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AN EXPLICIT GEOMETRICALLY-NONLINEAR
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An actual discretization is presented for the 3-D tetrahedral element in large displacements. After a
decomposition of the total freedom of that element into parameters of position-as-a-rigid-body and those of
deformation, the strain-constant interpolation is applied to the defined deformation. The geometrical
decompositions and the associated force transformations are developed physically in explicit form. While the
material is assumed elastic for finite strains, any geometrically nonlinear effects are taken into account,

systematically and rigorously.
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1. INTRODUCTION

After the strain-constant interpolation applied to
the finite displacements of a solid continuum, the
Green’s strain components are still written in a
quadratic form (double summation) of the nodal
parameters. Based on this kind of sum expression
or matrix notation, the existing FEM formulations
called the B-notation and the N-notation methods
are mathematically accomplished””. However,
their expansions are not to be understood physical-
ly. The stiffness relations are estimated numerically
after the summations executed.

On the other hand, the followings have been
recognized in those finite-displacement problems in
which strains result in a small range : Under a
subdivision into small enough elements, each
element is largely translated and rotated as a rigid
body, but is deformed only to the extent of small
strains. Then, if observed in a coordinate system
which goes with the rigid displacement, the
remaining deformation can be dealt with by the less
nonlinear field equations.

As actual treatment based on this feature, there
exist the two methods in principle. One is the up-
dated Lagrangian description : in an incremental
loading, the spatial coordinates for each element
are moved step by step in close to its previous
position as a rigid body®®%', The other is the
method to separate the entire nodal freedom of an
element into parameters of displacement as a

rigid body and those of deformation®®'9 In
general, this separation method seems effective
only to the small-strain problems under large
displacements. In case of the large (elastic) strains
of a beam or plate, for instance, the deformations
even after the separation remain finite and so much
nonlinear to be adequately interpolated. However,
it is not true of the strain-constant interpolation
applied to a solid continuum : regardless of small or
large strains, that interpolation can give any
feasible constant strain states. As a potential
advantage in this case, it is enough for the
discretization to be developed upon the reduced
degrees of freedom.

The FEM procedure of separation-into-rigid-
displacement-and-deformation has been described
in general terms™'”. And, guided by that study, an
actual discretization is already given to the 2-D
triangular element®. In a complete accordance
with those precedents, the 3-D tetrahedral element
is considered in this study for its specific formula-
tion. The material problems beyond the elastic
range are disregarded, but the entire formulation is
theoretical and rigorous as a geometrically non-
linear discretization.

2. DESCRIPTION OF GEOMETRY

In the 3-D Cartesian coordinates, {z, y, 2z}, we
consider a four-node tetrahedral element (e ). The
unit base vectors into {z, y, z} are denoted by
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Fig.1 Geometry of Tetrahedral Element

{ieys} =iz, iy, i.}. As the element position of (e),
we employ the spatial coordinates of its nodes :

o=z y 2 ( )i C i ¢} (1)
where subscript 4, 7, k and ! stand for the four nodes
G<j<k<lI).

As the element coordinates, a rectangular {z/, ¥/,
2’} is taken in relation to the current configuration :
as shown in Fig.1, z’ is directed from node i to j; in
the base plane spanned by node ¢, j and £,
coordinate g’ is taken from ¢ into the direction
right-angled with x’ to see node & on its positive
side; and 2’ is perpendicular to the base plane to
make {x’, y’, z’} right-handed. The unit vectors
into {x’, y’, 2’} are denoted by {i@y}. In the
initial (stress-free) state, the {z’/, ¥, 2}-
coordinates of material points are employed as
Lagrangian coordinates {§, n, {}.

The shape as a tetrahedron is characterized by
{z’, y’, 2’} of the nodes. By collecting the six
nonzero coordinates into a set (Fig.1), we define
shape of (e):

go={lacfighle (2)

Let the orthogonal matrix relating the element’s
{iwyn) to the global {iga} be denoted by

Gyt =[x D] {iam} (3)

Those g and [£], are determined by {x}e).
For short expression, the position vectors of node 7,
k and [ relative to ¢ are introduced :

(z,7 2 ={xi—x, yi—ys, z— 2},

(2,9, 8 ={z—xi, Y=y, s~ 2},

{‘%, ?7, = {zi—xi, yi—yi, 21— 2:} (4.a-c)
From the geometry shown in Fig.1, we have

I(=lz)=vyZ+5+2 (>0

o(=2-1%) =]z +ui+2D

C(=¢[£|z_az)=Jf2+g2+52—a2 (>0)(5.a-c)

From relations iy =1/1-<Z, 7, 2 {iwa}, iy T=0,

liyl=1 and iy =iy Xi,, the rotation matrix is
derived as
z 7 Z
I’ 1 !
_|2 ez @ ap 2z _az
[tH{xN]w cl’ ¢ ¢’ ¢ ¢l (6)
¥i—z§ Zi—IZ ZTj—j2
c cd 7 cl

The remaining lengths, f, g and 4, in g¢) are now
obtained as the {z’, y’, z’}-coordinates of node [ :

f=d i) =T {de+fi+ 52,

g(=2iy) =%{i“f+ig+z"‘2} ——‘if ,

L]

-

h(=-%<'iz’) :—1— ‘il:

o) (5.d-f)

Sx @ @

Z
A
Let the freedom of three degrees in the spatial
rotation of system {x’, y’, z/} be denoted by
frd.[#](. Then, its spatial position is described by
vo={(z,y 2);, frd.[t]e} (7)
Now, it can be said that v, and g« are a
separation of the total freedom {x}() into the
position as a rigid body and the shape.

Next, we consider the tangent relations for an
infinitesimal variation of {x}«. Those tangent
relations can be derived by the mathematical
differentiations of the former relations. But, the
expansions are much complicated. We here
develop them under the geometrical decomposi-
tions. First, by the use of (6), we re-decompose the
independent displacements into the {z, g, 2}-
directions :

5{x/}(e)= [T( {x})](e)a{.l‘}(e) s
[#]
[z]

[T]le= [¢]

(8.a,b)
[t] (e)

FElement system {z’, y’, 2} itself is rotated by
3{x} . The resolution of this infinitesimal
rotation into components around {igy.n} Is
developed in Appendix I . The resultis as follows :

_a—l.., a., 1.,
50x"‘ ol 52,‘ Clézﬁ-cézk,

06, =+ 0s— 152,
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1., 1.,
00, =—7 0y; +7 0y; 9.a¢)

By the use of those components, the disturbed
{igy) is written as

{igr’y’z’)}z (I71+[o0] @) {i(z'y’z’)}

0, 08y, —06,
[5@]@): —502', O, 519;' (10.8., b)
501!' > —-661" 3 O

where superscript ( )° denotes a quantity after
ozt eo.

Upon the preceding {iwy:} to {x’} ), vectors
i, ik and il after 0{x’}¢ are written as

2]55

b=

i1°

I—0zi+0x;, —0yitdy;, —0z+0z ||iy
a—0xi+0x,, c¢—0yi+0y., —0z+6z |)iv

f—0xi+6x, g—oyi+dy;, h—oz+oz |

(11)
Since [I]+ [0@ ] is a matrix of diagonal 1 and
(antisymmetric) differentials, relation (10) can be
inverted by the transposition :

{igye} = (LI1—= 160 1) {iley}

Introducing this inverse into (11), we have {4°,

(12)

ik®, il°} represented in a matrix form upon the

current {#%,.,}. The nonzero elements in that

matrix are to be [+4l, a+da, c+dc, f+36f, g+0g
and h+0h. After the actual expansion, we have

080=10:i(g)]wi{x}w (13.a)
[Q)w=
1, o, 0, 1,
-1, -7, 0, 0,

0 —(1—%), 0, 0,
-1 -4, -7

o (- -2 o

0, 0, (——1+§)+§(1——‘;—), 0,

0, 0, 0, 0b 0, 0,0, 0
i;, 0, 1,0, 0, 0,0 0
—ﬁ;—, 0, 0,1, 0, 0,0, 0
£ h
ly l: 0, 0, O, 1, 0, 0
_f _ah I3
lr lC 3 03 Oy C’ 0’ 1’ O
1lfag ) _&
0. (%=1, 0 0, £, 0,0, 1
(13.b)

3. INTERPOLATION
TION

OF DEFORMA-

Applying the strain-constant interpolation to the
deformed (e)in the {z’, ¥/, z’}-coordinates, we
have

@& m, 0= {i %_{_lo((logo f">c}
Ha-Ele )
v O= {7] goc}”{ﬁc‘}

Co Colto

2@ n 0=zl

where {lo, ao, co, fo, £, ho} are the lengths in the
initial shape. The associated Green’s strain compo-
nents are obtained as follows :

«=() -1}
el )+ (2 -1)
o)
+hlg(g~gcﬂf—)2+(7t’%)z,_l],
0[(” aOI){ g°a+l’0("0go 1))
e
=g I/~ 2+ 7,21},

e =1\~ )

By employing 71c=2en, 7ee=2ec, Ten=2es as the
alternative shear components, we define deforma-
tion of (e) by

(14.a-c)

(15.a-f)
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e = {ese, e et Tnts Teor Ten) (16)

This deformation is in a one-to-one correspondence

to shape g .
For short expression, the following lengths will
be used in the later expansions :
bo=lo—a0, e@=h—k, doz“g%_fo’
d=E2—, (17.a-d)
By the use of (15.a-f) together with the former (4.a-
¢) and (5.a-f), strain state &, is estimated for
element position {x} . And, we already have (8)
and (13) as the tangent relations from d{x}« to
dgw. By the mathematical differentiation of (15.a-
f), we now have

Oe=[0F(g)]igw (18.2)
[QF(g)]w
z
1z’
a
?;)z(dol_loa) »
_do (dol _ goa
_ loh%< L ¢ +f)’

locgoho (- a??” (d°+‘g‘)““g‘2gq’
2 {ﬂ_gggi},

lohq lo 20{) 2
2 (_al, a
loCo( lo +2>’
0, 0,
1 c
—aolt+1 , -,
locé( Qo 0a ) 2
g (_dol  goa £o -
i\ b 1), g BTk

2 (g Byl g f) 2 (g, g)

Coho —2— lo Co 2 Cohg Co 2
__&d
loCoho ’ O’
1
1060 » Oy

0, 0, 0

0, 0, 0

1 (did _ga L _ 3

h%( lh ¢ +f)’ coh%( gocteog) h2

1 ¢

lOCOhO (_aoH“loa) ’ COhO s 0
I

Toha 0, 0

0, 0, 0

(18.b)

Then, by the chain rule, we have the entire relation
from d{x}e to dew :

dew=[Qx({xN]lwi{x}w (19.a)
[ ({x D] (=[QiTw[Qw[T]w) =

T R Y A

g, g, g o gH, PogE, ; gé, -

iz i iz 1 iz .. gkt ..

Q%Yl) qT%: 4% H q%: H qﬂ&ﬂr: H qf]%: o

R P

g8, q, q& g, e 1 g, 1 df,
(19.b)

where

o
tx=_4£;__(ﬁ - { AP -
qtt 1ok \ o = x+;v),
z__éo_(i ~ 8o o ¥
i kil = x+x),

BT 1 2bodo\ o
= Tocoho {(e0—rim A °)x+ (e +2d) 7

b},
i 1 2a0do -, 5
dt= | 240 4 (b 24 3 0o |,

1 1 _ 2go ~ o X
|7 Ry St s DY
gk —~coh0[lo(,ﬂ,+2do)x o x+x},

1 a
1= [ 80 =) =
anc Coho( lo JC'"JC),
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qé%”=l—01h—{( 1+f§ Z;ZO) +g‘“ *}

_ 1 2do_ 8o pr— 80 -
l]ie loho[ lo Co Ttz } g = loCoho o

i {2
éx_loc ( 200 5

AR ) qé‘#=ﬁf, 25=0

(20.a-x)
Given above are only the coefficients in Ox-
columns of [Qx] . The remainings in Jy- and dz-
columns are obtained by the replace of (T, I, D by
(@, 9 #and (3 2 2, respectively.

4. DEFORMATION FORCE

We here consider an elastic finite-strain problem
in which a strain-energy-density function A (e) is
prescribed in terms of the Green’s strain compo-
nents. The deformation force

ﬁe) = {féE: fnm fCQ ﬁl{ﬁ fce: ﬁ?n} (21)
is defined in the following manner : for variation
Je from a current e, the change of strain energy
of (e)is expressed by inner product fi, - de.
Then, the present fi,)—¢() relation is written as

0A
Jee (=Vooed =V, Ge(: ) ,

fa (=Vooer) =V, 6[61;:; )
where {0z, ***, 0ey} are components of the second
Piola-Kirchhoff stress tensor; and V, is the initial
volume of (e):

(22.2-f)

(Y]

N

locolho[ 1

vp=leghl o 1| I (23)

Sx @ @

B &
N¥

¢

5. RELATIONS FROM f,, TO NODAL
FORCES

Consider the 3-D simple support shown in Fig.2
: node ¢ is fixed; node j is allowed to move only into
z’; and node k is constrained onto the {z/, y'}-
plane. In the following sense, this statically-deter-
minate support is associated with our separation of
{x}© into ve and g, : if that support is fixed in
the space, the change of v, are constrained, but
any deformations are possible by the variety of g,
={lL a c f g h}.

Let the nodal forces be resolved into the global
{z, y, z }-directions. Those components conjugate
to {x} of (1) is called element force :

F,.
z2'j

Fig.2 Nodal Forces in 3-D Simple: Support

{(FYo={(Fs, F, F);, ( );, ( D, ()3 (24)
The transformation from fi,, to {F}« can be
derived in accordance with the former geometrical
decompositions from {x}«) to &o.

Under the simple support fixed, the force
components into g are now denoted by G =
{F, F,, F., Fs, F,, F;} (Fig.2). By substituting
(18.a) into the virtual-work equation

080 Go=080 fo (25)
we have G, related to the deformation force :

G(e)= [QA{‘I (g)](e)ﬁe) ’
[QF (@)=10F(g)]h (26.a,b)

Next, we consider the entire nodal forces
resolved into the element’s {2, ¥/, z’}-directions :
{F/}(Z):{(Fl"; Fy, Fz)u ( );, ( )k, ( )I}
Trivially, FI’ Fz, ka—Fa, Fyk Fg, x[_Ff,
Fy,=F; and F;;=F,. And, by the equilibrium
conditions in {F'}, upon the deformed (¢), or as
the reactive forces in the 3-D simple support, the
remaining six components in {F’}« are deter-
mined. Then, {F} is written in the form

{F}o=108Hg) 6w (27.a)

In the actual result, we can see the contragredience
between this (27.a) and the former (13) :

[QF@)w=[Qf(g)]h (27.b)
Finally, by the inverse rotation to (8), we have the
element force :
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{(Flo=[TUxH1b {F}e (28)

Collecting (26), (27) and (28) into a unified

matrix form, we have the transformation from ff,)
to {F }(e) :

{F}(e)z [QF({x})](e)f(e) ’

[QFlw=[T15[QH [0 ]« (29.a,b)

Apparently, matrix [ Q] is related to [Qxl« of
(19) by the contragredience

[Qr{xN]w=[Qx{xNIE (30)

6. TANGENT STIFFNESS

By the use of (4), (5), (15), (22) and (29), we can
estimate element force {F }, for element position
{x}w. We here consider the associated tangent
stiffness matrix upon freedom {x}w.

By differentiating (29.a), we have

0{F}=1Qrlwdfo+ (3[Qrlw)fo (31)
In terms of the independent  {x } ¢, this 6 {F'} ) is
to be developed into the form

5{F}(e)= [k({x})](e)a{x}(e) s

[klo=lkn{x D]+ [k (f, {x D]
(32.a,b)
Those [kylw and [kl are associated with the
first and the second term of (31), called deforma-
tion stiffness and geometrical stiffness matrix,
respectively.
Under strain-energy-density function A (e)
given, differential 0fi, is related to de. by

0fe=lk(e)]woew,

oA 04
ded’ Deec07en

[ela=V, (33.a,b)
0%2A 0%A

Orendess” oz o
And, e, is related to 6{x } ) by (19). Then, the
deformation stiffness is written as
do=1Qr ()] k()] @z ]ew (34)
By the use of (19) and (30), matrix [@r ({x D]
itself can be rewritten as
(@ (D= @ (NNh=[325]"  (3)
¢ oz} e
Hence, the second term of (31) is developed as
follows :

@GlQr{x Nl fnr
~ [5G 5] Tow)] s

E{x}w

fiy =const.

“ON\NT
= [-a—gl?—} <—a—a£{§(£'§_ ] (e)
(36)

where notation [ ] denotes a three-dimensional

matrix; and subscript means that fi, is

fiey=const.

not subject to the differentiation.
As the actual expansion of (36) : first, we have
the six matrices by differentiating each column of

[Qr ({x})]w (each transposed row of (19.b)) with
respect to {x}; and then as the sum of those

matrices multiplied by respective fee, -+, fen, We

have the geometrical stiffness matrix
[ke (f, {xD]w=

2
0% 0%eny

f“[a{x}z] <e>+f”"[a{x }2] o [66{232] )

+fnc[ 0%rnc ]<e)+f“[ 0%ree L)“}‘fen[ 0%7en ](e)

o{x}? o{x}? o{x)?
(37
where
1 1
l(z) 3y g 9’ O, 0’
0%eee _ 1 0. 0
[a(x)z] @ B ’
Sym. 0, 0
L O -
bg aobo _ﬂ_ 0 ]
Bed’ 1k’ bk’
2
[Lem] - S T, 0
ax)2w 0€o 0Co s
Sym. ~1‘2~ , O
o
L 0
[L‘fc_] -
d(x)*®@
dy g do dodo Zodo do
S (—14Bp), DO, B
lohg < 0 b ) lghﬁ loCohg loh%
dd _ gde o
lgh% ’ loCohg ’ loh(z)
§
g(% £o
Sym. , -2t
ym an’ Lkt
1
3
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azTnC } —
d(x)* @
[ oh (g d\ L[ o\ et2d b | .
lgCoho (1 [ !o)’ lot‘oho (dD ﬁ] lu )' lgCohg ! lGCho —1_2
Z(Iodo f(‘)+2d0 i) 2.
Beshy ' heaho * hoho %9 pd
2g0 1
S m. -, — 2.
Y Cgho Coho LQ -
3 0 1
[ 0%7ee ] - L
(x) e =
2 By 1 & 2 g 1
[(yho (1 ) + lo)' loho( 1+ Co lo )' loCoho ’ lohg
24y __& 1
2y’ locshy” lohy | °
Sym. 0, 0
0 <8
L. _ 3009.ton
[ 20, 1 1
o s .__,(a - b sy g O
1360 lgCQ ¢ 0) lOCO
0%rer ] — _2a0 _1‘ 0
a(x)e l2c,’ loco
Sym. 0, 0
L O =
(38.a-f)

In those matrices of order four, for short express-
ion, only the second derivatives into {x;, x;, T, £}
are presented. In the actual matrices of order 12,
all the cross derivatives into (y, z), (2, ) and (&,
y) result into zero, and the remaining ones into
{yi, ¥i» v, i} and {z, z;, 2, 2} are the same to
(38.a-f). That is, the full matrices are obtained by
replacing each element of matrices (38.a-f) into
diagonal 3 X3 sub-matrix.

7. NUMERICAL EXAMPLE

As an illustrative example, an elastic body of
square cross-section shown in Fig.3 is analyzed.
Each cubic unit is divided in the same way into five
tetrahedral elements. The linear isotropic elastic
relation is assumed : Young’s modulus=2,100.
tonf/cm’ and Possion’s ratio=0.3. With node 1 to 9
being fixed, coupled 3,000. tonf are applied in 10
steps at node 28 and 36 into L y-directions. After
the Newton-Raphson method applied to each load
increment, the final equilibrium configuration is
obtained as shown in Fig.4, where the largest
strain component is e;z;=0.730 in the two elements

3000.ton

Table1 Nodal Positions
for Pgs,=—3,000. and Pss,=23,000. tonf

Fig.4 Deformed Conﬁguration‘

Coordinates Coordinates
Node Node
X v 2 X Y z

1 2. -2. 0. 19 1.140 -2.780 3.795
2 2. 0. 0. 20 1.832 -0.728 3.966
3 2. 2. Q. 21 2. 448 1.272 4.010
4 0. -2. 0. 22 -0. 651 -1. 959 3.922
§ 0. 0. 0. 23 0. 0. 3.969
§ 0. 2. 0. 24 0. 8651 1.959 3.922
1 -2. -2. 0. 25 -2. 448 -1.272 4.010
8 -2 0. 0. 26 ~1.832 0.728 3. 966
9 -2. 2. 0. 27 -1. 140 2.780 3.795
10 1.552 -2.358 1.929 28 0.797 -3. 741 5.381
11 1.925 -0. 337 1.997 29 1. 664 -1.235 5. 807
12 2,229 1.684 2.011 30 2. 455 0.933 5.999
13 ~0. 835 -1.998 1.962 31 ~0. 734 ~2.117 5.798
14 0. 0. 1.985 32 0. 0. 5.873
15 0.335 1.998 1.962 83 0.734 2.117 5.793
16 -2.228 -1.684 2.011 34 -2. 45§ -0.933 5.993
17 -1.925 0,337 1.997 35 -1. 664 1.235 5.807
18 ~1.552 2.8%8 1.929 36 -0. 797 3. 741 5.381

with node 19-28-29-31 and 27-33-35-36. The
nodal positions are given in Table 1.

In this example, the two different methods of
deriving the stiffness relations are adopted, the B-
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notation method” and our method of separation-
into-rigid-displacement-and-deformation. ~ Their
numerical results are the same in five digits. But,
the computation time are different : the cpu time in
the entire executions including 32 times inversion
of the global stiffness matrix of order 81 X 81 are
5.42 and 4.92 seconds, in which 0.82 and 0.32
seconds are estimated for dealing with the element
stiffness relations, for the B-notation method and
the present method, respectively.

8. CONCLUDING REMARKS

The present FEM treatment is as follows :
through the chained geometrical decompositions
where shape g is defined as an intermediate
parameter, element position {x }( is analytically
separated into position-as-a-rigid-body v and
deformation &¢,); deformation force fi, is related to
& under an assumed elastic constitutive relation;
and element force { F'}, is derived from fi,) by the
force transformations associated with the geomet-
rical decompositions. Those {F}«, G and fo
are defined as force components conjugate to
{x}w, 8 and e, respectively. As the result, the
geometrical relations and the force transformations
are related into each pair by the contragredience.
That is, the present FEM relations can be
recognized as a potential problem on any stage of
the formulation, i.e. between £ and &), between
G(e) and L@, OF between {F}(e) and {.’L‘}(e).

Since based upon the same strain-constant
interpolation, our numerical results are not to be
different from those by the N-notation and B-
notation methods. In those existing methods,
however, the significant relations presented in this
study are buried in their sum expressions. The
stiffness relations are estimated after those compli-
cated summations executed numerically. On the
other hand, our entire formulation is lengthy, but is
carried out in explicit form. The numerical
computation is less time-consuming than by the
foregoing methods, for it is only the final relations
to be adopted into the calculation.

APPENDIX I. COMPONENTS OF RO-
TATION BY d{z} @

Since any changes resulting from §{x’}« are
infinitesimal, the rotation of {i, .} is in a linear
vector space. Under the rule of right-handed screw
around the preceding {iww.»}, we consider the
rotation resolved in the form

00=00,10y+ 60,0, +00.1,

As stated in Sec.2, the system {2/, g/, 2’} of

 Fig.A-l rnand 7

element (e) is determined in the space by position-
as-a-rigid-body v, but is not affected by shape g
={l a, ¢, f, g h}. Therefore, no rotation comes
from variation dx; = 61, dxy=6a, dy;=dc, 6x, = df,
dy;=0g or 8z;=0h. The effects of the remaining
components in d{x} are as follows :

dx; — {iwys) is translated into x’, but is not

rotated.
dy; — rotation around i, by angle —dyi/l.

0z — rotation around jk-axis by angle 8zi/n

with n=Ic/y c*+ (I—a)? (Fig.A-1). By

the decomposition around i, and i, this
rotation is written as

00=""L szl + oziiy

8y, — rotation around i by angle dy;/l.

8z; — rotation around ki by angle dz;/7, with 7,

=lc/y/ c*+a® (Fig.A-1). By the decom-
position around i and iy, this rotation is
written as

00=—2 5z;iz,-—%- 52ii

5z, — rotation around iy by angle dzi/c.
By the superposition of those rotations, we have
the result of (9.a-c).
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