0.00200 (0%) 0.00210 (5%) 2.00 (0%) 2.00 (0%) 0.00997 (0%)
10 0.00202 (1%) = 0.00219 (10%) 2.00 (0%) 2.00 (0%) 0.00993 (1%)
1 0.00199 (1%) 0.0100 (0%) 2.00 (0%) 2.00 (0%) 0.0100 (0%)
0.01 5 0.00197 (2%) 0.0101 (1%) 2.00 (0%) 2.00 (0%) 0.00998 (0%)
10 0.00194 (3%) 0.0103 (3%) 2.00 (0%) 2.00 (0%) 0.00996 (0%)
1 0.00189 (6%) 0.0501 (0%) 2.00 (0%) 2.00 (0%) 0.0100 (0%)
0.05 5 0.00147 27%) 0.0503 (1%) 2.00 (0%) 2.00 (0% 0.0101 (1%)
10 0.00100 (50%) 0.0506 (1%) 2.00 (0%) 2.00 (0%) 0.0102 2%)

Note: &, =0.002, w, = wy =2.0.

influenced by sampling conditions of responses i.c.
the sampling interval At and the duration time T
(or the number of data N, =T/At). Here we
examine the effect of sampling intervals on the
identification: At = 0.01, 0.02, 0.05 and 0.10s with
a fixed duration N, are selected.

6. RESULTS OF IDENTIFICATIONS

(1) When displacement records of main- and sub-
structures are available

The number of a data record N, is fixed at 1000

and the initial conditions for the identification as
shown in Table 3 are used.

Assuming that the mass ratio p is known, the
parameters are estimated and the results are shown in
Table 4 and 5. Natural circular frequencies w,
and o, are estimated very accurately, while the
estimation errors of damping ratios §, and &, due
to observation noises are relatively large. Table §
shows that the observation conditions (At and T)
affect the accuracy of estimations; the tendency of
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Table 7 Initial conditions for identification from displacement record of main-structure and its differential wave

~ ~ ~ A

g_,A &g ® 5 Dy u

pv pi pg pcc pu

0.0 0.01 1.0 1.0 0.0

0.01 10x107%° 0.01 LO0x107°

Note: R =0.01; W =100.0.

Table 8 An example of parameters estimated from displacement record of main-structure and its differential wave
(the influence of observation noise level), Wisknown, At =001s; T =10s

E, Noise (%) £, £, ® O
1 0.00519 (160%)  -0.00159 (180%) 2.0 (0%) 2.00 (0%)
0.002 5 0.00350 (75%) 000366 (83%)  2.04 (2%) 1.96 2%)
10 0.00568 (184%)  0.00500 (150%)  2.06 (3%) 1.95 (3%)
1 0.00543 (172%) 000741 (26%)  2.02 (1%) 1.98 (1%)
0.01 0.00980 (390%)  0.00258 (74%)  2.02 (1%) 1.98 (1%)
10 0.0171 (755%)  0.00420 (58%)  2.06 (3%) 1.94 (3%)
1 0.00151 25%)  0.0493 (5%) 2,01 (1%) 2.00 (0%)
0.05 5 -0.00054 (127%) 00496 (1%) 2.01 (1%) 2.00 (0%)
10 0.0270 (1350%)  0.0437 (13%) 2.07 (4%) 2.00 (0%)

Note: §, =0.002, w, = w, =2.0.

the variations about §, and &, is different
according to §;. When §; is small (§, = 0.002)
and the decay of response is 0.0101 (1%) small , the
accuracy of estimations is better as At is larger (T
is larger).  On the other hand, the opposite tendency
is shown when &g is large (§, = 0.05). Generally
speaking the identification accuracy is better as a
sampling interval At is smaller and a sampling
duration time T is larger. But in this analysis a
number of data record N, is fixed, so that T is
smaller as At is smaller. When the decay of
response is small, data with a large T are needed
for an accurate estimation even if At becomes large.

Assuming that the mass ratio 1 is also unknown,
identification is made and the result is given in Table
6. The accuracy of estimations is similar to the
case when | is known. But when At is small
(At =0.01s, T = 10s), the estimation errors of & "
E, and [ are relatively large. A long duration T
is necessary for a good estimation when p is
unknown. ;

The stability of the identification is good and the
estimated parameters converge within about 10

global iterations in all cases.

(2) When only displacement record of main-
structure is available

When a free-vibration test of the structure-TMD
system is made, either displacement or velocity wave
of the structure is only measured. The similar
situations are observed in many field tests of closely-
spaced modes systems. Considering these situations,
we tried to identify dynamic parameters of 2DOF
linear system models from the displacement record of
the main-structure only. It was found that
parameters could not be estimated even if responses
without noises were used.  Therefore we identify the
parameters from displacement and velocity waves of
main-structure, the latter of which is computed from
the displacement record with a digital differential
filter 1. The number of a data record N, is fixed

at 2000 and the imtial conditions for the
identification are given as shown in Table 7.
In the case when the mass ratio | is known, an

example of estimated parameters is given in Table 8.
The accuracy and stability of the estimation are
much lower than the case when displacements of
main- and sub-structure are available.  Another
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Table9 An example of parameters estimated with 2-stage estimation method from displacement record of main-structure
and its differential wave (the influence of observation noise level); i is known, At =0.01s; T =10s

~

E, Noise (%) N éB W, Op
1 0.00196 (2%) 2.00 (0%)
0.002 5 0.002 0.00179 (11%) 2.00 2.00 (0%)
10 0.00157 (22%) 2.00 (0%)
1 0.00996 (0%) 2.00 (0%)
0.01 5 0.002 0.00978 (2%) 2.00 2.00 (0%)
10 0.00955 (5%) 2.00 (0%)
1 0.0500 (0%) 2.00 (0%)
0.05 5 0.002 0.0498 (0%) 2.00 2.00 (0%)
10 0.0495 (1%) 2.01 (1%)

Table 10 An example of parameters estimated with 2-stage estimation method from displacement record of main-structure
and its differential wave (the influence of observation noise level), L is unknown; At =001s; T =10s

~

~

g, Noise (%) E, éB Wy Oy u

1 0.00131 (35%) 2.00 (0%) 0.00981 (2%)

0.002 5 0.002  -0.00356 (278%) 2.00 2.00 (0%) 0.00797 (20%)
10 -0.0302 (1510%) 2.01 (1%)  0.00001 (100%)
1 0.00911 (9%) 2.00 (0%) 0.00979 (2%)

0.01 5 0.002  -0.00059 (106%) 2.00 2.00 (0%) 0.00734 (27%)
10 0.0273 (173%) 2,01 (1%)  0.00001 (100%)
1 0.0465 (7%) 2.00 (0%) 0.00950 (5%)

0.05 5 0.002 -0.0148 (130%) 2.00 2.00 (0%)  0.00001 (100%)
10 diverged

problem is that parameters cannot be uniquely
estimated from one displacement record of 2DOF
system because the displacement record is just the
sum of responses of two modes aund is determined
only by modal frequencies and modal damping ratios.
When the mass ratio p is unknown, estimated
values cannot be obtained even if response waves
without noises are used.

(3) 2-stage estimation method

In order to avoid these troubles, we suggest the 2-
stage estimation method. This method is applicable
to the system in which the sub-structure can be
temporarily fixed relative to the main-structure e.g.
a TMD. When the sub-structure is fixed, the
system can be treated as a SDOF system. Then as
the first stage, dynamic parameters of the main-

structure §, and ®, are estimated from free-
vibration test records. As mentioned above,
parameters of a SDOF system can be easily and
accurately estimated. Next as the second stage, a
free-vibration test is carried out with the sub-
structure unfixed, and parameters of sub-structure
&, and o are estimated from displacement record
of main-structure and its differential (velocity) wave
obtained with the differential filter. Dynamic
parameters of the main-structure §, and w, canbe
treated as known in this stage. The 2-stage
procedure makes an unique estimation possible.

The number of a data record N, is fixed at 2000

and the initial conditions for the identification are
given as shown in Table 7. In this analysis, in
order to examine the accuracy of the second stage, no
error is assumed to be made in the first stage.
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Assuming that p is known, parameters are

estimated and are shown in Table 9. The reduction
of the number of unknown parameters improves the
identification accuracy in the second stage. The
stability of the identification is good and the
estimated parameters converge within about 10
global iterations. Using the 2-stage estimation
method, estimated parameters converge as shown
in Table 10 even when p is unknown. But in this

case, estimation errors are large due to observation
noises.

7. CONCLUSIONS

Dynamic parameters of a 2DOF linear system
with closely-spaced natural frequencies are identified
from free-vibration data. The extended Kalman
filter (EK-WGI method) is utilized and its
applicability is examined through the numerical
simulations. It is found that accurate and stable
estimation is possible when displacement records of
both degrees of the model are available, even in the
presence of 5% noise in the record. Results show
that the identification from data of only one degree
response is difficult, while the 2-stage estimation
method suggested in this paper is effective in the
structure-TMD system.
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Japan Society of Civil Engineers is now publishing seven biannual journals covering all the fields of civil
engineering. One of them is the Journal of Structural Engineering and Earthquake Mechanics in Structural Division
which includes research papers, committee reports, technical notes and discussions, concerning the field of
engineering mechanics, structural engineering and earthquake engineering. At present, the Journal are available
only in Japan, but highly rated papers which are written in Japanese and translated into English and the articles
written in English are collected in this separate volume called “STRUCTURAL ENGINEERING/EARTHQUAKE
ENGINEERING”. The translated titles and abstracts of articles in the original Journal which are not included in this

volume are listed below.

JOURNAL OF STRUCTURAL ENGINEERING AND EARTHBUAKE ENGINEERING
No.537 1-35 April 1996

CONTENTS

Papers
Ultimate Strength of Stiffened Plates Subjected to Biaxial Forces
Yoji KUMAGAI and Masashi IURA 29~42

Tests of stiffened steel plates subjected to biaxial compressive forces have been performed to obtain the ultimate
strength of the plates. A plate test rig has been modified to apply compressive forces to rectangular stiffened plates.
A new approach is presented for predicting the ultimate strength of plates under biaxial loadings. The experimental
results are used to show the validity of the new approach. The existing numerical and experimental results are also
used to examine the applicability of the present approach to the plates under biaxially applied in-plane compressive
and tensile forces. Although the present approach is easier to apply than other available approaches, it provides
consistently good predictions.

Wave Propagation Analysis for Layered Solid-Fluid Media in a Gravity Field Using a
Thin-Layered Element and Discrete Wave Number Method

Terumi TOUHEI 48~ 52

Layered solid-fluid media in a gravity field were analyzed by a thin-layered element and discrete wave
number method. The gravity effects were incofporated to the governing equation for fluid and solid-fluid
interaction equations. Green’s function for layered solid-fluid media in a gravity field was represented
in terms of the normal modes, which were obtained from the thin-layered element matrices. Several
investigations were applied to the differences between the Rayleigh wave mode and the gravity wave mode.
Numerical calculations showed that the gravity waves, in which the phase velocity and frequency is very

low, were caused as a reult of the propagtion of the body waves and the Rayleigh wave.
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