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In finite element analysis, a kind of instability, which is called the hourglass mode, arises when
one-point quadrature integration rule is used to calculate the stiffness matrix for the 2-D quadri-
lateral element. To control the instability, various kinds of methods have been proposed, among
them, the one proposed by Kosloff and Frazier!) is thought to be the most effective and simple
one, but in their paper, they confined the hourglass control method within the elastic problems.
In this paper, the details of how to apply the hourglass control method in nonlinear analysis is
presented, and a modified scheme is proposed to obtain the accurate nonlinear element response.
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1. INTRODUCTION

It has been known for long time that one-point
quadrature integration rule provides tremendous
benefits in finite element algorithms because the
number of evaluations of the semidiscretized gra-
dient operator, commonly known as the [B] ma-
trix, and the constitutive equations, is reduced
substantially. For example, in two dimensions
fully quadrature integration rule generally re-
quires 4 quadrature points, while in three dimen-
sions, it requires 8 quadrature points. Also stud-
ies suggest that the rate of convergence of one-
point quadrature element is comparable to that
of fully integrated elements.

However, the use of one-point quadrature inte-
gration rule results in certain hourglass modes,
or zero-energy modes. The term “zero-energy
mode” refers to a nodal displacement vector {u}
that is not a rigid-body motion but neverthe-
less produces zero strain energy {u}? [K]{u} /2,
where [K] is the up-dated stiffness matrix. If a
mesh is consistent with a global pattern of these
modes, they will quickly dominate and destroy
the solution.

Some methods have been proposed to rem-
edy this phenomenon. These methods include
the ones proposed by Kosloff and Frazier!),
Belytschko and Kennedy? and Flanagan and
Belytschko®. The method proposed by Kosloff

and Frazier has been thought to be the most ef-
fective one when the rectilinear element is used.

In Kosloff and Frazier’s paper, a simple scheme
was proposed to control hourglass instabilities by
adding an hourglass response matrix to a one-
point quadrature stiffness matrix, and it was also
shown that for two-dimensional rectilinear ele-
ments the element is identical to the incompatible
element introduced by Wilson et al.¥ However, in
Kosloff and Frazier’s paper, nothing was included
in the scope of nonlinear analysis.

In finite element method for nonlinear analysis,
there are two places, where the integration rule is
used, one is in calculating the tangential stiffness
matrix and the other is in calculating the residual
force vector of the element.

This paper can be treated as a complement to
or extension of Kosloff and Frazier’s paper by ap-
plying their hourglass control method in nonlin-
ear analysis. In section 2, the derivation of hour-
glass control method, which is different from the
one presented by Kosloff and Frazier’s paper but
has the same result, is shown, and then in section
5, the methods how to apply this hourglass con-
trol method in nonlinear analysis are described
(how to obtain the tangentiial stiffness matrix,
how to calculate the stresses and strains inside
the element and how to evaluate the residual force
vector). Finally, in section 7, the nonlinear re-
sponse results, which are obtained by the method
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developed in section 5, are compared with those
by use of the incompatible element. It is found
that when element has stronger pure bending
modes (this is often the case of thin structure),
there will be great difference between nonlinear
response results obtained by the method devel-
oped in section 5 and those obtained by the in-
compatible element. To solve this problem, in
section 6, a modified scheme is proposed to ob-
tain the accurate response of the structure in non-
linear region when the element has stronger pure
bending modes.

Just as pointed out by Kosloff and Frazier, the
scheme in this paper appears to be relatively eco-
nomical in computation and has an added bonus
of accurately representing flexural modes of defor-
mation. Moreover, the scheme can be applied in
the finite element with a discontinuous displace-
ment field to solve the problem of strain localiza-
tion with more simplicity and efficiency than the
other integration rule®).

In section 5, the identity between the tangen-
tial stiffness matrix obtained by hourglass con-
trol method and that obtained by the incom-
patible element with full integration is shown.
Therefore, the method described in this paper
can not be used to solve the element locking
phenomenon when the material tends to become
incompressible®).

The discussions of this paper are confined
within the rectilinear element. The research for a
more general case will be presented in the future
publications.

2. HOURGLASS CONTROL
METHOD IN ELASTIC
ANALYSIS

A more clear way of derivation of hourglass
control method, which is different from the one
presented by Kosloff and Frazier’s paper but has
the same result, is shown as follows.

Fig.1 shows the eight independent displace-
ment modes of a four-node plane element. The
strain energy in an element U, can be expressed
as:

Ue = 3 {w) (K] {u}
1. .7 T
= 3w [ (BI"D]Blds {u)
=3 [ @' Dl (1)
where {u} is the displacement vector, [K] is the

element stiffness matrix; [D] is the material con-
stitutive matrix, [B] is the strain matrix, ve is
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Fig. 1 Independent displacement modes of a four-
node plane element

the volume of the element and {e} is the strain
vector.

The first three are rigid-body modes, for which
U, = 0, as is correct. The next three modes
4,5,6 are constant-strain modes, for which U, >
0, regardless of the quadrature integration rule
used. Modes 7 and 8 are bending modes. Because
at their center, 0,0, and 74, always are zero,
according to Eq.(1), U, becomes zero when using
one-point (center point) quadrature integration
rule.

These two modes are called as hourglass modes,
because of their shape configurations. These
hourglass modes are often a nuisance in numer-
ical calculation when one-point quadrature inte-
gration rule is used.

To control these zero-energy modes, restraints
are introduced, but at the same time it is required
not to affect the element’s response to the already
existing modes that have already worked well.
For simplicity, let us consider only the x-direction
nodal displacement {u,} of the element shown in
Fig.1. For modes 1 and 8, displacements along x
direction equal to zero, an arbitrary combination
of modes 2 through 7 is

{uz} = {uz} + {us} + {us}
+ {us} + {ue} + {ur}
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To provide mode 7 with the stiffness it lacks

under one-point quadrature, we add [K]7 to the
stiffness matrix, where

[K]7 = {ur}{ur}” (3)

By the same way, [K]s can be added to the
stiffness matrix computed by one-point quadra-
ture to prevent the mode 8 occurring.

It is possible to choose values of a7 and as
such that a rectangular element displays the ex-
act strain energy in states of pure bending. So in
this case

wr=(57)? (4)
as = (2 2y} (5)

where A and B are the lengths of the element
(Fig.1) and E is the Young’s modulus of the ma-
terial.

Finally, the hourglass control matrix is ob-
tained as:

[ ¢2 0 -a2 0 a2 0 -a2 0
0 ¢ 0 -a2 0 a 0 -—a
-a2 0 a2 0 -a} 0 a2 0
0 —-a 0 a 0 -ai 0 a
a2 0 -a2 0 a2 0 -d¢ 0
0 e 0 -a2 0 a 0 -d?
—a2 0 a2 0 -a2 0 a? 0

. 0 —a2 0 a2 0 -a2 0 a2

(6)

where t is the element thickness.
So in the elastic problems the element stiffness
matrix can be obtained as:

(K] = [Klos + [K]a (7
where [K Jo4 is the rectilinear element stiffness
matrix calculated by one-point quadrature inte-
gration rule.

3. NONLINEAR ANALYSIS IN
FINITE ELEMENT

The places in nonlinear finite element analysis,
where the Gauss quadrature integration rule is
used, are briefly shown as follows.

¥

K]

External Force 5t

¥

Displacement u

Fig. 2 Nonlinear analysis

There are two places where the Gauss quadra-
ture integration rule is needed. Omne is when the
up-dated element stiffness matrix is calculated,
the other is when the vector of residual or so
called out-of-balance force is calculated(Fig.2).

Eq.(8) is used to calculate the up-dated stiff-
ness matrix,

(K] = [ (BIT DBl ®)

where [B] is the strain matrix and [D.p] is the
up-dated constitutive matrix.

The residual force vector can be calculated by
using the following equations:

{Q} = {R} - {F} ©)
{F}= [ B (o} v (10)

where {Q} is the residual force vector, {R} is the
external force vector, {F} is the equivalent nodal
force vector corresponding to the element stress
and {o} is the stress vector of the element.

4. INCOMPATIBLE ELEMENT
(Q6 ELEMENT)

The incompatible element, which usually is
called Q6 element, was firstly introduced by Wil-
son et al.¥) to finite elements in order to enhance
their convergence in beam problems.

Now the Q6 element is briefly reviewed. By
adding the two bending modes into the Q4
quadrilateral isoparametric element displacement
field, it become

4 2
u= Z u; N;(s,t) + ZaiPi(s,t)
=1 i=1

where

(11)

(12)
(13)

Pi(s,t) = (1 —s%)
Py(s,t) = (1—1%)

and s, t are the natural coordinates.
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The relation between the strain and the node
displacements and interior freedoms are as fol-
lows:

€z 4 . :
{ ;fy } = ;[Bz']{ - }+;[Gz]{ o }

7=1
(14)
where
Niz 0O »
[B=| 0 Ny (15)
N’i,y Ni,x
Pz 0
[Gi]=| 0 Py (16)
—Pi,y Pi,x

By using Eq.(8), a 12 x 12 element stiffness

matrix can be obtained as
KTLTL Knm
[ o gomm | an

In this stiffness matrix the superscript m refers
to the four new degrees of freedom a; and n refers
to the eight degrees of freedom of the quadrilat-
eral isoparametric element. By condensation”,
the 8 x 8 incompatible mode stiffness matrix is
given by

(K™ = k"] - [K"" K™™' K™]  (18)

Stresses and strains are calculated by using all
element freedom, including the a;, by Eq.(14).
When we use Eqgs.(9) and (10) to calculate the
residual force, a; will not be included in Eq.(10).

Kosloff and Frazier identified the similarity be-
tween the hourglass control method and the Q6
incompatible element. In elastic region, the stiff-
ness matrix obtained by using the hourglass con-
trol method(Egs.(6), (7) and (8)) and that by us-
ing the Q6 element are the same.

5. HOURGLASS CONTROL
METHOD IN NONLINEAR
CALCULATION

In section 2, the hourglass control method in
elastic analysis has been reviewed and the iden-
tity of using the hourglass control method and
the Q6 element in elastic region has been proven.
However, in inelastic region, some problems of
how to apply the hourglass control method still
have not been solved. Firstly, when the tangential
material constitutive matrix is given, how to ap-
ply the hourglass control method described above
to obtain the same tangential stiffness matrix as
that obtained by Q6 element. Secondly, how to
calculate the stresses and strains inside the ele-
ment. Thirdly, how to calculate the residual force

when the hourglass control method has been used
in calculating the tangential stiffness matrix in
nonlinear analysis.

In this section, the way to apply the hourglass
control method in nonlinear analysis will be de-
veloped.

(1) Tangential Stiffness Matrix

In inelastic region, to obtain the tangential
stiffness matrix, values of £, and F,, which corre-
spond to the up-dated material constitutive ma-
trix [ Dy | of material, should be substituted into
Egs.(4) and (5), that is:

E.B.1

a7—-(—1—2—z) (19)
E, A

as=(725)? (20)

and then by using the Eqgs.(6), (7) and (8), the
tangential stiffness matrix can be evaluated.

Supposing the material with the tangential
constitutive matrix [De,) is exposed only to the
stress increment along x direction, the value of
E, can be evaluated from the relation between
the stress increment of x direction and the result-
ing strain increment along x direction.

By setting the stress increment vector as:

{6} = (62,0,0,)" (21)

and substituting it into the up-dated stress-strain
relation, we will obtain

[Dey) {€} = {o} (22)
or
D1y Dy Dis Eg Oz
Dyy Dyy Das €y p=4 0
D3y D3z Dass Yoy 0

(23)

From the equation above, by Gauss elimina-
tion, the second and third terms in the first line
of [Dep) can be changed to zero. So, the equa-
tion of ¢, = Eyé, can be obtained and E,
can be evaluated. By the same way, by setting
{6} = (0,5,,0)T, E, can be evaluated.

In this research, arbitrary values of [Dep] has
been assumed. The hourglass control method
(Egs.(6), (7), (8), (19) and (20)) and the Q6 ele-
ment (Eq.(18)) are used to calculate the stiffness
matrix respectively. The two results of the stiff-
ness matrix turn out just to be the same for any
arbitrary values of [Dy]. This means that the
identity of the hourglass control method and the
Q6 incompatible element method exists not only
in elastic region but also in inelastic region.
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Fig. 3 Strain caused by hourglass mode

(2) Element Strain and Stress Calcula-
tion

When hourglass control method is used, the el-
ement stiffness matrix is the same as that when
the Q6 incompatible element is used. The same
result can be concluded for the element nodal
displacements. However, when the strain and
displacement relation of Q4 element (Eq.(24)) is
used to calculate the strain,

Ex 4 s
{ o } =Bl =3BI{ | o

where [B] is the same as that in Eq.(14), the
strain is correct only at the integration point
(where t = 0 and s = 0) , note that when
t = 0 and s = 0, the strain {€} obtained by us-
ing Eq.(14) does not include any pure bending
modes effect (Fig.1, modes 7 and 8), because at
this point [G]= [0].

However, since {u} is known, it is possible to
calculate the strains and stresses caused by hour-
glass modes (pure bending modes).

For simplicity, let us consider the x direction
bending mode. Suppose the element has the
nodal displacements along x direction only as
in Fig.3, they can be divided into four modes,

modes 2, 4, 6 and 7. So the strains caused by
mode 7 at the point at y distance from the x axis
will be

Ea7 = E% (d1 — dy + d3 — d) (25)

ey7 =10 (26)

where d; (i = 1,2,3,4) is the nodal displacement
along x direction.

For the same reason, strains caused by mode 8

at the point at x distance from the y axis will be

(27)
(28)

Erg = 0
z
AB
where ¢; (I = 1,2,3,4) is the nodal displacement
along y direction.
The stresses caused by the modes 7 and 8 are

Eyg = (e1 —ex+ €3 —eq)

Op7 = Eyeyr (29)
oy =0 (30)
Tz8 = 0 (31)

oys = Eyeys (32)

By adding 0.7, 0y7, 058 and oyg into the stresses
at center point, correct stresses at any point of the
element can be evaluated. The above equations
are also valid for elastic cases by setting £, = E,,.

Actually, the Q6 incompatible element can be
derived directly by requiring that the stress vari-
ation inside the element be of the form:

0, = Cy+ Cuy (33)
O'y = Cg + C3.’E (34)
Tey = Cy (35)

In hourglass control method, when using
Eq.(24) to calculate the strains and the stresses,
the stress vector at point s = 0,t = 0 is

(003 027 04)T'

(3) The Residual Force

According to Eq.(9), the element stresses are
first calculated, and then the equivalent nodal
force {F}, finally the residual force {Q} can be
evaluated. However, as pointed out in section
5.2, using FEqgs.(22) and (24) and one-point inte-
gration rule, the {0} obtained does not include
the stresses caused by modes 7 and 8. The cor-
rect equivalent nodal force {F} of element is the
one obtained by Eq.(10) added with the equiv-
alent nodal force {F,} caused by modes 7 and
8.

From Eq.(7), we can write

(Klga + [K]x) {u} = {R} (36)
Obviously the equivalent nodal forces caused
by modes 7 and 8 are

{F} = [K]x {u} (37)
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So the equation to evaluate the residual force
for hourglass control method is

{Q} ={R} - {F} - {Fs} (38)

where {R}, {Q} and {F} have the same mean-
ing as in Eqs.(9)(10), and {0} is obtained by using
Eqgs.(22) and (24). One-point quadrature integra-
tion rule is used in Eq.(38).

6. COMPARISON BETWEEN
THE HOURGLASS CONTROL
METHOD AND THE Q6 INCOM-
PATIBLE ELEMENT IN NON-
LINEAR ANALYSIS

The hourglass control method in nonlinear
analysis, including the calculation of the tangen-
tial stiffness matrix, the stress and strain of the
element and the residual force vector have been
described in section 5.1 to section 5.3. The non-
linear analysis results by use of the Q6 incompat-
ible element have been proven to be correct in
the past, therefore, in this paper, the results ob-
tained by using Q6 incompatible element with full
quadrature integration rule are used to check the
correctness of the results obtained by the devel-
oped hourglass control method in nonlinear anal-
ysis.

In the hourglass control method, the one-point
(the center point of the element) integration rule
is used in evaluation of the element equivalent
nodal force. At the center of the element, the
stresses, which are the average stresses of the
whole element, are used to estimate the nonlin-
ear response of the element. Therefore, when the
stronger are the pure bending modes 7 and 8
( which means the stresses along x and y direc-
tions change a lot from one side of the element
to the other side of the element, the extreme case
is the pure bending of the element), the larger
are the difference between the element nonlinear
response obtained by using the hourglass control
method and those obtained by using Q6 incom-
patible element method with full quadrature in-
tegration rule. This will be shown in numerical
examples later in this paper.

To solve the problem of the inaccurate non-
linear response of the element in the case stated
above, a modified method is proposed as follows:

1. Use Eq.(7) to evaluate the element stiffness

matrix by using one-point quadrature inte-
gration rule.

2. Use the equations described in section 5.2

to calculate the stresses at the 2 x2 Gauss
points.

3. Use the stresses at 2x2 Gauss points to esti-

mate the nonlinear response of the elements.

4. According to {F} = fvﬁ[B]T {o} dv, use the

stresses at 2x2 Gauss points to calculate the
equivalent nodal forces of the element.

In the step 3, when the 2x2 Gauss points are
used to estimate the nonlinear response of the
element, different values of the tangential consti-
tutive matrix [Dep] of these 4 points can be ob-
tained. By averaging these four [D.,] and using
Eq.(7) to calculate the element stiffness [K], the
convergence tate will become higher when tan-
gential stiffness method (the element stiffness are
recomputed during each iteration of load incre-
ment) or combined algorithm (the element stiff-
ness is recomputed for the first iteration of each
load increment only) are used in nonlinear anal-
ysis.

Although the modified method needs more cal-
culations than the hourglass control method de-
scribed in section 5 does, compared with the Q4
element, obviously it can reduce calculation time
greatly in obtaining stiffness matrix and has the
benefit of accuracy of evaluating the bending re-
sponse of the element. Compared with the Q6
incompatible element, it can reduce calculation
time greatly in obtaining the stiffness matrix and
the stiffness matrix condensation, while it have
the same accurate response in both linear and
nonlinear analysis.

7. NUMERICAL INVESTIGATION

In this section, numerical proof of the above
mentioned algorithm is made in two-dimension
nonlinear finite element analysis.

Two groups of example are investigated. The
first one is concentrated on one element analysis,
the second one is a beam subjected to a trans-
verse external force at the middle of the span. In
this section, OPI (one point integration) method
denotes hourglass control method developed in
section 5, MOPI (modified OPI) method denotes
the modified method described in section 6, Q4
element denotes the 4-node quadrilateral element
and Q6 element denotes the incompatible element
described in section 4.

(1) Element examination
a) Example 1: element subjected to shear
force
An element is subjected to shear force. Fig.4
shows the dimension of the element and the ex-
ternal force. The material follows Jz theory
with the material properties : Young’s mod-
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Table 1 The stress (kgf/ cmz)‘ and displacement(cm) in example 1, when P = 600kgf

OPI method | Q6 element | Q4 element
Y displacement at point A -0.337x107% | -0.337x 1077 | -0.313x 102
Stress at Oy 0.00 0.00 W27
the center oy -60.00 -60.00 0
of the element Toy -120.00 -120.00 V0
Stress caused by Oy -207.84 ,/////////////A://////////////
' hourglass modes at oy -103.92 777000000000
point G (Bas.(29) to (32)) [y | 000 7% i
Stress at Oz -207.84 -207.84 -163.31
Gauss point oy -163.92 -163.92 -163.92
Go Ty -120.00 -120.00 -209.08
Ay?P <
v 25
— £
G, Gs S,
10 X o / e
- Q0 2.0 - =1
=X 7 ~
. . . I~ S
‘ G, e |, Thickness = 1 S 4 o]
P T 15 —ip=stu,
\ & I e
10 (cm) ~ g FBe
&
a 104
.
Fig. 4 Dimension and external force (example 1) -
0.5 ; <@ MOPl METHOD
o S O elemenr
+ o, =2500kg f/cm? ~®---- Q6 ELEMENT
— E; = =10 x 10kg f/cm? ;

E) =2.1x loskgf/cmz

>
E

Fig. 5 Stress-strain relation (example 1)

ulus By = 2.1 x 10%kgf/cm?, plastic modulus
E; = -1.0 x 10%kgf/cm? and uniaxial yielding
stress g, = 2500kgf/cm?. The effective stress and
effective strain relation is governed by the simple
uniaxial test. Fig.5 shows the assuming stress-
strain curve of the material under uniaxial force.

When P = 600kgf, the material is in the elastic
region. At this time, the stresses at the center of
the element and at the 2x2 Gauss points and the
displacement of point A by using OPI method,
Q4 element and Q6 element are shown on Ta-
ble 1, respectively. From the displacement at
point A shown in Table 1, it can be seen that,
OPI method gives the same stiffness as the Q6

0.0
0.00 0.05 0.10 0.15

DISPLACEMENT  (cm)

Fig. 6 Load-displacement curve (example 1)

element, while Q4 element behaves more stiffer
than the previous two. For OPI method, stresses

-at the 2x2 Gauss points are calculated by adding

the stresses caused by hourglass modes ( Egs.(29)
to (32)) to the stresses at the center point. From
Table 1, it can be proven that the stresses at
the center point and at the 2x2 Gauss points by
OPI method are the same as those when using
Q6 element.

Fig.6 shows the relation between the load and
displacement at point A. In this figure, it can be
seen that although the OPI method yields the
same result as Q6 element in linear region, there
is big difference in nonlinear region, while MOPI
method yields almost the same results as Q6 ele-
ment both in linear and nonlinear region.
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Table 2 The stress (kgf/cm?) and displacement(cm) in example 2, when P = 600kgf

OPI method | Q6 element | Q4 element
X displacement at point A 0.171x1072 | 0.171x107% | 0.117x 10'
Stress at oy 0.00 0.00 7
the center oy 0.00 0.00 /////////////
of the glement Toy 0.00 0.00 0
Stress caused by Oy 20784
. hourglass modes at oy 0.00 ,//////////// wp
point Gz (Eqs.(29) to (32)) | Tay 0.00 ///////////////////////
Stress at Oz 207.84 207.84 148.4
Gauss point Ty 0.00 0.00 -29.69
G, Tey 0.00 0.00 -59.38
Thickness = 15
‘ y - p ( cm ) Line of sym.———-‘-)-.
4 G Gs %, mesh a
. . X E;
10 S 3{
G, G | P Thickness = 1 o
) . .30 .30 1 30 1 30 | 30
A [ I I | |
cm )
- 10 ( Line of Sym s
Pl mesh b
Fig. 7 Dimension and external force (example 2)
4.0 -
/ A
?0 3.5 . "
nNe Of SYM et
S 30 f p| mesh ¢
(=3 )‘ 3
a 25 A
U P
~ 20 o T SO e
& I N
215 ]
S Fig. 9 Meshes (example 3)
1.0
T JR MOP! METHOD
e OPl METHOD
0.5 -dv-wes Q4 ELEMENT A
) ~8—— Q6 ELEMENT
0.0 | i Table 2 shows the stresses and displacements of
0.00 0.02 0.04 0.06

DISPLACEMENT (cm)

Fig. 8 Load-displacement curve (example 2)

b) Example 2: element subjected to pure
bending

The material is the same as in the aforemen-

tioned example, but the element is subjected to

pure bending force as shown in Fig.7. When

P = 600kgf, the material is still in linear region,

the element. The same conclusions for Table 2
can be made as those for Table 1. Fig.8 shows
the relation between the load and displacement
at point A. In this example, when element is sub-
jected to pure bending, the stresses at the center
point are so small that, the material seems never
to yield when these stresses are used to evaluate
the material nonlinear response (in the case of us-
ing OPI method). This can be seen from Fig.8
where the load-displacement curve is a straight
line when OPI method is used.
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O
40, = 2500kg f /cm?

E=0

By =21x Io‘slgtgf/cm2

—
g

Fig. 10 Stress-strain relation (example 3)

2.0 i(
o ;
=]
g 1.5 /J
&
2 7
LAt
<10 {'
N
a d
S
= 0.5
= MOPI METHOD
} —s-— OPI METHOD
Q4 ELEMENT
-e---- Q6 ELEMENT o
BEAM ELEMENT

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
DISPLACEMENT (cm)

Fig. 11 Load-displacement curve (mesh a)

Table 3 The displacement(cm) at point A for exam-
ple 3 when P=1400kgf

OPI method Q6 Q4
Mesh a -0.2258 -0.2258 | -0.1541
Mesh b -0.2269 -0.2269 | -0.2030
Mesh ¢ -0.2273 -0.2273 | -0.2080

(2) Example 3: beam subjected to a
transverse force

A beam is subjected to a transverse external
force at the middle of the span. Three types
of mesh used to simulate the response of the
beam, are shown by Fig.9. Fig.10 shows the
material properties with Young’s modulus F; =
2.1 x 10%kgf/cm?, plastic modulus E, = 0 and the
uniaxial yielding stress o, = 2500kgf/cm?. The
material is assumed to follow J; theory.

When P = 1400kgf, every elements inside the
beam are still in elastic region, the displacements
at the middle of the span on bottom side (point

2.0
&
A
o A
2 .
g 15 —
(=] /'/
T~ 7
X /
~ 1.0 =
B
®» y C
Q ﬂ
<
Q
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Fig. 13 Load-displacement curve (mesh c)

A) is shown on Table 3. Because OPI method
can accurately represent flexural modes of the
deformations, even when the mesh with less ele-
ment(mesh a) is used, rather accurate results can
be obtained as shown in Table 3, but Q4 element
behaves more stiffer.

Figs.11, 12 and 13 show the relation between
the load and displacement at point A by using
meshes a, b and ¢, respectively. When meshes a
and b are used, since the pure bending modes of
the element are strong, the OPI method gives an
inaccurate estimation of the structure nonlinear
response (Figs.11 and 12), while a finer mesh
(mesh ¢) is used, the OPI method gives a rea-
sonable result (Fig.13). The reasons of this phe-
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Fig. 14 Deformed mesh ¢ without hourglass control

Fig. 15 Deformed mesh ¢ using MOPI method

nomenon have been stated in section 6. Although
the MOPI method needs more calculations than
the OPI method does, the MOPI method can give
as accurate results as Q6 element does regardless
of the mesh used.

Without hourglass control, the nonlinear cal-
culation can seldom be carried on because of the
affection of the hourglass modes. Fig.14 shows
the deformed mesh ¢ without hourglass control
when very small external force is applied onto
the structure. Fig.15 shows the deformed mesh
¢ when using MOPI method.

8. CONCLUSIONS

An hourglass control method in nonlinear anal-
ysis, including the calculation of the tangential
stiffness matrix, the stresses and strains inside the
element and the residual force vector has been
described in section 5. Compared with the full
quadrature rule, this method can greatly reduce
the calculation time in evaluating the tangential
stiffness matrix, and the residual force vector.
Furthermore, this method has the benefit of ac-
curacy of evaluating the bending response of the
element. But when the pure bending modes of
the element are strong, this method gives inaccu-

rate nonlinear results compared with those when
a full quadrature rule is used. To solve this prob-
lem, a modified method has been proposed in sec-
tion 6. Through numerical examples, it has been
proven that although this modified method needs
more calculations than the method described in
section 5 does, it gives accurate nonlinear results
as those when the full quadrature integration rule
is used regardless of how cores the mesh is, and
can reduce time consumption.

The discussions of this paper are confined
within the rectilinear element. The research for a
more general case will be presented in the future
publications.
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