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In this paper, the secondary buckling phenomena of the elastic rectangular plate subject to
pure bending moments are investigated. The bifurcation points are classified numerically based
on the determinant of tangential stiffness matrix and of its diagonal blocks obtained by means
of the group-theoretic bifurcation theory. With reference to these blocks within the whole block-
diagonalized one, the informations of the instability points and equilibrium paths after bifurcation
are casily obtained. The quantitative influence of the initial imperfections are investigated based
on the asymptotic laws and Monte Carlo simulations.
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1. INTRODUCTION

It is a well-known fact that the initial or pri-
mary buckling of an elastic perfect plate is gener-
ally a stable symmetric bifurcation from the ini-
tially undeflected equilibrium state. However, the
behavior beyond buckling is not investigated in
full detail, because this type of problem generally
has higher-order nonlinearities. Such an elastic
plate retains the sufficient resistance against ex-
ternal loads even beyond the primary buckling
and has been thought to be stable and to show
monotonical behavior in the post-buckling range.

As for the large deflection problems of the elas-
tic plate, Levy!) solved von Kérmén’s fundamen-
tal equations for a simply-supported square plate
under the edge compression combined with lat-
eral pressure. Coan? solved Marguerre’s fun-
damental equations with the effect of small ini-
tial curvature to generalize the Levy’s solution.
Yamaki®) also solved Marguerre’s equations un-
der eight different conditions which include two

! This paper is translated into English from the
Japanese paper, which originally appeared on J.
Struct. Mech. Earthquake Eng., JSCE, No.519/1-32,
PP.67-78, 1995.7.

kinds of loading conditions and four kinds of sup-
porting ones. The solutions by Levy and Coan
can be treated as special cases of these results.
From these studies, it has also been well known
that the post-buckling behavior of a plate be-
comes complicated owing to the two-dimensional
property which yields the highly-mixed harmonic
patterns in the deformed configuration.

In some experimental and theoretical studies
on the post-buckling behaviors of a rectangu-
lar plate subject to the in-plane uniaxial com-
pression: e.g. Bauer and Reiss¥), Sharman and
Humpherson®), Chilver®, Uemura and Byon”®)
and Supple®1911) it has been revealed that
a plate deformed in a primary buckling mode
may snap abruptly to another configuration with
a different pattern of deflection. This phe-
nomenon is called the secondary instability or
secondary buckling. Nakamura and Uetanil®
progressed the theoretical investigation for the
secondary buckling and post-secondary behaviors
by the multi-terms coupling effect of buckling
modes. Unstable and stable symmetric bifurca-
tion points on the secondary branching paths are
observed, and the snap-through motions involv-
ing an abrupt change of wave-form are presented.
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Recently, Maaskant and Roorda!® studied the
post-buckling behavior of a simply-supported
plate under combined loading of biaxial compres-
sion. This interaction of loadings leads to the
mode jumping phenomenon associated with the
secondary bifurcation, and the characteristics of
mode coupling in the buckling modes are investi-
gated for several loading conditions.

However, few researchers pointed out the ex-
istence of instability except for the case under
compressive load. Fujii and Ohmura¥) reported
that in the elastic FEM analysis of a panel of the
curved girders, some numerically unstable points
exist at which a large number of iterations are
required to obtain a converged answer. We be-
lieve that this is also the secondary instability
phenomenon, but this kind of unstable mecha-
nism has not been focused on up to now.

Recently, we'®)~17) found out that a flat plate
subject to the pure bending indicates the snap-
through or bifurcation type instability phenom-
ena even beyond the primary buckling. Further-
more, similar behavior is observed in the case of
unequal bending and shear loading. Moreover, we
revealed the mechanism of bifurcation hierarchy
of a simply-supported plate under pure bending
by the group-theoretic bifurcation theory'®.

Ref. 18) focuses the theoretical background
of secondary bifurcation, while this paper em-
phasizes the aspects of numerical analysis and
mechanism of the secondary buckling phenom-
ena. The equilibrium paths are obtained by both
load-control and displacement-control type anal-
ysis, and numerical identification of the bifur-
cation points are carried out by relatively sim-
ple operation'®~?1) based on the determinant of
those tangential matrices. Based on the bifur-
cation hierarchy'®) obtained by group-theoretic
bifurcation theory, more detailed classification of
bifurcated paths and bifurcated points is carried
out.

Since the post-buckling behavior of them be-
comes generally stable, engineering concern will
be to decide the allowable limit of deflection. In
this paper, the method of analysis to obtain the
post-buckling behavior and that of evaluation of
deflection are suggested, based on several meth-
ods of analysis!®~2?1) and findings??~24) by the
bifurcation theory. When the deflection is rel-
atively small, we evaluate it by the asymptotic
equation in the vicinity of stable symmetric bifur-
cation point. On the other hand, large deflection
is evaluated by the post-buckling analysis with
initial imperfections using the Monte Carlo sim-
ulation. As was described, the establishment of a
numerical method which makes possible to trace

correctly the complicated post-buckling behavior
of a plate is also a very important problem.

2. DERIVATION OF FUNDAMEN-
TAL EQUATIONS

The large deformation theory is adopted to
trace the post-buckling behavior of a flat plate.
It must be noticed that the nonlinear differential
equations by von Kdrmdan-Marguerre with initial
deflection will be applied up to the thickness or-
der of plate deflection.

Four sides simply-supported (4s.s.) and two
opposite sides clamped and the other two sides
simply-supported (2c. & 2s.s.) boundary condi-
tions are adopted for a rectangular plate as the
analytical models of this study. The fundamen-
tal equations are formulated under the action of
uniaxial pure bending moment.

(1) Differential equations for large deflec-
tion

Kérméan-Marguerre’s equations!”) with initial
deflection are expressed in terms of the out-of-
plane deflection w(z, y), initial deflection wo(z, y)
and the in-plane stress function F(z,y) as

Vi = t éff_az(w+wo) ﬁaz(w+1vo)
T D | oy? dz? dz? Jy?

9°F 82(w+wo)] (12)

_Haxay dzdy
3% (w + wo) ?

4 — P S .
ViF= E{ [ drdy
_1 32(w -+ wo) 32(w -+ 'wo)

2 dz? dy?

+ 8° {w + wo) 3% (w + wo)
dy? dx?

82wy 2 8%wo 8wy | %wo Bwo
- (Bzay) + 2 { 22 0y? + dy? W:l } (1b)
where t and D = Et3/12(1 — v?) are the plate
thickness and the flexural rigidity of the plate,
respectively. F is Young’s modulus and v is Pois-
son’s ratio. In order to ensure the symmetric
order of differentiation in the series expansion,
Eq. (1b) is modified in some parts from that of
well-known type. The in-plane stress components
o,(,y), oy(z,y) and oy(2,y) are related to the
Airy stress function F(z,y) as
_9F _&F I
B VT T gy O

This stress function F(z,y) must be determined
to satisfy the loading condition. We here con-
sider the pure bending moments M as the exter-
nal load, then the mechanical boundary condi-
tions given by the stress resultant forces can be
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Fig. 1 Boundary condition of a rectangular plate and observation points of out-of-plane deflection

expressed as

b
M= ——t/ oz (z,y)(y — g)dy, forz =0, a, (3a)
0

b

o.dy =0, forz =0, a, (3b)

a

oydz =0, fory=0,b, (3¢c)

J
J

Tey = 0,

forz=0,aandy=0,56 (3d)

These boundary conditions of Eqs. (3a~3d)
can be exactly satisfied if a homogeneous solu-

tion of Eq. (1b) is chosen for the Airy stress
function!®.
__¥(2y—3b)
Fo(y) = e M 4)

(2) Simply-supported rectangular plate

The deflections can be expressed for the four
edges simply-supported conditions as

o o0
wo = ¢ Z Zamn sin (m;rx) sin (Zz_%rg) ,  (5a)

m=1 n=1

w=1 i ibmn sin (’”:z) sin (2;’—”) (5b)

mz=1l n=1

where @, are the given quantities of initial de-

flection, and b,,, are the unknown coeflicients to
be determined. m and n are the number of half
harmonic waves in the — and y— directions, re-
spectively. The general expression of F(z,y) is
obtained by summing a particular solution corre-
sponding to the right-hand side of Eq. (1b) using
Eq. (5), and the homogeneous solution Fy(y) of
Eq. (4) as

F(z,y) = Fo(y)
5033 s () o (252) 0
p=0 ¢g=0

Substituting Eqgs. (5) and (6) into Eq. (1b), we
obtain the expression of ¢, in terms of a,,, and
bon as

8(1)2 + 40‘2q2)2
el

Pq —

fe) o0 o0 e o]

Z Z Zz(amnbij + bmnaij + bnlnbi])

m=1n=1 i=1 j=1

- [2mnij & (52 + %)) )
p=m-+1 and ¢=(n+j5)/2

—:< or
p=|m-i| and ¢=[n—j|/2
p=lm—i| and g¢=(n+j)/2

+ or
p=m-+1 and ¢g=|n—j]|/2

where p and g are positive integers, and « is
the aspect ratio of a panel; i.e. a = a/b. The
final equation to be solved with Eq. (7) can be
obtained by the direct substitution of Eqs. (5)

and (6) into Eq. (la?, but it turned out to be so
complicated that Galerkin’s method is applied to
Eq. (1a) in the form as

fre(bmn, A) =

et Py L [PF 9 (w+wo)
s Jo D |3y 22

0 °F P (w+ wo)] }

+82F 3% (w + wo)

Jz? dy? - “0zdy  Bzdy
-sin (m) sin (f_ﬂ{) dedy = 0,
a b
rs,mmn=123,--- (8)

where w is a function of b,,, by Eq. (5). More-
over, these equations can be rewritten as

frs(bmny /\) = frs(bll 5 b12, e

r,m:l,-~~,u,

,bmny"'ybuu,A):O,
s,m=1,---,v (9)

where A (= M/D) is the loading parameter of the

applied bending moment, and u,v are the maxi-
mum number of modes involved in calculating the
out-of-plane deflection assumed by Eq. (5). By
substituting Egs. (5) and (6) into Eq. (8) and in-
tegrating it, we obtain a set of the third-order si-
multaneous algebraic equations of b,,,. The sub-
stitution of the obtained by,,,s into Eq. (5b) yields
the out-of-plane deflection in the post-buckling
state.
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(3) Rectangular plate clamped at two
opposite sides and simply-supported
along the other two sides

The out-of-plane deflections are assumed to be
given by the same shape function as those used

by Moriwaki and Nara2?®) as

o0 o0
. [mTx
wo =1 E E Amn S
a

m=1n=1

~{cos [W] — COs [(71—“‘—‘1)—121!”—] }, (10a)
(n—1)= (n+ 1)
'{COS [——E"J] — CO8 [-—-—b——*—y‘]} (lﬂb)

In this case. the general expression of F(z,y)

must satisfy the boundary condition of Eq. (3)
and is chosen to be

Fla.y) = Foly)

- 2pwx 2qm
+Ei2zz¢pqcos( pa )cos (—Eb——q—)(ll)

p=0 g=0

Substituting Eqs. (10) and (11) into Eq. (lb%,
we obtain the explicit expression for ¢,,, as well
as Eq. (7). Similar to Eq. (8), Galerkin’s method
is employed to solve Eq. (1a) in the form as

fre(bmn, A) =

o V‘lw—j‘_ __07F________32(w+w0)
o Jo D | oy? §z2

OF (w+ wo)} }

?F 9 (w + wo)
dx? dy?

T %8rdy  dzdy

- sin (%—T) {cos [g—s—:{)—”g] — cos {-(—S—LFT])—B{] }dzdy

=0, s,n=1,--,v (12)
By substituting Eqs. (10) and (11) into Eq. (12)
and integrating it, we also obtain a set of the
third-order simultaneous algebraic equations of
bmn. This explanation is limited to the out-of-
plane deflection, and we suggest to refer to the
paper'®) with respect to the boundary conditions
of in-plane deformation beyond buckling.

rm=1,,u,

3. NUMERICAL CALCULA-
TION BY NEWTON-RAPHSON
METHOD

The nonlinear equations of (9) are solved by
the perturbation method of the first order; i.e.
Newton-Raphson method.

(1) Load-control type method

Consider the reference point (%,,A%) on

the equilibrium path and a foregoing point

(B \)=(02,, + Abpyn, A% + AX) with an incre-
ment (Abpyy,, AX). We apply the Taylor expan-
sion to Eq. (9), and neglect the higher term more
than second order to arrive at a set of linear equa-
tion as

[£Pebmn] {Bbmn} + {f7sn} AN = {0} (13)
where

d hd a s
[.ft’(‘)s,bmn] = Z Z 3I;fmn

m=1n=1

0 — afrs
0) {frs,A}z C?A o

if a load increment AX = AX is given, the un-
known quantities {Aby,,} are solved by

{Bbmn) = = [fepnn] " {£22) AX
= = [Rooma] TR0 A+ A0} (19)
As a result, of this (t+1)st approximated coeffi-
cients {bi¥1} (t = 0,1,---) are obtained as
{bin} = {bin} + {Ab5n}
= {biun} = [fobma) ~ {fre} (15)
where
{57} = {Frebia, i, o By B, X+ AN}
A% + AX = const.

Therefore, the determinant of the tangential stiff-
ness matrix just after converged is defined as

ey gt
1Kol = If”vbmr-lconverged ‘ (16)

(2) Displacement-control type method

In the displacement-control type method, the
unknowns in the equation are AX and {b,,,} ex-
cept for the certain coefficient by;. After all, the
total degree of freedom is the same as those of
the load-control method. We, therefore can re-

arrange Eq. (13), and known quantity Aby is
replaced with the unknown quantity AA as

P foevmn) {8%mn } + {flp, } Db = {0}  (17)

where unknown quantities {Akbmn} can be ex-
pressed by
{8bmn} = {Bbis, Abiz, -+, AN, -, Abuy} T
R L I R .
= = [ Pma] T {F W B+ 201, X))
(18)
where { }7 means the transpose of matrix. As

a result, of this (t+1)st approximated value (¢ =
0,1,---) can be expressed as

ot} = Pt} = Phaenn) 7 {8} 19)
where
{f5} = {Fre®hs, blay oo Bl + Dby, B0 A
b3, + Abry = const.

Similarly, the determinant of the tangential co-
efficient matrix after convergence is defined by

e = [Agt
x| = I Frobmn ]converged (20)
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4. METHOD OF CLASSIFICATION
OF SINGULAR POINTS

(1) Method to employ both |K;| and |K,|

Singular points on the equilibrium path ob-
tained by solving Eq. (9) are classified by moni-
toring the determinant of tangential stiffness ma-
trix [K,] for the load-control method, or the
one of tangential coefficient matrix [K,] for the
displacement-control method. The uniqueness of
the solution is evaluated from the value of the
determinant defined by Egs. (16) and (20), and
the singular points on the equilibrium path are
classified!®)~2). Here, simple non-degenerate bi-
furcation points are only considered. On the
smoothly increasing or decreasing equilibrium
path, only one displacement corresponds to one
loading level and vice versa. Therefore, the
uniqueness of solution is assured for both cases,
and results to |K;| # 0 and | K| # 0.

a) Limit point

There is no equilibrium state in the upper load-
ing level of a limit point, but two solutions exist in
the lower range, and hence the uniqueness of the
solution does not hold for either cases. However,
from the viewpoint of displacement, the only one
loading level corresponds to a certain displace-
ment. Therefore, |K;| = 0, but |[K,| # 0 is con-
cluded.

b) Bifurcation point

At a bifurcation point, the uniqueness of so-
lution is not satisfied for both displacement and
loading level. Namely, the determinants of tan-
gential matrices for both method become simul-
taneously singular, that is |K,|=|K,|=0.

As a result, the relationships between the type
of singular point and the value of determinant of
tangential matrices; i.e. [Kj] and [K)], are as
tabulated in Table 1.

(2) Method to employ |K};| and eigen vec-
tor of [A})

Assuming {e} to be the eigen vector of [K}], the
equilibrium points are classified into the following

category?9):

|Ks] #0 ordinary point
=0 singular point
{fren}? {e} =0 Dbifurcation
{ point
# 0 limit point
(21)

where {f.; 2} is called the loading mode vector.

—

Table 1 Classification of singular points

L L 5 [ (K] ]
ordinary point # 0 #0
limit point =0 #0
bifurcation point =0 =0
5. SEARCH OF EQUI-

LIBRIUM PATH AND CLASSIFI-
CATION OF SINGULAR POINTS

(1) Simply-supported rectangular plate

The equilibrium paths of a simply-supported
(4s.s.) rectangular plate obtained by the load-
control method are shown in Fig.2. It is to be
noted that the two symmetrical paths branching
from the bifurcation point with opposite sign ex-
ist according to both sides of a plate, but this
figure includes only one of them. Here, the as-
pect ratio of a plate is set to be a=0.8 so that
the first buckling mode of one half-wave can be
obtained for the sake of simplicity. Although the
width-thickness ratio is assumed to be =200,
the results are all expressed in terms of non-
dimensionalized quantities.

Solid lines indicate the equilibrium points on
which the determinant of tangential stiffness ma-
trix [K}] is positive, while broken lines show
those of negative. A dashed-and-dotted line in-
dicates the abrupt jump of equilibrium paths.
The load-deflection curves at the point (1); i.e.
(0.352,0.70b) as shown in Fig.1 are plotted for
different equilibrium states. The notation m in
Fig.2 means that the principal mode of m among
all components of b,,, dominates the bifurcation
paths, in other words, m-th order of half sine
wave in the z-direction is the principal compo-
nent of the deflection. In this analysis, u=v=6
of maximum order of modes are adopted for the
efficiency requirement of calculation, it may be
necessary to take higher order for larger defor-
mation.

The bifurcation path of the principal mode
m=1 starts from point A, and the out-of-plane
deflection gradually begins to grow with other mi-
nor modes of m=3,5 as the applied moment in-
creases. The out-of-plane deflection of point (1)
has the maximum value in the vicinity of loading
level M/D=100, but decreases after that. An in-
stability phenomena thought to be the secondary
buckling occurs at point B, and bifurcation path
jumps to point D. This point D lies exactly on
the path of principal and single mode of m=3.
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Fig. 2 Equilibrium paths for 4s.s. obtained by load-
control method and the sign of |Kj|

Moreover, the equilibrium path also jumps into
another unstable one indicated by point C with
m=1,3,5, but it ceases to continue smoothly from
the preceding stable path of A—B.

If point B is the limit point on the path of
principal m=1, we can expect that some unsta-
ble paths surely exist in the vicinity of point B.
But in this load-control analysis, the unstable
path followed by point B can not be searched,
thereby we can not certify the physical inevitably
of this jumping phenomenon at this stage of the
research. :

The bifurcation path of m=2 starts from point
E and gradually grows, but the deformation mode
interact with a higher mode m=6. Similarly,
the path of single mode of m=3 increases mono-
tonically from point G. In this figure, the ordi-
nate w/t=0 expresses the trivial solution, and
the points A,E,G,J K are obtained as the singular
points on this axis. In fact, the bifurcation paths
from points A,E,G are traced and plotted in the
figure.

The numerical results obtained by the
displacement-control method are shown in Fig.3.
In the case of the displacement-control analysis,
since the determinant and eigen value of the tan-
gential stiffness matrix [K3] can be obtained in
advance of those of tranformed [K], the check-
ing operation of the determinant is quite easy and
systematic.

The determinant of the tangential coefficient
matrix [K,] is also distinguished by the sign. By
using the displacement-control analysis, equilib-
rium paths beyond point B can be obtained, and
this point B is identified as the limit point. The
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Fig. 3 Equilibrium paths for 4s.s.
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Fig. 4 Instability of equilibrium paths for 4ss.
boundary condition

out-of-plane deflection decreases after point B,
and the path reaching to point H crossing the
axis w/t=0 can be traced. The determinant of
path B-H changes its sign from positive to neg-
ative at the intermediate point L, and the prin-
cipal mode m=1 varies gradually to single m=3
correspondingly. Namely, this L-H path can be
interpreted as the mode transition process from
principal m=1 to single m=3.

The bifurcation paths from points ILF are
searched and plotted as broken lines. The equi-
librium state is composed of all modes of b,,,
in these bifurcated paths, hence the symmetry
of the system is completely lost. It is notewor-
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method for 2c. & 2s.s. boundary condition

thy that the load-control method must be em-
ployed on the ordinate w/¢{=0, because, in the
case of displacement-control analysis, determi-
nant becomes zero on this axis.

Referring to both Figs.2 and 3, we classify the
singular points based on Table 1. At first, it is
found that the point B is a limit point. The points
F.H,I have turned out to be scondary bifurcation
points, in addition to the primary buckling point
AE,G (we can not judge by |K,|). Since the
sign of the determinants of both K} and Ky also
changes at point L, this is a bifurcation point,
but the bifurcation path from the point L are not
found in this paper.

As mentioned above, the singular points on the
equilibrium paths can be classified, but it must be
noted that the sign of determinant of the tangen-
tial matrix is not sufficient index to decide the
instability of their paths. The necessary condi-
tions that the equilibrium path is stable are as
follows: (1) determinant of the tangential stiffness
matrix is positive, (2) all eigen values of the tan-
gential stiffness matrix are positive. The former is
the necessary condition that the energy surface of
the system becomes convex in the downward, and
the later is the necessary and sufficient condition.
Fig.4 shows the re-drawn solid lines which denote
the stable paths fulfilling the positive-definite re-
quirements of the tangential stiffness matrix.

Since the paths E-G,G-H,J-K have the nega-
tive eigen values of even number, the determinant
of the overall matrix becomes positive apparently
as shown in Fig.2 . However, the true stable
equilibrium paths are found to be 0-A-B,F4,I-
D+ as shown in Fig.4, in which the notation '+’

¥
(@) ) @
L \ N -
% 100+ "; ;" all mode
: o i
E R £ -
LT | ]
2 - Ag principal mode I-clamped E
g 501 m=1 M (1.) g) M
R K2l ( 8 D ]
=4 - —
= ——— positive ** 2B P i
I I negative a=0.5, =200
0 —
out-of-plane deflection wi/t
Fig. 6 Equilibrium paths obtained

by displacement- control method for 2¢c. &
2s.s. boundary condition

stands for the production path in the higher load-
ing level.

As a consequence, it is concluded that the pos-
sible equilibrium path of a plate with an infinites-
imal initial imperfection is 0—A-B-D+ only.

(2) Rectangular plate clamped at two
opposite sides and simply-supported
along the other two sides

In this case, the load-control and displacement-
control methods have similar results. Their equi-
librium paths are shown in Figs.5 and 6. We
here focuses on two points (1)(0.35a,0.70b) and
(2)(0.65a,0.70b) in Fig.1.

The primary buckling occurs at point A in the
vicinity of the loading level M/D=60, and the
post-buckling configuration is composed of the
principal modes of m=1 with 3,5. After that,
out-of-plane deflection increases smoothly with
the increase of the loading, but the secondary in-
stability due to bifurcation occurs at point B of
M/D=90.

The deflection of point (1) increases monotoni-
cally, while that of point (2) decreases. The con-
figuration mode of odd numbers m=1,3,5 up to
point B changes to the all mixed one; i.e. the
symmetry of this system with respect to y-axis
vanishes, Since the deflection of points (3) and
(4) of tension sides also shows the unsymmetri-
cal configuration, point G is the secondary buck-
ling point, like the point B. Moreover, the unsta-
ble path B-D+ on the production of A-B is also
found. The primary buckling point F of higher
mode and the bifurcation paths from here are also
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Fig. 7 Instability of equilibrium paths for 2¢. & 2s.s.
boundary condition

searched.

From these figures, with reference to the sign of
determinant of the tangential matrix [A}], [K)]
and referring to Table 1, it can be identified
that the bifurcation points are B,G and A,F on
the w/t=0 axis. Furthermore, the possible stable
equilibrium path is concluded to be A-B-C+ and
A-B-E+ as shown in Fig.7.

6. GROUP-THEORETIC BIFURCA-
TION THEORY

(1) Application of block-diagonalization
technique

We now block-diagonalize the tangential stiff-
ness matrix | fmbmﬁ for the simply-supported
(4s.s.) plate as mentioned in chapter 3. This ma-
trix is denoted by [J¢], and the subscript ( stands
for the number of principal mode of equilibrium
paths; i.e. m={. The tangential stiffness matrix
is block-diagonalized by the coordinate transfer

matrix H'® which implements the properties of
the symmetry of the structural system as follows:

) 0

{Jl] =HT[L]H = L 0 [ﬂns)} (22a
i jgms)

(2] = H" (10 = | }[ié”] 0 , (22b)
0[]

7] = o™ 11 1 =

7] 0
7]

j‘,‘gu) (22¢)

0 |7
In this analysis, the block-diagonalization is ac-
complished simply by the rearrangement of the
rows and columns of [J], because the shape func-
tions of the deflection are given by the Fourier
series. Here, [j;,i])] of the right-hand-side of
Eq. (22) indicates the diagonal block composed
of modes 7,7, - -.

By applying the block-diagonalization
principle,[J;] becomes sparse, and the main path
can be searched only by the relevant condense
block. Bifurcation phenomena can be understood
as the mixing of the mode for main path and that
for bifurcation path through the mode interac-
tion. [j{315)’ fz(%)], jf)} are the main blocks ex-
pressing the main path for m=1,2,3, respectively.

Other blocks or sub-matrices in the block-
diagonalized stiffness matrix also give the bifurca-
tion paths. Generally, the limit point is expressed
by the one at which the main block becomes sin-
gular, and bifurcation occurs when the determi-
nant of the other block becomes zero. The bifur-
cation path retains the symmetry of its singular
block?7),

The symmetric group of each diagonal block in
Eqgs. (22a)~(22c) is as follows:

¥ (577) =00 ¥ (1) =

¥ () =0, (1) - X (5) =,
3 () =0 (3 =0

¥ (5) =0 3 (1) =

where 3 (+) denotes the group representing the

symmetry of the matrix inside the parentheses.
Dy, stands for the dihedral group having the
m-axis symmetry, and C, denotes the rotation
group with rotational symmetry of the angle of
/7.

Moreover, the bifurcation diagram degenerated
by the boundary conditions is shown in Fig.8
for both cases of simply-supported (4s.s.) and
of two opposite sides clamped and other two
sides simply-supported (2¢. & 2s.s.) bound-
ary conditions. The same bifurcation diagram is
applicable to these boundary conditions. Here,
D, indicates the symmetric group of circles
and, simultaneously, the symmetry of the triv-
ial solution of w/t=0. This bifurcation dia-
gram offers a complete rule of bifurcation for
a Dy,-equivalent system. For example, A—B
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means that B-invariant solution bifurcates from
A-invariant one. However, in the actual physi-
cal phenomena, B-invariant solution may return
to A-invariant main path in some cases. These
bifurcation processes can be understood as a nat-
ural consequence of hierarchical bifurcation®,

(2) Classification of bifurcation point by
group-theoretic bifurcation theory

Fig.9 shows the sign of the determinant of each
diagonal block in the block-diagonalized matrix
for all equilibrium paths. As above mentioned,
the solid and broken lines denote the stable and
unstable paths, respectively.

The bifurcation paths for principal m=1,2,3
from the trivial axis w/t=0 have the symmetry
- of D1,D3,D3, respectively. Based on similar con-
sideration, it is guessed that the bifurcation paths
from points J,K as referred in chapter 5 (1) also
have the symmetry of D4,Ds, and the princi-
pal mode of their bifurcation paths will become
m=4,5, respectively.

The symmetries of blocks on the path of m=2
are labeled by D,C3,('y. The main path is ex-
pressed by Dy which is composed of {J;(%) with
symmetric modes of m=2,6. The determinant of
a block for Cy becomes zero (singular) at point F,
and hereafter the bifurcation path C; branches.
In this way, the singular points can be classified
by checking the block which becomes singular.

The main path of m=3 is expressed by the
block with symmetry Dj, but the sign of de-
terminant changes at points H,I in some blocks.
The symmetry of this path is found to be
D3,D4,C3,Cy, and Cy-invariant path bifurcates
from point I as shown in figure. Furthermore,
Dy-invariant path branches from point H and fi-
nally connects with the main path of principal
m=1.

In the principal m=1 path, the bifurcation oc-
curs at point A from the trivial axis w/t=0. A
block for this path has the symmetry of Dy corre-
sponding to the main path and C, for the bifurca-

tion path, respectively. After point B, there exist
the transition paths of B—D+ and descending
path of B-H. In the path A-B-L, the determi-
nant of main block [.]Nl(ms)] changes its sign into
negative at point B only, and returns to positive
in the path B-L.

In this way, the singularity of the main block
in a block-diagonalized matrix suggests the exis-
tence of a limit point, and the descending path
B-H can be expected. Although it is not actu-
ally found in this analysis, the branching path
from the intermediate bifurcation point L on the
B-H path is expected to have the symmetry of
Cy from the property of block-diagonalized ma-
trix. Furthermore, on the other path of B—C+,
C'y block which expresses the bifurcation path be-
comes simultaneously singular, and complicated
behaviors with maintaining the symmetry of D;
are derived. It can be similarly understand as
the bifurcation hierarchy shown in Fig.7 by the
process of Do, — Dy — Cf.

As mentioned above, the block-diagonalization
operation makes it possible to trace the main path
easily by using only the main block of the trans-
formed matrix. If we previously know the bifurca-
tion hierarchy and the bifurcation diagram for the
structural systems by means of the group theory,
the foresighted bifurcation analysis can be car-
ried out with the aid of the block-diagonalization
technique.

In other words, the bifurcation diagram can be
called as a signpost which represents correctly the
bifurcation hierarchy of the system. Therefore,
the mechanism of the bifurcation is already ex-
pressed explicitly by the bifurcation diagram as
shown in Fig.8 even for the complicated prob-
lems such as the post-buckling behavior of an
elastic plate. However, the actual interestings,
such as when the bifurcation occurs, or which bi-
furcations occur faster, are dependent on the in-
dividual problems for each structural system, and
there is no way to know except for carrying out
the actual numerical calculations.

7. EFFECT OF INITIAL IMPER-
FECTION

In this chapter, the influence of the initial im-
perfection on the post-buckling behavior of a
plate is investigated from the diversified points
of view.
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(1) Imperfection sensitivity laws in the
vicinity of stable-symmetric bifurca-
tion point

As the quantitative evaluation method of initial
imperfection, the 2/3rd power law by Koiter?®) is
well known, but physically-meaningless informa-
tion is obtained for the stable-symmetric bifurca-
tion points such as point A in Fig.9. Accord-
ingly, we here adopt the imperfection sensitiv-
ity laws23:24) which is applicable for the stable-
symmetric bifurcation points, to evaluate quanti-

tatively the influence of the initial imperfection.

As an example of stable-symmetric bifurca-
tion points, the post-buckling analysis?¥) for the
simply-supporteéj rectangular plate as shown in
Fig.1 are carried out. Assuming the initial out-
of-plane deflection of magnitude a1y=¢ <0.4, the
observation point of non-dimensionalized deflec-
tion ® = (w + wp)/t is set to be (0.5a,0.7b).
Fig.10 shows the load-deflection curves for var-
ious magnitude ¢ of initial imperfection. These
curves can be approximated asymptotically by

the following bifurcation equation®?)23):

@f + pw® + ge + higher order terms = 0 (24)

in the vicinity of the bifurcation point. f =
AM/D indicates the load increment from the
bifurcation point, and p, ¢ are constants. A
parabola curves of
f=—gu® (25)
(g=40.25, 40.25x4) are drawn from the bifurca-
tion point in the same figure. The value of de-
flection @ = w| Fe—giu? at which these parabola
intersect the load-deflection curves of Eq. (24)
obeys the following 1/3rd power law:
@ = K% * 4 O(e) (26)
The higher imperfection sensitivity is recognized;

i.e. deflection largely varies even for the small
change of initial imperfection, in which

=9

-Although it seems to be strange to evaluate the
deflection on the parabola (25), the deflection at
buckling for the perfect system can be evaluated
by putting g=0; i.e. f=0. The relationships be-
tween the deflection @ at the intersecting points
in Fig.10 and the 1/3rd power of the initial im-
perfection are presented in Fig.11. Linearity of
the relation is surely recognized, and hence an
asymptotic equation (26) is justified. The ap-
proximated values of deflection by the bifurcation
equation (24) are plotted by the symbol (x) in
Fig.10. Good agreement of these approximated
values with analytical ones represented by solid
lines is recognized. The influence of initial im-
perfection in the vicinity of the stable-symmetric
bifurcation points can be evaluated quantitatively
in this manner.

Next, we investigate the stochastic fluctua-

tion of @ when each of imperfection variables
(dq,---,dp) has the normal distribution with zero

average. From Ref. 29), the variable K of Eq.
(26) is expressed by

P

K= Z C,‘d,‘

i=1

(28)

as a function of imperfection variables, in which
¢; are constants. The variable K also obeys the
normal distribution with zero average and vari-
ance o, because the sum of normal distribution is
also normal distribution. The probability density
function fz(®) of variable @ in the left-hand-side
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of Eq. (26) is obtained as

. dK _ 3w° w*
~ = fx(K)—= = ——— —— ],
Folw) = fu \)dw Voxe P ( 20’2)
(—o0 < W < ) (29)

by the variable transformation of the probabil-

ity denmsity function for K, in which & = oe.
Since the assumption that imperfection variables
(dy,-+-,dp) obey the normal distributions with
zero average is relatively valid in view of the cen-
tral limit theorem, Eq. (29) seems to give good
approximation for the probability density of @.

(2) Imperfection sensitivity laws in the
vicinity of relative maximum and/or
minimum point of deflection

Since we can deal with the deflection and load-
ing parameter as the essentially equivalent inde-
pendent variable, the relative maximum and min-
imum points of deflection can be handled equally
with those of loading. By the previous studies®®
about relative maximum and minimum points of
loading, it is found that the extremum points of
deflection have the low imperfection sensitivity in
proportion to ¢ and their values also obey a nor-
mal distribution.

(3) Monte Carlo simulation

Monte Carlo simulation is carried out to inves-
tigate quantitatively the influence of the initial
imperfection assuming the normalized random
number with zero average and variance of unity
as the magnitude of imperfection mode @,,,,. Five
kinds of imperfection patterns and four cases of

a =028, 4ss,
- pure bending
w at (0.5a, 0.7b)

I
o>

S
>

(1) 5=0.875¢'/3

o=l
[\~
T

(2) @=0.582¢'/% 7

Characteristic deflection @

1 1
0 0.2
imperfection parameter €

0.4 0.6 0.8
1/3

Fig. 11 Relationships between @ and ¢!/3

magnitude 1/100, 2/100, 5/100, 1/10 of a,,, are
considered. Representative examples of equilib-
rium path obtained are shown in Fig.12

Various equilibrium paths are obtained for
those imperfections, but they gather in the vicin-
ity of either paths of principal m=1,2,3. Es-
pecially in the case of small imperfections, the
snap-through phenomena also occur almost the
same loading level as the secondary buckling of
principal m=1 path. In these cases, the branch
switching to other paths and the mechanism of
snap-through are categorized into following three
cases:

1) main path O-A switches to A-B, and snaps
to point D from B,

2) main path O-A switches to A-B, and snaps
to isolated point C from B,

3) main path O-A switches to E-F.

The results of simulation show that the case
1) occurs most frequently, but other two cases
seldom happen. The case 2) means the occur-
rence of snap-through to isolated solution, and
this informs us the limit of current methodology
of bifurcation analysis for tracing carefully the
equilibrium path connected to origin. This is the
reason to develop the other method3® by which
the isolated solutions are directly traced.

The bifurcation rules for these three cases is
expressed by

Do = Dy = Dy
Do = D1 = D1 (30)
Do = D>
where = stands for the branching or snap-
through to other paths. It is found that they
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Fig. 12 Relationships between initial imperfection and equilibrium path in Monte Calro simulation

all obey the bifurcation diagram as shown in
Fig.8. It is natural that the path branching
obeys this diagram, but it is interesting that the
snap-through phenomena also keep it. Verifica-
tion of its generality will be a topic requiring fur-
ther studies.

In the vicinity of stable-symmetrical bifurca-
tion point A, fluctuation of deflection becomes
large for the change of imperfection, while be-
comes small in the vicinity of the relative max-
imum point of deflection. This fact assures the
validity of asymptotic law introduced in (1),(2)
of this chapter. However, it must be noticed that
this law is suitable for the local properties in the
vicinity of the bifurcation points or relative max-
imum point of deflection, but can not be applied
to the global features such as the snap-through of
a path to another. This shows the importance of
Monte Carlo simulation carried out in this section
to investigate the global behavior of a plate. It is
concluded that, in order to evaluate the magni-
tude of deflection of a plate, an asymptotic law is
effective for relatively small deflection, while the
post-buckling analysis is necessary for large de-
flection to make it possible to consider the branch
switching and snap-through phenomena.

8. CONCLUSION

The post-buckling analysis is carried out for
both the 4s.s. and 2¢. & 2s.s. elastic rectangular
plates. Numerical classification of the instabil-
ity points (bifurcation and limit points) on the
equilibrium path and the evaluation of deflection
are carried out, and the following conclusions are

have been attained:

1) After the primary buckling of a 4s.s. rect-
angular plate subject to pure bending, it is
recognized that the snap-through phenom-
ena from the path of principal m=1 to single
m=3 occur, and other bifurcation points also
exist. The singular points occurred in a 2c.
& 2s.s. plate are identified to be the bifurca-
tion ones. The whole post-buckling behavior
of a elastic rectangular plate is revealed nu-
merically in this paper.

2) In order to search the equilibrium path be-
yond the limit point, the numerical method
of both load-control and displacement-
control type operations are adopted in this
study, and the possible equilibrium paths
can be obtained entirely. With the use of
these techniques, the bifurcation path from
the secondary buckling point are also traced.

3) Group-theoretic bifurcation theory is ap-
plied for the post-buckling behavior of a
rectangular plate. By applying the block-
diagonalization principle to the tangential
stiffness matrix, the main route of a equi-
librium path can be traced by the block-
diagonalized sub-matrix only. It is numeri-
cally confirmed that the mechanism of bifur-
cation surely follows the bifurcation diagram,
and the usefulness of this theory is verified.

4) The influence of initial imperfection on the
post-buckling behavior is investigated nu-
merically by Monte Carlo simulation. The
existence of the snap-through to isolated
path and mode switching phenomena of de-
flection induced by the various imperfection
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are revealed, and hence the importance of
the post-buckling analysis is emphasized.
The post-buckling behavior of a plate is
a complicated phenomena including such
as secondary buckling, snap-through, and
hence the many-sided methodology combin-
ing various methods of analysis is necessary
to reveal it.
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