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A simply-supported rectangular plate subject to a pure bending undergoes successive hierarchial
bifurcation. The bifurcation structure of this plate arises from the “hidden (circular) symmetry”
of the periodic nature of its deflection. We will arrive at this structure by means of the concept
of irreducible representations in the group-theoretic bifurcation theory. The boundary conditions

are revealed to significantly alter the bifurcation structure.
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1. INTRODUCTION

Most of bifurcation can be ascribed with the
“symmetry-breaking bifurcation” due to the (par-
tial) loss of the symmetry of a system. For the
Euler buckling, for example, from the trivial so-
lution with the reflection symmetry with respect
to the member axis, a bifurcated one without
it emerges. For the buckling of a cylindrical
shell, a bifurcated solution without axisymme-
try branches from the axisymmetric trivial solu-
tion. It is customary to employ groups which are
made up of reflections and rotations in describ-
ing the symmetry!). The symmetry of governing
equations is described by the group-equivariance
condition, which shows the objectivity of these
equations. The mathematical framework of a
system equivariant to a group can be known a
priori by means of the group-theoretic bifurca-
tion theory?*)%). Block-diagonalization method,
which can decompose the governing equations
into a series of independent equations, is estab-
lished as a method to exploit symmetry®)6):7).

In the field of structural engineering, the group-
representation theory has come to be employed
to describe bifurcation behavior of structures
8)9)10)11)  Fxtensive research has been con-
ducted on axisymmetric systems (equivariant to

! This paper is translated into English from the
Japanese paper, which originally appeared on J.
Struct. Mech. Earthquake Eng., JSCE, No.507/1-30,
pp.65-75, 1995.1.
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a group Dy, for circular symmetry or to a group
D, for regular ngonal symmetry) to arrive at a
bifurcation diagramg), and to present a block-
diagonalization method for the tangent stiffness
matrix for discrete systems®1911, It is advan-
tageous in numerical analysis to grasp the mech-
anism of bifurcation by means of the bifurcation
diagram, and is numerically efficient and stable’
to put the tangent stiffness matrix into a block-
diagonal form.

The symmetry of structures can be categorized
into “natural symmetry” and “hidden one.” The
bifurcation mechanism of the former, which ex-
presses the geometrical symmetry (such as the
circumferential symmetry of axisymmetric shells,
can be obtained by the group-theoretic bifurca-
tion theory. The latter, such as the bifurcation of
a beam on a foundation, is ascribed with the pe-
riodic nature of solutions, and its mechanism suf-
fers from the “degeneration” due to the bound-
ary conditions. The secondary bifurcation of a
beam'? serves its example.

In this paper; we focus on a simply-supported
rectangular plate in Fig.1 as an example of the
“hidden symmetry.” Although this plate only has
the reflection with respect to the y-axis in view
of the geometric symmetry, in fact, is equivari-
ant to Dy, due to the hidden periodic symmetry
in the z-direction. The mechanism of the degen-
eration of the hierarchical structure of the bifur-
cation of this plate is investigated by the group
representation theory. This system is shown to
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Fig. 1" Simply-supporter rectangular plate under
pure bending

have a different bifurcation diagram than a D-
equivariant system due to “geometrical symme-
try.” The tangential stiffness matrix of the-plate
is shown to be block-diagonalized by expanding
the displacement by the Fourier series and appro-
priately permutating their order. A formula for
this permutation is presented. The bifurcation
analysis of the plate is carried out to assess the
validity of the present theory.

‘2. BIFURCATION THEORY OF
SYSTEMS WITH SYMMETRY

In this section a method for describing the sym-
metry of a system with geometric symmetry is
introduced® 1 Ox11),

(1) Group-equivariance of equilibrium
equations
Denote by
F(fu)=0 (1)

a set of N-dimensional equilibrium equations.
Here f stands for a loading parameter and u for a
displacement vector, respectively. In the vicinity
of an equilibrium point (f,u), we rewrite Eq. (1)
into an incremental form

F = Jdu+ Fo(df,du) = 0 (2)

Here J = OF /0u denotes the tangential stiffness
matrix and Fy indicates a nonlinear vector.

Consider a group G made up of a series of geo-
metric transformation g, such as reflections and
rotations, in describing the symmetry of the equi-
librium equation. For example, an element g of
a group G transforms an N-dimensional vector u
(respectively, F') into g(u) (respectively, g(F)).
The mechanism of such transformation can be
defined by an N x N representation matrix T(g),
such that

T(g)u = g(u), Y9eG (3)

T(g)F = g(F),

The representation matrix, which represents the
coordinate transformation of an element g in the
relevant vector space, is assumed to be unitary.
The equilibrium equation is said to be equivariant
to a group GG when

T(9)F(fu)=F(f,T(g)u), “g€G (4)
is satisfied. Eq. (4), which is a general symme-
try condition, means that the transforming of the
independent variable w by T'(g) turns out to be
identical with the transforming of the whole set
of equations F' by T'(g). The invariance of the
solution u, which is different concept from the
equivariance, is defined by T(g)u = u ( Vg € G).
For a G-invariant u, the tangential stiffness ma-
trix J = O0F /0u satisfies a symmetry condition
T(9)J = JT(g) ( Yg € G) by Eq. (4), and hence
can be put into a block-diagonal form by means
of a suitable transformation. The equilibrium
equations of a group-equivariant system, satisfy-
ing Eq. (4), is known to be partitioned into a se-
ries of equations associated with the irreducible
representations of the group . The type and the
number of irreducible representations, dependent
on the group, will be shown later.

Define by

T"g) = T!(9), (5)
i=1,---,a*, g€ G, p€ RG)

the irreducible representations of a group G. Here
4 indicates an irreducible representation of G,
R(G) denotes the whole set of irreducible rep-
resentations, a* denotes the multiplicity of p in
T(g). These representations are not dependent
on particular systems but solely on the group
G. Tt is a fundamental strategy of the “group-
representation theory” to derive general rules for
those matrices, and, in turn, to describe the sym-
metry of a particular system by obtaining the
transformation matrix H between T'(g) and the
irreducible representations.

This corresponds to finding H that block-
diagonalizes T'(g) into the components associated
with the irreducible representations, that is,

at
H'T(9)H = P DT(9), 9eC (6)
pER(G) i=1
where € denotes the direct sum. The form of
H, which depends on the definition of w and G,
will be given in the next section for particular
examples.
The space X for « can be decomposed into the
direct sum of subspaces X*

X = Xxn (7)
KER(G)
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by means of the isotypic or standard decomposi-
tion in a form corresponding to Eq. (6)!%). Each
subspace is associated with the solution for the
main or bifurcation path. The transformation
matrix can also be decomposed into the form of
H =[--,H* -] made up of blocks H* associ-
ated with the irreducible representations. With
the use of this H the tangential stiffness matrix
can be block-diagonalized, that is,

J=HYJH = diag[---,J*,--] (8)
where diag[---] denotes a block-diagonal matrix.
Block-diagonalization, which reduces the size of
matrices for analysis, is numerically efficient.

Define a coordinate system w = [---, (w*)T,
-]T associated with the representations by

w=Hw=>)_ H'‘w" (9)
n

The equilibrium equations (2) can be transformed
by means of (9) into a block-diagonal form

T dwh + (H*Y'Fy =0 (10a)

Jhdw* = 0, u# (10b)
in compatibly with the representations. Here p*
in Eq. (10a) indicates the unit irreducible repre-
sentation, and is related to the main path. Eq.
(10b) yields a trivial solution when J* is regu-
lar, and a bifurcation mode when singular. The
block-diagonalization method is advantageous in
that the main path can be obtained from Eq.
(10a) even at a bifurcation point, where J# is
singular?19)_ and that the block-diagonal form of
Eq. (10) corresponds to the categorization of sin-
gular points'?).

A system equivariant to a group G is known
to lose symmetry through symmetry-breaking
bifurcation®®4) Such bifurcation can be char-
acterized by a nested set of subgroups G — Gy —
Gy — ---, where G; — (41 Tepresents the
emergence a G;4q-invariant solution from a G;-
invariant one. This equation means that the sym-
metry of the system is reduced from a G-invariant
state into G, Go-invariant ones. The framework
of the bifurcation of the system can be known a
priori by investigating the bifurcation structure

of the groups G, Gy, Ga,---.

3. BIFURCATION STRUCTURE OF
Do-EQUIVARIANT SYSTEM

We focus on the following bifurcation structure
of a system equivariant to a group Dy:

Dy — Dy — -+ — (11)

The group Do, in (11) expresses the symmetry of
a circle, and is defined by Do = (s,7(¢)) Here

(@) s ®) r

Fig. 2 The actions of transformation s and r

() denotes a group generated by the elements
therein, s means a reflection, and r(¢) indicates
a counter-clockwise ¢ (0 < ¢ < 27) rotation
around the origin shown in Fig.2. In addition,
D, = (s,r(27/n)) is a dihedral group of the de-
gree n expressing the regular ngonal symmetry.
The subgroups of D,, in Eq.(11) are expressed as

DI = (r(2n/m),sr(2n(j — 1)/m)) (12a)
j=1,--,m—-1
Cr = (r(2r/m)) (12b)

where D, = D}, and Cy = (1), The dihedral
group DI of degree m expresses the reflection
symmetry with respect to m straight lines, and

denoctes the rotation sym-

the cvelic group C

vall CYCUL Hi0up Uy

. metry with respect to an angle of 27 /m, and C;

indicates an asymmetric mode.

(1)  Dy-invariant solution

We investigate the direct bifurcation from a
D,-invariant solution®%). The whole set of the
irreducible representations of a group D, reads

R(Ds) = ((1,1)ps.(1,2)p.., (13)

(27 l)Doo ) (272)D007 o )

where (1,1)p,, and (1,2)p_ correspond to the

one-dimensional irreducible representations and

their representation matrices are 1 x 1 and are

defined by

TWHPe (p(p)) =1, TP (s)=1 (14a)

TODre (p(@)) = 1, TWHDw(5) = —1 (14b)

By contrast, (2,n)p,, (n = 1,2,---) correspond

to the two-dimensional ones and their represen-
tation matrices are 2 X 2 and are defined by

rsen o = (S0 inre) s

o %) m=r )

The isotypic (standard) decomposition of the

T2m)pe (g) = (
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Table 1 Categorization of critical points of a Do -equivariant system

p satisfying detJ* =0 (1,1) D,

(1’ Z)Doo (2,’!1)Dm

Category of points Limit points

Simple, symmetric Double
bifurcation point | bifurcation point

Symmetry of solutions Dy

Coo Dn

space X with respect to a group D, reads

X = xWoe @X(Lz)Doo e, (éx(lﬂ)nw)
n=1

(16)
Here the subspace X(2™De can be further de-
composed into a direct sum of two subspaces:

X(2npe = x(20)b, @X(z‘")fvm (17)

The coordinate transformation matrix H for this
decomposition is defined by

H = [ HO Do  H(L2)De |

H®Vbe  H®Vbe | F2Wbee HDbes ... ]
(18)
The blocks H* associated with the irreducible

representations can be chosen to be labeled by
the following symmetry groups:

S(HODPe) = Do, T(HHP) = Coe (192)
S(H®Mbe) = D, S(H?*V0w)=C, (19b)

where %(-) denotes the symmetry of the column
vectors of the matrix therein. The block-diagonal
from of the tangential stiffness matrix becomes

J = diag [J0:0e  JO20cc,
J@Upe  J2)pe  J(22)pe J(22)De ... ]

(20)
A simple critical point is defined as a point
where the one-dimensional irreducible represen-
tation becomes singular. In particular, the unit
irreducible representation (1,1)p, is associated
with a limit point of the loading parameter f, and
(1,2)p,, to asimple, symmetric bifurcation point.
A double (group-theoretic) bifurcation point is
associated with the two-dimensional one, which
corresponds to two identical diagonal blocks. Ac-
cording to the type and the number of the diag-
onal blocks that become singular, we can catego-
rize the critical points as listed in Table 1.

(2) D,-invariant solution

We investigate the mechanism of the bifurca-
tion from a D,-invariant solution, which emerges
as a bifurcated solution of a Dy, -invariant system

%), The whole set of the irreducible representa-

tions of D, is given by'®

R(Dn) = {H = (dvj)Dn [.7 = 1a"'7md;d = 172}
(21)
where (d,j)q means the jth d-dimensional irre-
ducible representations of a group G, and my
denotes the number of d-dimensional irreducible
representations, and is equal to
my =4, my=n/2-1, when n =even
{ my =2, mg=(n—1)/2, when n=o0dd
(22)
The irreducible representation matrices of one-
dimensional irreducible representations (1,7j)p,
(7 =1,2,3,4) are given by

TONon(r)y = 1, TOUPa(s)= 1
T(l’z)Dn(r): 1’ T(laZ)Dn(s):—l

TA3)on(r) = =1, TO3a(s)= 1 (23)
TAADn(p) = =1, TOHa(s) = —1

Those for two-dimensional ones (2, j)p, are
T(Z]’)Dn(,«) = R, T(Z:j)Dn(s) =9 (24)

(7=1,2,--+). Here

. cos (5";11) —sin (%L’L) S“(l 0)

sin (—271’1) cos (%”) ' 0 -1
(25)

The isotypic (standard) decomposition of the
space X with respect to D, reads

X = (@X(LJ’)D,,) @ (%X(&j)pn) (26)
j=1 j=1

The subspace X (37)pn can be further decomposed
as follows:

X@pn = x @b, @) X @5n
The transformation matrix is expressed as
H = [H(l’l)Dn’..
H(ZJ)EMH(M)E” e,

(27)

., Hma)p,
H(Q»mz)En,H(Z:mz)En
(28)
We can choose the blocks H* of H such that
S(HWWm) = D, S(HPn)=C,  (29)
S(HAP0) = D, pp, T(HH2n) = D5 (29b)

N+
E(H(Q,j)pn) = Dgcd(j,n) (29C)

- k+n'/2 ’
E(H(Z,J)Dn) _ { Dgcd(j’n)7 when n, = even(di)
gcd(jn)> When n' = odd
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Table 2 Categorization of critical points of a D,-equivariant system

u satisfying detJ* = 0 (1,1)p, (1,2)p,

(1,3)p, (1,4)p, (2,5)p,

Category of points Limit point

bifurcation point

Simple, symmetric

Simple, symmetric Double

bifurcation point

Simple, symmetric
bifurcation point

Symmetry of solutions Dy, Ch

Dn/2 Dn/? Dgcd(mn)

Table 3 Categorization of critical points of a Cj-equivariant system

u satisfying detJ* = 0 (1,1)c,

(1’2)Cn (2,7)c,

Category of points Limit point

Double
bifurcation point

Simple, symmetric
bifurcation point

Symmetry of solutions Cn

Cn/Z Cgcd(j,n)

n' =n/ged(i,n), 1<k<n,
where gcd(7, n) expresses the greatest common di-
visor of 7 and n.

The block-diagonal form of the tangential stiff-
ness matrix reads
f:dmgpunm“.uﬂhmbm
J@Non  J2p, ...

J=1,ma

s f(21m2)Dn N j(z!mZ)Dn}

(30)
According to the diagonal block that becomes sin-
gular, we can categorize critical points as listed
in Table 2. The unit irreducible representation
(1,1)p, is associated with the limit point of the
loading parameter, and the two-dimensional ones
to double bifurcation points. Although the sym-
metry of the space X(27) is labeled by Cecd(jin)
the bifurcated solution is labeled by a higher sym-

k
metry Dgcd(]-’n).

(3) C,-invariant solution
The mechanism of the bifurcation from a C,-
invariant solution, which branches from a D,-
invariant one, is presented®. The number of the
irreducible representaions of a cyclic group C,, is
equal to
m; =2, my=n/2—1, when n=even
{ my =1, my=(n—1)/2, when n=odd
(31)
The irreducible representation matrices are
T0Ven(ry =1, TOHon(r) = -1
T@den(r) = R
Similar to the case of D,, the space X can be
decomposed into the form of Eq. (26), the trans-
formation matrix H into that of Eq. (28), the
tangential stiffness matrix J into Eq. (30), re-
spectively. Yet caution must be exercised on
the fact that the number of the one-dimensional

(32)

irreducible representaions differs from that for
Dy, as can be seen from Eqgs. (22) and (31). The
symmetry of the blocks H# of H is labeled by

S(HMNen) = ¢, S(HODen) = €, 5 (33a)
S(H®én) = S(H®en) = Cyoa(jmy (33b)

(j =1,---,my). Table 3 categorizes the critical
points. It is to be noted that the bifurcated so-
lutions of the double critical points for C,, exist
only for the potential system.

4. DEGENERATION OF STRUC-
TURE OF BIFUURCATION

Consider a (partial) differential equation
F(f,v)=0 (34)

on a domain of the length of a (0 < z < @), where
v denotes the displacement. We assume that this
equation undergoes bifurcation with the trivial
solution of v = 0, and that, due to the boundary
conditions, the displacement v can be written as
the Fourier series of the sine, that is,

e T

v = ;ulsm <naﬂ')
As is clear from these assumptions, the problem
formulation in this section focuses on a particu-
lar boundary condition; nonetheless, it is easily
extendable to other type of boundaries. Defin-
ing a displacement vector w = (uy,uz,---)T and
discretizing Eq. (34), we can obtain a nonlinear
equilibrium equation (1).

In describing the symmetry of the solutions of
this problem, we double the interval [0,a] into
[0,24]?). As can be seen from Fig.3, since we can
transform the domain [0,2¢] into an imaginary
circle, the trivial solution » = 0 has a circular

(35)
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x=0, 2a

®

X=a

Fig. 3 Animaginary circle connecting the ends of the
interval [0, 2a]

symmetry (D-invariance), and hence Eq. (34)
is Do -invariant. Denote by X the space for the
solutions which can satisfy the boundary condi-
tions, and by X which cannot. We call the latter
space an extended solution space. These spaces
are defined respectively as

x [ee)
X = span [sin (n——ﬂ')]
a n=1

> . z z *
X = span {sm (n;vr) , COS (n;w)] (36Db)

n=1

(36a)

(0 < z < 2a). Here span[-] indicates that the rel-
evant space is spanned by the functions therein.
The structure of bifurcation for the space X has
already been presented in Chapter 2. In this sec-
tion, we investigate the way this mechanism is
inherited to the space X, which is restricted by
the boundary conditions, to obtain the Fourier
series spanning the subspaces X* of X.

(1) Dy -invariant solution

The direct bifurcation from a D..-invariant,
trivial solution v = 0 is investigated. The action
of the transformation 7(y) and of s are expressed
respectively as

r(go):a:->$+§L, s:x——zx  (37)
Their action on the Fourier series satisfies
(050 = reomen(2050)
_ (cos(mp) —sin(ngp)) (cos (n—ﬁ-vr))
sin (np)  cos (nyp) sin (n£7) %)
(mlnn)) == (G tnin))
(1 0 cos (nZm)
-(0 ) (@6E) )

[ef. Eq. (15)]. Note that the nth modes
cos (nL7) and sin (r<7) are related to the two-
dimensional irreducible representation (2,7)p,,-
The trivial solution v = 0 is associated with
(1,1)p., , and no solution is related to (1,2)p,,-

)n=2

&

(dn=4

=
&

()n=3

Fig. 4 The shift of the reflection planes due to the
parity of n

By Eq. (16) the subspaces of the extended
space. X decomposed by the isotypic decompo-
sition is

XWUoes = span [0] (40a)
X@Mbe, = span [cos (n%ﬂ)} (40Db)

X@m)pe = span{sin (n%w) ] (40¢)

The space X restricted by the boundary condi-
tions, which lacks the cosine terms, are spanned
by

X(D2e = span [0] (412)
x(2npe = span [sin (n—z—ﬂ) } (41b)

The decomposition in Eq. (17) ceases to exist due
to the degeneration by the boundary conditions.
Eq. (41) means that the main path is associ-
ated with the trivial solution v = 0, and that the
bifurcation process Do, — D, takes place at a
simple, symmetric bifurcation point with a D,-
invariant bifurcation mode sin (n£7). A double
bifurcation point is degenerated into a simple one
due to the boundary conditions. The bifurcation
process Do, — Cy, ceases to exist due to the de-
generation.

(2) D,-invariant solution

Bifurcated solutions from a D,-invariant solu-
tion are categorized. In view of the fact that
the reflection planes of the D,-invariant mode
sin (n£7) depends on the parity of n, as shown
in Fig.4, we define

T a
=r|{—j:iz— — 42
T T(n) z—z+ (42)
. af;-{-—;——)M(m—{——;—), n = odd
8'{33—1—-2%1——»-(95-{—5“7;), n = even (43)
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Consider a new coordinate system, which is cho-
sen compatibly with the location of the reflection
planes, that is,

a -
m*:{erZa’ n_odd (44)
T + T n = even
Then the action of 7 and of s, is rewritten as
2a
rigt =24 —, s:z*¥— —g* (45)
n

respectively. The mechanism of the bifurcation
from the D,-invariant system can be made clear
by investigating the action of r and of s on the
Fourier series of z*, that is,

() -+ (2E)
ey ) (D)

1 0 ) cos (Zi—*ﬂ')
(0 -1 sin (z%ivr)
When 2:¢ is the multiple of n, for which R’ in
Eq. (46) becomes diagonal, the ith cosine and
sine terms correspond to two one-dimensional
irreducible representaions. Otherwise, they are
associated with a two-dimensional one.
a) When n = odd
The displacement v associated with the one-
dimensional irreducible representation (1,1)p,
satisfies the relationships s-v = vand r-v = v
by Eq. (23). From Eqs. (46) and (47), v satisfy-
ing these relationships turns out to be associated
with the cosine terms of £ when the wave num-
ber 7 is the multiple of n, that is,
cos <k'n£a—7r) , kK=12-- (48)
With the use of Eq. (44), we can rewrite these
terms into the functions in ¢ (k = 1,2,---):

€os (%n%—w) or sin ((Qk— l)n—x—ﬂ") (49)
a
By choosing the sine terms in this equation, we
can obtain the terms spanning the space X (1:1)on
XY = gpan [sin ((2k - l)n—m—ﬂﬂ
a

(o)

(50)
k=1
This equation contains the sine series for n, 3n,
.-, while Eq. (41) has only the nth order

term. It demonstrates that a D,-invariant so-
lution branching from a Dso-invariant path pos-
sesses the pure nth sine mode in the vicinity of
the bifurcation point but it is deformed by the
mixing with higher order modes through “mode
interaction.”

The component v associated with one-
dimensional irreducible representation (1,2)p,
satisfies the relationships s -v = —v, r-v = v by
Eq. (23). From Egs. (46) and (47), v satisfying
these relationships is the sine terms of z* when
the wave number ¢ is the multiple of n. Through
the rewriting of these terms by Eq. (44) into func-
tions in z, one can see that

X(2)on = span [sin (an%w”

o0
(51)

k=1
The Fourier series with the wave number
i # k'n correspond to the two-dimensional

irreducible representaions (2,5)p, (j=1,---,

%—'l) We categorize these wave numbers ¢ into
En+j, K +1)n-j

j=1eemst Ko, 52

With the use of R/ = T(39)oa by Eq. (24), for
the wave number ¢ = nk’ 4+ j, Eq. (46) becomes

. ( cos ((k'n+j) %tw) )

sin [ (k'n+5)%n
(( ]/Z'a ) g (53)
= T(2sj)Dn cos ( " + J) F*Tr
sin { (K'n+j)&n
By Eqs. (46) and (53), the Fourier series for these
wave numbers are associated with the jth two-

dimensional irreducible representation (2, 7). The
rewriting of these series into functions in z yields

cos ((k’n +j)%*7r)

(=M% sin ((2kn + j) )
(M cos ({(2k + D+ 5} Z)
_ j = odd
] (=DFE cos ((2kn + )2 )
(=DM sin ({(2k + D + 5} £7)
7 = even
(54)

(k=0,1,---). The terms for the sine of z* can be
given by replacing cosine with sine in this equa-
tion. In the sequel, the equations for sine terms
of z* are omitted for this reason.

Similarly, the Fourier series for the wave num-
bersi=(k'+1)n—-j

C?S {(k'+1)n - ]} %*w (55)
—sin ({ (K" +1)n - j} &7
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Table 4 Categorization of critical points of a degenerated Dp-equivariant system

(a) n =odd

u satisfying detJ# =0

(1, )p,

(1’2)Dn

2,0},

(2.9)p

Category of points

Limit point

Simple, symmetric
bifurcation point

Simple, symmetric
bifurcation point

Simple, symmetric
bifurcation point

Symmetry of solutions D, Cy Decagzmn) Cyea(yin)
(b) n =even
w satisfying detJ* = 0 (1,)p, (1,2)p, (1,3)'p. (2,5)p,

Category of points

Limit point

Simple-symmetric
bifurcation point

Simple-symmetric
bifurcation point

Simple-symmetric
bifurcation point

Symmetry of solution

D,

Cy

Cn/2

[

are associated with the jth two-dimensional
irreducible representaions. The rewriting of these
Fourier series into functions in z yields

cos ({(K +Ln - ) %)
(-1
(-1

cos ({(2k + 1)n — 5} £x)
sin ({2(k + 1)n -'j} L)

j=odd

(~1F= 5+ sin ({(2k+L)n — j} £7)
(—1)k+1—‘§' cos ({Q(k + 1)n - 7} —ﬁ—?r)

j =even

(56)

(k=0,1,--+). By Eqgs. (54) and (56), the space
X29)on for (2,)p,, can be further decomposed

into two subspaces, that is,

X(?,j)D-n, — X(27j)$n @X(2>.7)En

(57)

which are spanned respectively by

X(Z,j)En = span [ sin ((an + ])%W) ,

sin ({Q(k +1)n - j} -Z—ﬂ)]

[oe]

(58a)

X295, = span [ sin ({(Qk +1)n - 5} —Z'W) )

sin ({(zk +1)n+ 5} %w)] Zo(ssb)

The symmetry of each subspace is labeled by

E(X(l,l)Dn) = Dn7
5i( X(z,m;n) = Dged(jn)
5 X(z,y‘)Bn) = Cged(jn)

R(XBHon) = €, (59a)

(59D)
(59¢)

The block-diagonal form of the tangential stiff-

ness matrix becomes

j fowed dia,g [f(l:l)Dn R j(l,Z)D" N j(z’l)Enj j(2’1)5n FEEEN

f(Z(N-l)/?)En ) J(=1)/2)p, }

(60)

Owing to the degeneration due to the boundary
~fo N+ ~ry Sy—
conditions, the blocks JCbn and J®)pa are no

longer identical, unlike to the case of Eq. (30).
The bifurcation point associated with the two-
dimensional irreducible representation (2,j)p, is
degenerated into a simple bifurcation point. Crit-
ical points are categorized in Table 4(a).

b) When n = even

When n =even,

(=1)Fsin ((2k + 1)n<m)

(—1)F+tcos (2(k + 1)n<r)
(61a)

cos (k’n%w) = {
(=1)F*cos ((2k + 1)n <)
(—1)F*1sin (2(k + 1)n<n)

sin (k'n%iﬂ) = {
(61b)

(k = 0,1,--, k¥ = 1,2,---) are associated
with one-dimensional irreducible representations
(1,1)p, and (1,2)p,. Hence the spaces for these
representations are spanned by

o

X@0n = span [Sin ((Qk + 1)n£7r)] (62a)
a k=0

x02)pp — span [sin (Q(k + 1)”%”)} (62b)
k=0

The cosine and sine functions
cos ((k + —1-> "flw—ﬂ')
2 a

e (40
cos 2 naﬂ' 5 1 s

(63)
sin ((k + %) n%w)

. (k 1 (k 1
sin + 2 ) n 5 + ) ) T

(64)
(k = 0,1,---), which are associated with one-
dimensional irreducible representations (1,3)p,
and (1,4)p,, cannot be expressed only by either

sine or cosine terms due to the presence of the un-
derlined terms. Hence in the space X, which are

il
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Table 5 Categorization of critical points of a degenerated C,-equivariant system

u satisfying detJ* = 0 (L, e,

(1‘2)071 (2:1)07..

Category of points Limit point

Simple, symmetric

Simple, symmetric

bifurcation point bifurcation point

Symmetry of solutions Cyr

Crny2 Ceea(in)

restricted by the boundary conditions, the irre-
ducible representations (1, 3)p, and (1,4)p, can-
not be identified, and are degenerated into an-
other irreducible replesenta,tion p=(1,3)p sat-
isfying an action r-v = —v. The followmg space
corresponds to this representation:

x3)p, = span [sin ( (k + -——) nﬁﬂ') ]
2 a k=0
(65)

Wave numbers ¢ = kn + j and (k+ 1)n — j
correspond to two-dimensional irreducible repre-
sentations (2,7)p, (J = 1,-+-,% —1). The cosine
terms of * for these wave numbers can be rewrit-

ten as
cos (kn-{-j)%ﬂ')
z k : (66)
= cos|(kn+j)—m+ (~— + —-J——>7r
a 2 2n
cos ({(k +1)n —j}%ﬂ') \

= cos ({(k + 1n—j} %7&' + (67—;;1 - 5%)7&')

(67)
These terms cannot be expressed only by either
sine or cosine terms due to the presence of the
underlined terms. Space X (7)pn  accordingly,
cannot be decomposed, unlike in Eq. (27). This
space, accordingly, is spanned by
X@3)on = span [ sin ((kn + j)Zr),
sin ({(k + 1)n - j}E£m)] 2,
To sum up, the isotypic decomposition of the
space X reads

X = Xxtp, EBX(W)D,, @X(lﬁ)bn

n/2-1 ’
@ ( @ X(Zij)Dn)

i=1

(68)

(69)

The symmetry of each subspace is labeled by
S(X@Vony = D, B(XEHn) = C, (70a)

S(X¥on) = Cp (70b)
S(XEDPn) = Cpeagim) (70¢)
A block-diagonal form of J reads
J = diag { JWp,  J1.2)p, J13)p,
(71)

J@Op, ... J@n/2-1)p, }

Owing to a degeneration due to the boundary
conditions, the block J(®9)ps cannot be decom-
posed into two blocks, unlike in Eq. (30). Critical
points are categorized as listed in Table 4(b).

(3) C,-invariant solution

Bifurcated solutions of a C,-invariant solutions
are categorized. The action of r, which serves as
a generating element of the cyclic group C,, on

the Fourier series of = is expressed as
(65T _ gi(os(i)
sin (i£7) sin (i <)

=(C°S(%fﬂ) ~sin (%r ))(m( )

sin (%ﬂ) cos (21 ) sin (i
(72)

This equation indicates that the representation
matrices R’ becomes diagonal for wave num-
bers i for which 2¢/n is an integer. These
wave numbers, accordingly, are associated with
one-dimensional irreducible representaions. Each
subspace is spanned by

XNen = span [sin ((k + l)n—zﬁr)]

&sl: |H

(73a)
k=0

X(2)en = span [sin <(k +1/2) n%-ﬂ') ] (73b)
k=0

X Zd)en = span [sin ((k‘n + j)‘i‘?r) )

sin ({(k +1)n— j}—x—ﬂ'ﬂ (73¢)
a k=0
The block-diagonal form of J reads:
J= dlag[J(l Deon  JA2en j2len ... f(Z»mz)cn]
(74)
where X (12)cn and J(1:2)en exist when n is even.
Owing to a degeneration due to the boundary
conditions, the block J@i)en cannot be decom-
posed into two blocks, unlike in Eq. (30). Critical
points are categorized in Table 5.

5. BIFURCATION HIERARCHY

The rules of bifurcation from D.,-, D,-, and
C'p-invariant paths have been presented in the
previous sections. A repeated use of these rules

51(518)



- A A S~
////‘ '\\\\
Dul-»D ! | C e
o T g : : 2% == Cy
~ -

-~
\\\ E ] -

(a) General

Dz )

N,
~.

(b) Degenerated

Fig. 5 Diagram of the bifurcation hierarchy of a Dy -invariant system
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leads to a hierarchial bifurcation structure of D.-
equivariant system shown in Fig.5. The solid
lines denote bifurcation process associated with
simple bifurcation points, while the dashed ones
denote that with double ones. The general bifur-
cation structure in Fig.5(a) is considerably dif-
ferent from the one in (b) which is degenerated
due to the boundary conditions. It shows the im-
portance of the consideration of the mechanism
of the degeneration. The bifurcation structure of
D -invariant system is quite complex but has a
firm rule. It is, therefore, desirable to carry out
bifurcation analysis with a knowledge on this rule.

6. BIFURCATION ANALYSIS OF A
SIMPLY-SUPPORTED PLATE

A bifurcation analysis was carried out on a
simply-supported plate in Fig.1. Details on the
derivation of equations and numerical analysis

can be found in references!®!917) . We employ

the governing equation for the out-of-plane de-
formation by von Kéirman, that is,

Vip o L |PFPw  PFPw , OF dw
T D | 0y? 022 ' 0z? Oy? Oz dy 0z 0y
(75)

*w )\’ 82w otw

4 frond Y T
VF=FE (6m0y> 522 6y2} (76)
where w = w(z,y) denotes the out-of-plane

deflection, F(z,y) indicates the stress func-
tion, t means the thickness of the plate, D =
Et3/(12(1 — v?)) indicates the flexural rigidity,
E is the modulus of elasticity, and v is Poisson’s
ratio. As can be seen from Fig.1, this plate lacks
the symmetry in the y-direction due to the pres-
ence of the bending moment, and hence is a D -
equivariant system with reflection and rotation
symmetries in the z-direction.

Approximate the out-of-plane deflection w sat-
isfying the four sides simply-supported boundary
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Fig. 7 Distribution of nonzero components of the tangential stiffness matrix

conditions by the double Fourier series
w-.tg;w”sm (zaw) Sm( bﬂ') (77)

with N, terms in the z-direction, and N, in the
y-direction. The present method employs the
Galerkin method in Eq. (75), and solves the re-
sulting cubic algebraic equation by the Newton-
Raphson method. Its geometrical nonlinearity is
similar to that of the beam-column equation.

Rearrange the order of the variables w;; to de-
fine a vector

T T
u = (w;f’ t w]’I\‘fx) s wi = (wp1, 'wpiNy)
(78)
where p; is the permutation, being defined by
(1 2 ... Nz) (79)
PPzt PN, '

In the numerical simulation, the numbers of
the Fourier series in Eq. (77) were chosen to be
N, = N, = 6. For example, on a D;-invariant bi-
furcation path, from Eqgs. (50) and (51), one can
see that the Ist, 3rd, and 5th modes correspond to
the space X (V01 and the 2nd, 4th, and 6th ones
to X101 Table 6 shows the relationship be-
tween the mode number and the subspaces. The
permutation in Eq. (79) was chosen to be 2

1 2 3 4 5 6
(3 1 5 4 2 6)
based on Table 6, so as to be compatible with
the functions spanning the subspaces X* ob-
tained in Chapter 4. This permutation can block-
diagonalize the tangential stiffness matrix for u.

Fig.6 shows a result of the bifurcation analy-
sis. Since the bifurcated solutions branching to-
ward the positive and negative directions of de-
flection correspond to the identical physical be-
havior, only one of them was plotted in this figure

(80)

2 This permutation is known as the chain adapted

basis'?).

for simplicity. The abscissa denotes the deflec-
tion at (z,y) = (0.35a.0.70b), and the ordinate
indicates the bending moment. The symmetry
group of each path is shown in the figure, and
critical points are expressed by (e). The points
A,-- - E on the trivial solution w = 0 are bifurca-
tion points with bifurcation modes of the 1,---,5th
sine. The singular point F is a maximum (limit)
point of load f. We obtained the secondary bi-
furcation paths from the bifurcation points A,
B, and C that are D;-, Dy-, and Ds-invariant,
respectively (bifurcation paths from the bifurca-
tion points D and E are omitted). A D;-invariant
path further branches from the Ds-invariant bi-
furcation path at a bifurcation point I, and is con-
nceted with another Dj-invariant one branching
from the main path. Ci-invariant paths branch
from a bifurcation point H on a Dy-invariant one
and a bifurcation point J on a Ds-invariant one.
No bifurcation takes place on Cj-invariant ones
without symmetry. The very complex bifurcation
process presented above does follow the rules in
Fig.5. This may be suffice to show the impor-
tance and the validity of the present theory. Al-
though Cq- and Cs-invariant modes appeared in
Fig.5, but not in Fig.6. It is based on the fact
that the group-theoretic bifurcation theory can
indicate all possible bifurcation process, but the
presence of each process is dependent on cases.

Fig.7 shows the tangential stiffness matrices J
and J, before and after the block-diagonalization,
respectively. Here (-) stands for zero components,
and (e) for nonzero ones.

The deformation modes on Di-, Dg-, and Ds-
invariant paths respectively are equal to the 1,
2, 3th sine modes in the vicinity of the bifur-
cation points. However, for example, on the
Ds-invariant bifurcation path, the deformation
mode is deformed through “mode interaction,”
as shown in Fig.8. The mechanism of the mode
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Fig. 8 The progress of out-of-plane deflection sub-
ject to mode interaction (y = 0.7b)

interaction is described by Eq. (50) in a com-
plete manner. The deflection mode of the Dj-
invariant bifurcation path is the superposition of
the 1, 3, 5, ---th sine modes. In this numerical
example, in which considered up to the 6th or-
der term, the deflection mode is to be deformed
through the mode interaction among the 1st, 3rd
and 5th sine modes. Similarly, by Eq. (62a), on
the Dq-invariant bifurcation path a mode inter-
action takes place between the 2nd and 6th sine
modes. By contrast, the 3rd sine mode is com-
pletely preserved on the Ds-invariant path. Al-
though by Eq. (50) the deformation modes on a
Ds-invariant path, in general, is a superposition
of the 3, 9, 15, ---th sine modes, the mode in-
teraction cannot take place since only up to the
6th sine modes are involved. This is a kind of a
discretizing error.

7. CONCLUSION

The structure of bifurcation process of system
with symmetries can be known a priori by means
of the group-theoretic bifurcation theory. While
the bifurcation analysis technique is something
like a car, this theory is something like a map.
With the use of the combination of these, the
mechanism of the complex bifurcation behavior
presented in this paper can be understood.
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