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Propagation of gravity perturbated waves in a deep oceanic structure was investigated to examine
the effects of compressibility of the ocean as well as solid-fluid interaction on the gravity perturbated
waves. Gravity perturbated waves were calculated from Green’s function represented by the thin-
layered element and discrete wavenumber method. It was found from the numerical calculations
that the compressibility of the ocean affected the amplitude of the gtravity perturbated waves.
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1. INTRODUCTION

In the previous paperl), the author presented
a method for calculating the response of a lay-
ered solid-fluid medium in a gravity field. Green’s
function for the solid-fluid system was repre-
sented in terms of normal modes and numerical
calculations were focused on the propagation of
gravity perturbated waves in a thin fluid layer
which overlies on an elastic half space. The nu-
merical results showed that the effects of com-
pressibility of fluid layer as well as solid-fluid in-
teraction were small on the propagation of the
gravity perturbated wave.

There is a possiblity in that the effects of the
compressibility of a fluid layer on its surface mo-
tions depend on the thickness of the fluid layer.
Because the thickness of the fluid layer in the pre-
vious analysis!) was too thin to exhibit a vibra-
tion due to its compressibility in an appropriate
low frequency range. As a result, the effects of
compressibility on the surface motions became
small. In other words, the gravity perturbated
waves may be affected by the compressibility of a
fluid layer in a deep oceanic structure.

Gravity perturbated waves in an oceanic struc-
ture caused by earthquake motions are called
tsunamis. So far in the research field related to
the propagation of tsunamis®), the compressibil-
ity of the fluid has been neglected. In this pa-
per, propagation of gravity perturbated waves in

a deep oceanic structure is investigate to examine
the effects of the compressibility of a fluid layer.

2. OVERVIEW OF THE METHOD
FOR THE ANALYSIS

Numerical calculations in this paper is per-
formed using a thin layered element and discrete
wavenumber method?. The response of a solid-
fluid medium in a gravity field is represented in
terms of normal modes as follows,
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where (r, ¢) denotes the cylindrical horizontal co-
ordinate, ¢ time, u the displacement field in the
elastic solid, ¢ the displacement potential for
fluid layer, [V;"] the modal matrix for the solid-
fluid system in which k&, is the discrete wavenum-
ber and m the azimuthal order number, [A}" (t)]
describes the vibration property of the normal
modes, [M] the mass matrix for the solid-fluid
system, F{ and G the source function in the
wavenumber domain, and [C} (, ¢)] the horizon-
tal wave function® including the surface vector
harmonics®.

23 (239)



3. ANALYSIS OF GRAVITY PER-
TURBATED WAVES

(1) Analyzed model

Analyzed model is shown in Fig. 1, in which a
deep ocean overlies on an elastic half space. For
the analyzed model, the depth of the fluid layer is
5.57 km, mass density of the fluid py 1.0 g/cm3,
sound velocity of the fluid ay 1.52 km/s, S wave
velocity of the solid (s 4.56 km/s, P wave veloc-
ity of the solid as 7.95 km/s, and mass density
of solid p 3.0 g/cm®. The analyzed model in-
troduced here is an oceanic structure around the
Solomon Islands®.
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a;=1.52 km/s (depth=>5.57 km)
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Fig. 1 A deep oceanic structure for
layered solid-fluid model

Table 1 Thickness of the thin-layered
elements in the solid

thickness of
depth (km) the elements (km)
0.0-2.0 0.25
2.0-8.0 0.50
8.0-20.0 1.00
20.0-40.0 2.0
40.0-70.0 5.0
70.0-100.0 10.0
100.0-200.0 20.0
200.0-500.0 50.0

A rigid boundary is imposed at a depth of 500
km from the surface of the elastic solid to ob-
tain normal modes as well as to define the time
window in which reflected waves from the rigid
boundary do not arrive. The thickness of the
thin-layered element in the fluid region is set at
278.5 m, while that in the solid region is shown
in Table 1. As can be seen in Table 1, the size
of the thin-layered elements in the solid at the
depth from 200 km to 500 km is rather rough.

However, as shown later, these thin-layered ele-
ments do not cause reflacted waves affecting the
accuracy of numerical results. The thickness of
the thin-layered element in the fluid layer is de-
termined so that a fluid pressure can be obtained
accurately from numerical differentiation of the
displacement potential.

(2) Dispersion curves

Dispersion curves for the oceanic structure
with the imposed rigid boundary are shown in
Fig. 2. Dispersion curves give the relationship
between the phase velocity of the normal modes
and frequency. In Fig. 2, the ordinate denotes
the dimensionless phase velocity as the ratio of
actual phase velocity § to S wave velocity of the
solid [s.
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Fig. 2. Dispersion property of the normal modes.

Most of the dispersion curves tend to flatten
out near the P and S wave velocities, which shows
that undispersed body waves can be synthesized
from the dispersed body waves.

Among them, there are two kinds of normal
modes which do not synthesize the body waves.
One of these dispersion curves has a very low fre-
quency and phase velocity, and others are located
in the region where the phase velocity are not so
small but always less than the S wave velocity.
The normal mode having a very low phase veloc-
ity and frequency is for the gravity perturbated
wave mode, while normal modes whose phase ve-
locity is higher than the gravity perturbated wave
mode are the Rayleigh wave modes. Note that the
phase velocity of the Rayleigh wave modes flatten
out at the sound velocity of the fluid layer. ‘

The dimensionless phase velocity for the grav-
ity perturbated wave near 0 Hz gives about 0.05,
which agrees with a result from the following

equation,
c= \/ﬁ/ Bs 2
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where H denotes a depth of the fluid layer. Equa-
tion (2) gives the phase velocity of the gravity
perturbated wave for incompressible fluid on a
rigid bottom at the infinite wavelength. This
agreement predicts that the effects of compress-
ibility of fluid layer as well as solid-fluid interac-
tion are small for the gravity perturbated wave
near the infinite wavelength.

To examine the accuracy of the normal modes
obtained here, dispersion curves calculated from
the period equation!) are added to Fig. 2. It
is found from Fig. 2 that present dispersion
curves and dispersion curves obtained from the
period equation are almost in complete agree-
ment, which validates the accuracy of the present
solutions. In a certain frequency range, the phase
velocity of the gravity perturbated wave obtained
from the prsesent method shows difference from

that obtained from the period equation. Since

the difference exists in the region where the phase
velocity is very low and the phase velocity is ex-
pressed in terms of the log scale, the actual differ-
ence is small. The difference of the phase velocity
is due to numerical errors.

(3) Modal shapes

To investigate the solid-fluid interaction effects,
modal shapes for the gravity perturbated wave
as well as the Rayleigh wave modes are shown in
Figs. 8 to 5. The modal shapes are normal-
ized so that the amplitude of fluid pressure has
a unity amplitude. To examine the accuracy of
the present modal shapes, modal shapes obtained
from the period equation are added to Figs. 3
to 5.

Figure 8 shows the modal shapes for the grav-
ity perturbated wave. It is found from Fig. 3
that solid-fluid interaction effects are small in the
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gravity perturbated wave modes. Because the
amplitide of the solid displacement due to a unity
amplitude fluid pressre is almost equal to that
obatined from thin fluid layer model .

Figures 4 and 5 show the modal shapes for
the Rayleigh wave modes, in which Fig. 4 de-
note the fundamental mode and Fig. 5 the 1st
higher modes, respectively. It is found from these
figures that solid-fluid interaction effects are very
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(a) Fluid pressure.

the direction of the point load is vertical and the
location of the point load is near to the solid-fluid
interface boundary.

Figure 6 shows the displacement snapshots at
10 s. It is found from Fig. 6 that displacement at
the fluid surface is larger than that at the solid-
fluid interface, which shows that displacement at
the fluid surface is amplified. The amplification
is caused by the free vibration of the fluid layer
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Fig. 5. Modal shapes for the 1st higher Rayleigh wave mode (1.0 Hz).

small when compared with the gravity pertur-
bated wave mode in Fig. 8. Furthermore,
the effects of the solid-fluid interaction are also
small when compared with the thin-fluid layer
model?). The difference of the effects of solid-
fluid interaction in the Rayleigh waves is due
to the rigidity of the solid. The rigidity of
the solid, p =6.23x10"kN/m?, for the present
oceanic structure is much higher than that for the
thin fluid layer model presented in the previous
paper?). In case that the rigidity of the solid is
high, the displacement amplitude of the Rayleigh
wave mode due to the fluid pressure are small.
As a result, the effects of solid-fluid interaction
become small.

(4) Propagation of gravity perturbated
waves

Displacement snapshots for the fluid surface
as well as the solid-fluid interface are shown in
Figs. 6 to 10 to investigate the gravity per-
turbated waves. In these figures, displacement
is due to a vertical point load of a step function
time history which is located at a depth of 3 km
from the solid-fluid interface boundary. The in-
tensity of the point load is set at 1.0 x 109 kN.
The point load is set up so that the gravity per-
turbated waves become outstanding. Therefore,

due to natural frequency, which is related to the
compressibility of the fluid layer. The depth of
the ocean is deep enough to vibrate due to its
compressibility in the low frequency region where
the gravity perturbated wave mode exists. For
example, the natural frequency of the ocean due
to its compressibility becomes,

% —0.07 Hz

i 3

when the ocean bottom is assumed to be rigid.
According to the dispersion curves shown in Fig.
2, the gravity perturbated wave for the oceanic
structure propagates at the frequency of 0.07 Hz.
As a result, the gravity perturbated wave and the
Rayleigh wave were coupled and the displacement
at the fluid surface of the oceanic structure was
amplified.

Figure 7 shows that displacement snapshots
at 15 s. It is found from Fig. 7 that the grav-
ity perturbated wave propagating toward the far
field from the source can be seen. The wave ve-
locity of the gravity perturbated wave for the
present model is higher than that for the thin
fluid layer model shown in the previous paper?).
The diffrence of the wave velocity for the grav-
ity perturbated wave between these two models
are due to the difference of the depth of the fluid
layer.
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Fig. 6. Displacement snapshots (t=10 s).
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Fig. 7. Displacement snapshots (=15 s).
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Fig. 8. Displacement snapshots (=20 s).
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Fig. 9. Displacement snapshots (=25 s).

Figures 8 and 9 show the displacement snap-
shots at 20 and 25 s, respectively. These figures
indicate that displacement at the center of the
fluid increases again, which shows that another
gravity perturbated wave causes. Since the point

load applied in the analysis had a step function
time history, the gravity perturbated wave shown
in Figs. 8 and 9 is caused by the free vibration
of the fluid layer due to its compressibility.
Figure 10 shows the displacement snapshots
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Fig. 10. Displacement snapshots (t=30 s).

at 30 s. It is found from Fig. 10 that the gravity
perturbated wave caused at 20 s and propagtes
toward the far field from the souce.

According to the displacement snapshots for
the solid-fluid interface shown in Figs. 6 to 10,
displacement at the solid-fluid interface gradually
decreases as time passes. The decrease in dis-
placement at the solid-fluid interface presented
here is larger than that shown in the previous
paper?. The gravity effects in this analysis are
found to be larger than that in the previous anal-
ysis. This is because the mass density of the solid
in this analysis is larger than that in the previous
analysis.

According to the displacement snapshots
shown in Figs.6 to 10, the deformation of the
solid-fluid interface boundary are not affected by
the reflected waves from the imposed rigid bound-
ary as well as the thin-layered elements at the
depth from 200 km to 500 km, which validates
the effectiveness of the present analyzed model.

4. CONCLUSONS

Propagation of the gravity perturbated waves
in a deep oceanic structure was investigated in
this paper. It was found from the numerical cal-
culations for the deep oceanic structure that the

compressibility of the fluid layer affect the dis-
placement amplitude of the fluid surface. Dis-
placement at the fluid surface was amplified by
the vibration of the fluid layer due to its com-
pressibility. In other words, the gravity pertur-
bated wave and the Rayleigh wave modes were
coupled in a deep oceanic structure. The cou-
pling of these two wave modes can be occured in
case the natural frequency of a fluid layer due to
its compressibility is very low.
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