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BOUNDS FOR EFFECTIVE MATERIAL
PROPERTIES OF STATISTICALLY NON-

HOMOGENEOUS SOLID

Muneo HORI*

The prediction of the effective properties of heterogeneous materials is of primary
importance in design or analysis. For statistically nonhomogeneous materials, the
prediction is laborious since the effective properties vary depending on various conditions.
This paper presents a method of estimating bounds for all possible effective properties for
given limited information. Considering permeable flow through rock mass as an example,
the bounds are rigorously derived and are compared with ranges obtained from numerical
simulation of heterogencous porous media. The results support the validity of the

proposed method.
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1. INTRODUCTION

In general, a natural geomaterial such as rock or
rock mass is highly heterogeneous. In design or
analysis, however, they are modeled as homo-
geneous with effective material properties that
manipulate their overall behaviors or responses.
This is called homogenization; see Nemat-Nasser
and Hori"?, for an extensive survey of literatures
related to the homogenization. The precise predic-
tion of the effective material properties is essential
in making the design or analysis more rational. For
the homogenization of natural heterogeneous
materials, one may encounter the following two
major problems: 1) the geological structure of the
geomaterials is not uniform, varying in an almost
unpredictable manner; and 2) the information on
the heterogeneities is often limited due to the
difficulty of extensive field measurements; see, for
example, Bear and Buchlin®®, Oda®"” and Long
and Witherspoon” in rock hydraulics. In consequ-
ence, it is laborious to estimate the effective
properties which change place to place in a
relatively large domain.

For man-made heterogeneous materials, such as
composites or metal alloys, the situation is less
complicated ; they are processed to have similar
microstructure everywhere, and necessary informa-
tion is obtained from laboratory experiments.
Hence, while  the prediction of the effective
properties have been studied and a huge amount of
knowledge have been accumulated for such
artificial heterogeneous materials”, the direct
application of the established methodology is not
feasible, unless some special assumptions are
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made; see Bear and Buchlin? for the detailed
explanation of assumptions necessary in analysis of
flow through natural porous media.

The prediction of a single value for the effective
material property is difficult, when the data on the
heterogeneities are limited. For the practical
purpose, it is desirable to predict the range of all
the possible effective properties as well as a single
value that is the most likely to occur. If the extreme
value determined from the range is used, design or
analysis provides a limit state of the best or worst
case of behaviors of the heterogeneous material.
Although statistical analysis is required for the
prediction of the range, one cannot ignore the
mechanism that determines the overall behavior of
heterogeneous materials, i.e., the effective prop-
erties are determined through the relation between
the average field quantities, and hence mere
volume averages of local material properties do not
provide an accurate estimate of the effective
properties when the difference in the local
properties is relatively large. ‘

In various fields of mechanical, electromagnetic-
al, or optical engineering, the need for more
sophisticated treatment of heterogeneous materials
is increasing with the aim of processing advanced
materials with superior properties and conducting
efficient numerical analysis of structures made of
such materials. To satisfy this demand, existing
theories” ™ are unified and more general theories
are being constructed””. Based on the recent
achievement, this paper proposes the method of
predicting bounds for effective material properties
of a general heterogeneous material which has
microconstituents distributed in an arbitrary man-
ner and information for them limited. The key
issue in making the prediction more accurate is
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rigorous treatment of local field variables.

To make access to manipulation easier, this
paper considers a problem of permeable flow
through rock mass as a direct example, although
the proposed method is general and can be applied
to other problems. It should be noted that the
estimate of the effective permeability of rock mass
is one of the current concerns in researches of
determining a deposit site for nuclide wastes. The
structure of this paper is constructed as follows:
first, several remarks on the effective permeability
of highly heterogeneous rock mass are stated in
Section 2. Then, in Section 3, exact inequalities
which constrain the effective permeability are
rigorously derived from physical field equations,
and Section 4 computes the bounds using the
inequality and obtains the closed-form expression
for them. In order to demonstrate the validity of
the proposed method, Section 5 presents the results
of numerical simulation for flow through randomly
generated porous media. It is shown that all the
computed effective permeabilities lie between the
estimated bounds.

2. HOMOGENIZATION OF ROCK
MASS

1t is intuitively acceptable that overall behaviors
of a sufficiently large sample™°"***" determine the
effective property of a heterogeneous material.
Hence, a member or a structure made of this
material can be modeled as one with the identical
geometry but consisting of a fictitious homoge-
neous material with the effective properties if the
microstructure pattern is the same throughout the
member or the structure. This condition is
statistical homogeneity. There are various strict
definitions of the statistical homogeneity, by
making more clear phenomenological observa-
tion'”, considering correlation between the loca-
tions of distinct heterogeneities™™, combining the
stationarity and ergodicity of field variables™, or
applying asymptotic expansion as the microconsti-
tuent size vanishes” ™.

For natural geomaterials, however, the statistical
homogeneity does not hold since the geological
structure can vary in a larger region. The
distribution of geological constituents is statistically
nonhomogeneous; see KFig.1. Indeed, for natural
porous materials, Bear and Buchline” require a
subregion for homogenization to be sufficiently
smaller than the length scale of the geological
structure changes. If a material is statistically
nonhomogeneous, even larger samples do not

foomotel) Guch sample is called a representaive volume element,
though rock hydraulics)® uses a term representative
elementary volume.
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microstructure changes
place to place

Fig.l Statistical homogeneity and statistical nonho-
mogeneity

exhibit common overall behaviors. Furthermore,
the responses of one sample change depending on
loading conditions”. Hence, effective properties lie
in a relatively large range.

In particular, flow through rock mass passes
joints or cracks which are distributed and con-
nected in a statically nonhomogeneous manner.
While Oda™® has proposed a rational method of
estimating the effective permeability in terms of
crack tensor, such homogenization is not applied
when, say, nuclide migration through groundwater
in a large region and in a long time span is
considered to assess the safety of the surrounding
environment. At the current stage, fracture net-
work analysis or a Monte-Carlo simulation for flow
through connected joints is usually applied; see, for
example, Long and Witherspoon®. In fracture net
work analysis, various routes of connected joints or
cracks, which are randomly generated to meet
geological nature of the rock mass, must be
examined.

There is no doubt on the advantage of
homogenization (if possible) when one makes
design or analysis of underground structures in
rock mass using large-scale numerical computation.
The difficulty of homogenization is the statistical
nonhomogeneity of rock mass, which implies the
uncertainty of the effective permeability. As an
alternative, one may consider the best or worst case
for the permeable flow ; such case can be identified
as most or least favorable arrangement of con-
nected joints in rock mass. Such rock mass is
regarded as a porous medium consisting of a set of
subregions with distinct various permeabilities,
whose distribution is statistically nonhomogeneous.
It should be recalled that for statistical nonho-
mogeneous rock mass, the overall flow changes
depending on the boundary conditions, and hence
the prediction of a single value for effective
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Fig.2 Modeling of rock mass as heterogeneous porous
medium

permeability is meaningless.

From the view-point of the probability theory,
the effective permeability is regarded as the
expectation of the relation between the average
flow quantities. The expectation provides an
accurate evaluation when the variation of the
geological data and the associated local permeabili-
ties are relatively small. If the variation is large,
however, a realization of the flow could be far from
the expectation, and hence the prediction of the
largest or smallest flow becomes important. When
the effective permeability attains an extreme value,
such flow is realized. Therefore, the range of all
possible effective permeabilities must be examined

even from limited information on geological data.

3. EXACT INEQUALITIES FOR
EFFECTIVE PERMEABILITY

In this section, exact inequalities that hold for all
possible realizations of flow are derived from field
equations, and the range of effective permeabilities
of a sample is determined. To this end, several
fundamental relations are summarized for the field
variables and their average quantities.

(1) Fundamental Relations of Rock Hyd-

raulies

Let V be rock mass which consists of a set of
subregions with distinct permeabilities; see Fig.2
for modeling of rock mass as a heterogeneous
porous medium. This V is either the whole rock
mass of interest or a part of it. Each subregion,
denoted by 2%, has permeability k%, though its
shape or location is arbitrary. The range of k%s can
be huge, and they can be strongly anisotropic.

A permeability tensor field, k=k (x), which
takes k% in £2%, is then defined. As the most simple
setting, it is assumed that 1) the viscosity of the
fluid is 1 ; 2) the flow is in stationary state ; and 3)
the gravity effect is omitted. The associated field

variables are pressure and velocity, p=p (x) and v
=v(x), which satisfy

QL) =T ®P(I),-verevereeereennrarnmiiaannas (1-a)

Vo0 (2) =0, covveernreeeremriiniiiiiaianenns (1-b)

V(@) =K(X) - qa), coorememeermmnreneeinenns (1-c)
where V is the del operator ((V);=0/0x;), and ®
and “ - ” denote tensor product and contraction.

Namely, Eqgs. (1-a ~c¢) are the definition of
pressure gradient, g=¢(x), the continuity equa-
tion, and the local Darcy law. It should be noted
that the form of Egs.(l-a~c¢) is arranged to
correspond to that of the strain-displacement
relation, the equilibrium equation, and the con-
stitutive relation in continuum mechanics, when p,
g, and v are read as displacement, strain, and
stress, respectively.

The effective permeability of V is defined
through the relation between the average pressure
gradient and velocity. With the aid of Egs.(1-a, b)
and the Gauss theory, the volume integral of ¢ and
v over V can be reduced to the surface integral of

pressure and velocity flux on boundary 8V, i.e.,

where s=s(x) is the velocity flux given by v (x) - v
() with v () being the outer unit normal on 3V;
and <(...)> denotes the volume average of field
(..) (x) taken over V.

The product of the velocity and pressure
gradient, v-q, is called flow energy rate in this
paper. In addition to Eps.(2-a, b), one can deduce
the following relations for the average flow energy
rate:

<v g>—<v>-<g>
=l*f (s—v- <v>) p—a-<g>)dS
VJav q :

.......................................... (3-b)

Equation (3-b) corresponds to Hill’s condi-
tion™""? for strain energy in continuum mecha-
nics.

(2) Exact Inequalities

Although it is usually taken for granted that the
effective permeability of V is unique, the relation
between <g> and <v> varies depending on the
surface conditions on 3V. Indeed, there are two
limiting values of <g-v> among all flows with
common <g> or <v>. The one limiting value is
given by the flow when V is subjected to the

footnote2) Fgs.(3-a, b) hold for any arbitrary pressure gradient field
and divergence-free velocity field.
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uniform velocity flux boundary conditions, i.e.,
s(x)=v(x) -V on dV with constant V. The proof
is straightforward. Designating the resulting fields

by putting superscript s, the positive-definiteness of

k yields

OS<(q~q5)-k‘(q—qs)>. ................ (4)
Applying Eq.(3-b) to the divergence-free velocity,
v’=k-¢°, and the pressure gradient, ¢°—q=V ®
(p°—p), and taking advantage of the boundary
conditions assigned for v, one can compute the
right side of Eq.(4) as

<(g—q) k (g—¢)>

:—_<q.k.q>.._ <qs.k.qs>

FOCUS> - G ceneernnneeanennes (5)

Hence, if the volume average of g coincides with
that of g°, Egs.(4, 5) yields

02<q3.k.q5>__<q.k‘q>‘ ............... (6)
According to the imposed boundary conditions,
<pf-@g*> = <p*>- <g*> holds, and hence k
defined as <v°'>=k <g*> gives <¢* k-¢°>=
<g'>-k-<g*>. It follows from Eq.(6) that for
" all possible realization of flow through V, the above

defined k satisfies

qu"-fc'q"—<q*k~q>, ..................... (7)
with g°= <g>. This inequality can be physically
interpreted as follows:

among all possible flows with common average
pressure gradient, the flow subjected to the

~ uniform flux boundary conditions minimizes
the average flow energy rate.

The other limiting value for the average flow
energy rate can be obtained by considering the
linear pressure boundary conditions, i.e., p (x)=x
- @ on 0V with constant @. If the resulting fields are
designated by putting superscript p, and if k is
defined as <g’>=Fk'- <v’>, then, the follow-
ing inequality is derived in essentially the same
manner as Eq.(7) is derived:

OZU"‘E—LUO’“‘<U'I€_1'U>, ................ (8)
with v’= <p>>. Since v in Eq.(8) is an arbitrary
divergence-free velocity field, the interpretation of
Eq.(8) is

among all possible flows with common average
velocity, the flow subjected to the linear
pressure boundary conditions minimizes of the
average energy flux rate.
An attention must be paid on the difference of k
used in Eqs.(7, 8); the former for the flow under
the uniform velocity flux boundary conditions, and
the latter for the flow under the linear pressure
boundary conditions.

4. BOUNDS FOR EFFECTIVE PER-
MEABILITY

Sharper bounds for the effective permeabilities
of V are obtained from Egs.(7, 8), by using g or v
which is closer to the actual field. Since direct
analysis of heterogeneous V is tedious, this paper
applies an equivalent inclusion method to rock
hydraulics to determine such field variables.

(1) Equivalent Inclusion Method for Rock

Hydraulics

The equivalent inclusion method is to solve an
original problem for a heterogeneous body by using
the solution of an auxiliary problem for a
homogeneous body where an eigenfield is
prescribed”?. The auxiliary problem can be solved
efficiently by using the Green function for the
homogenecous body. For rock hydraulics, the
auxiliary problem is set for a porous medium with
reference permeability k° and an eigenvelocity
field, v*=v*(x), which replace Eq.(1-c) as

() =R q() F ¥ (). eeeeeeerinnnniins (9)
The eigenvelocity corresponds to the local flow that
is caused by the heterogeneity. If the permeability
is smaller/larger than k°, positive/negative v*
should be induced.

Provided that V is a (square or oblique) paral-
lelepiped,®°noe® 3 disturbance pressure gradient
field due to v*(x) can be expressed in terms of
integral operator I'°=I"°(x; v*) which satisfies

NS IO DD =1 1 KT OO RN (10-a)

<Ir°(v)-(k° I (v*)+v*) >=0.----- (10-b)
This operator corresponds to the disturbance of
fields at x that is caused by the existence of the
heterogeneities in whole V. While I'? plays an
essential key role in the following subsections, its
derivations are purely mathematical and omitted
here; see Appendix A for the summary of
derivation.

In order to relate the auxiliary problem to the
original problem, one may choose reference
permeability k° such that k—k° be negative-semi-
definite in V and two pressure gradient fields,
gx)=¢°+I°(x;v*) and ¢ (x)= (k(x)—k°) -
v¥(x), satisfy

0<<(g—q)  (k—k°) - (g—q)>.emee (11)
Equality in Eq.(11) holds if and only if ¢ and ¢’ are
identical, i.e.,

(k@) —k*) v (@)~ T (x; v¥) —g"=0.

........................................... (12)

Since Eq.(12) implies that the velocity field due to
v* is related to the pressure gradient through k, it

foomoted When V is an ellipsoid of arbitrary shape, the same
results can be derived)?,

L
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is equivalent to the consistency condition for the
field in the auxiliary problem to coincide with those
in the original problem. Therefore, as the fields
produced by v* approach the actual fields in V, the
value of the right side of Eq.(11) becomes smaller.
Making use of Egs.(10-a, b), one can rewrite the
right side of Eq.(11) as <g-k-¢>—q¢° k°-¢°+],
where J=]J(v*; ¢°) is a functional defined as
](v* ; q0) =< p*-

((k— K%~V o¥—=T°(v*) —2¢°) > . -+eeee (13)
This function gives the error of the flow energy rate
which is estimated by using a trial eigenvelocity. If
the trial one is closer to v* that satisfies Eq.(12),
<q k-g>—q° k° q°+] approaches 0.

It follows from Eqgs.(7, 11, 13) that the effective
permeability tensor satisfies

02q"%~q”-—q°-k”-q”+](v* 30 eeene (14)
for any arbitrary v*, provided that k— k° is
negative-semi-definite. It is shown in Appendix B
that J attains the global minimum for the eigenve-
locity that satisfies Eq.(12).

(2) Computation of Bounds

The accurate computation of J requires precise
information on k. The property of I'’, however,
enables one to evaluate a value of / for a particular
class of v*’s even though the information is limited.
In view of 2%s permeability being given by k¢, the
eigenvelocity is set to take on a constant value, v¥,
in each 29, i.e.,

k(x)__:__;(pa(x)ka" ......................... (15-3)
v* (m)=§¢a () DFX, ceernerieniiiennn, (15-b)

where ¢%(x) is the characteristic function of 2%
(=1in 2% and=0 otherwise). For these k and v*,
functional J becomes

](U* : qo) — %fav*a. (ka._ko)—l . v*a
+z‘§< (q)av*a) -Ire (@BU*B) > _25*110.

........................................... (16)
where f“ is the volume fraction of 2% in V, and 0*
is the ensemble average of v**’s.

As shown in Appendix C, if reference per-
meability is isotropic, k°=k°I with (I)y; =0y,
integral operator I'° satisfies

< (%) -I'°(¢e;)>

— T U=f) fora=§
= .  eeresusians (17)
pf afé fora=f
where summation convention is used for suffix z. It

should be noted that (¢%e;)-I"°(¢”e;) corresponds
to the sum of the product between unit eigenveloci-

ties in the x;-direction in £2¢ and pressure gradients
produced by another unit eigenvelocity in the same
direction in £%. Since an eigenvelocity is a source
of disturbance, the left side of Eq.(17) gives the
average interaction between the disturbances in £2¢
and 2°. Hence, Eq.(17) means that
if measured in the form of the left side of
Eq.(17), the interaction between two arbitrary
regions can be determined only by the volume
fraction of the regions, without depending on
other geometrical parameters, such as the
distance, the relative orientation, or the shape.
With the aid of Eq.(17), functional J given by
Eq.(16) can be explicitly computed; choosing £°~
such that k°~=k° I makes k“—k°” negative-semi-
definite for all k%s, and taking sum of Eq.(14) for
g°=q’e; and v**=p*%;(i=1, 2, 3) with common
¢° and v*¥s, one can obtain

0= (l;_ko')ii(qo)z"f‘

w3 (et ) (o
_ k}‘;“ (T) 2 BB, - ereeeeremsnnnnnrerenenns (18)

where 7* is the ensemble average of v*¥s.
The right side of Eq.(18) is a computable

quadratic form (with linear terms) for v*%s. Its

extreme value provides the following bound for k:

02%(,})“_]}0(;50—) ............................ (19)

where k°=E° is a function of reference permeabil-
ity £°, defined as

ey ={z L .
CRARRVAC Sy D
Geophysical data required to compute this ke is
only the volume fraction of subregions of common
local permeability, i.e., {f%, k%}. The data on
location, shape, or orientation of each phase are
not required.

In essentially the same manner as shown above,
Eq.(8) implies the lower bound of & ; when k°*
makes k% — k°*I positive-semi-definite, &°(k°")
becomes a lower bound for (k)u/3, i.e.,

Ogé(ﬁ)iiﬁﬁc(kw); ........................... (21)

see Nemat-Nasser and Hori"” for more detailed
derivation for the mechanical case.

(3) Statistical Description of Local Per-

meability

The effective permeability, k, is a symmetric
second-order tensor, and hence has three principle
values, k> k,=> k5. The first invariant of this tensor
is given by (k)n=Fk +k,+k;. Therefore, Eq.(19)
provides an upper bound for the maximum

]
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principle value, ki, while Eq.(21) an lower bound
for the minimum principle value, k. In particular,
if k is isotropic, the three principle values are the
same, and the upper and lower bounds for the
effective permeability are £°(k°7) and k°(k°*).
For the computation of k°, it suffices to get the
information on a set of volume fractions and local
permeabilities, {f%, k*}. Although it is difficult to
measure local permeabilities in the whole rock
mass, there are often cases where distribution,
orientation, or connectivity of discontinuities are
evaluated in a statistical manner and the statistical
distribution of local permeabilities can be given. If
a probability density function for the local per-
meability, f=f(k), is given, the bound given by
Eq.(20) can be computed; function f determines
the probability of finding a local permeability k as f
When f(k)is given, the volume fraction of
subregions with permeability k is f(k). Hence, at
the limit of infinitely many £2%s, eigenvelocities
v** for 2% in Eq.(18) is replaced by a function v*
(k) for local permeabilities k, and the quadratic
form of v*%’s becomes a functional for v*(k ), i.e.,

S (ki o) 0% o)a

k%’“ (TF)2—GPHQO, +revrnrernencennniennnns (22)

where Kis the range of k, and 7* is the expectation
of v*(k). The stationary value of J? is given by

Ter (o) = f(k) }‘1

R (k) {fx k°+1/(k—k°1)a‘dk =
This stationary value becomes the global maximum
or minimum if k—%°I is negative-semi-definite or
positive-semi-definite, respectively. For given f
(k), therefore, the bounds of the effective
permeability are

ket (ko) S%(i{:)” KT (FO7) eerevrrrennrnnnens (24)

where £°F is chosen such that k—k°*1 be positive
or negative-semi-definite for all k in K. It should be
noted that the bounds given by Eq.(24) are the
extreme value that V with the given statistical
distribution of local permeabilities admits. Hence,
the realization that V takes such extreme value is
quite low, but k cannot take larger or smaller
value.

5. SIMULATION FOR PERMEABLE
FLOW THROUGH HETEROGE-
NEOUS MEDIA

Numerical simulations of flow through porous
media consisting of randomly generated heter-
ogeneities and subjected to randomly varying

element with
distinct permeability

principal direction
of anisotropy

%3

X
2
X1 heterogeneous porous medium
Fig.3 Schematic view of FEM analysis of heter-
ogeneous porous medium

boundary conditions are performed, in order to
compute the range for effective permeabilities. As
shown in Fig.3, the following problem is set for
each medium: the medium is a cube of length L
which consists of I° cubes of the common shape;
each cube E¢ has its distinct permeability tensor,
k®, which is characterized by the three principle
values, kf=k$=k§, and the direction of anisot-
ropy, which is given by the orientation of the first
principle direction, is (1, ¢%, 6%) in the polar
coordinates; and the boundary conditions are zero
velocity fluxes on the lateral four faces, zero
pressure on the bottom face, and varying pressures
prescribed on the top face.

The anisotropy of k% is induced when majority of
joints or cracks in E“ lie in particular directions,
and the direction of anisotropy becomes parallel to
the faces of these joints or cracks. For simplicity,
however, the cases where all subregions are
isotropic are considered; the principle values are
set as kf=k§=kg, and kf/k” is chosen from 100,
10, or 1 with k" being a reference value, 1. The
elements with high permeability represents regions
where cracks are densely and randomly distributed.
In numerical simulation, these elements are
randomly chosen for each V as well as the pressures
on the top face. The volume fraction of E¥s of
k$/k°=100, 10, or 1 is denoted by £, f;, or i=1—f;
~ f2. The estimated bounds are computed by
setting k°7/k”=100 and k°~/k"=1 ; the bounds are
plotted for fi and f; in Fig.4.

First, the effects of the boundary conditions on
the effective permeability are examined. For fi=/;
=0.25(1=4), 100 V's are generated by choosing
highly permeable elments randomly, and the
effective permeability of each V are computed for
100 different pressure boundary conditions on the
top and bottom faces. The effective permeability
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Fig.4 Estimated bounds for porous medium with
isotropic elements

%13 is computed from the average velocity in the &z
direction, by solving boundary-value problems with
the FEM. The two typical results are shown in
Fig.5. Most of V’s show relatively large range of
effective permeabilities varies, and the distribution
appears close to the normal distribution, like the
one in Fig.52). For some V, however, the
maximum value is exceptionally larger than other
values as shown in Fig.5b). This strong depend-
ence of the effective permeability on the boundary
conditions is due to the statistical heterogeneity of
V.

Since the range of the effective permeabilities
depend on both the structure of V and the
prescribed boundary conditions, 10 000 simulations
are made for a give pair of (f;, f2), by choosing both
the distribution of highly permeable elments and
the distribution of pressures randomly. In Fig.6,
the distribution of the computed effective per-
meabilities is shown for the case of f=f£=0.25of I
=4, 6, 8. The vertical axis indicates the frequency
of V’s whose k falls in the indicated value. While
the distribution becomes sharper as [ increases the
minimum and maximum values remain almost the
same, and they are close to the predicted bounds
though they do not exceed them. As [ increases, it
is more likely that the distribution of highly
permeable elements becomes uniform. Hence, one
may consider the peak value of % corresponds to
the effective permeability of statistically
homogeneous V.

As fi or f, increases, the range of % becomes
wider. The range, however, still liec between the
estimated bounds; four cases of (fi, f»), the
distribution of k are shown in Fig.7. It should be
emphasized here that while the statistical
homogeneity is not assumed nor the boundary
conditions are not uniform in the simulation, the
analytically obtained bounds provide reasonably
accurate ranges for the computed effective per-
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Fig.5 Effect of boundary conditions on distribution of k
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Fig.6 Distribution of effective permeabilities of media
with isotropic elements with different [

meabilities.

In numerical simulation, it is observed that the
pattern of the flow when the effective permeability
is near the bounds differs from that when the
effective permeability is in the middle of the range.
For the case where the effective permeability is

]
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Fig.7 Distribution of effective permeabilities of media
with isotropic elements of different volume
fractions

close to the upper bound, a strong flow takes place
in a narrow region, i.e., it appears that the flow
runs through the channel made of highly permeable
elements. For the case where the effective
permeability is close to the lower bound, the flow
does not run through highly permeable elements
even though the channel of the highly permeable
element is constructed. As a matter of course, the
distribution of such elements are not uniform in
these cases.

To visualize the pattern, the simulation is
reduced to the two-dimensional setting with
anisotropic elements. Square V consisting of I?
square elements E%s is used, and each element
with second-order symmetric permeability tensor
k“ with the principle values kf=k§ ; see Hori ef.
al.® for a more detailed explanation. Two typical
distributions of flow velocities in the extreme case
that yields the effective permeability close to the
upper bound or the lower bound are shown in
Fig.8; the length and orientation of an arrow on
each element indicate the amount and direction of
the average permeable flow running through the
element. It is clearly shown in Fig. 8 a) that large
flow runs from the top right to the bottom left,
which passes channels made of highly permeable
elements. In Fig.8b), however, such localized
flow is not comnstructed.

6. CONCLUSIONS

Bounds for the effective material properties are
obtained for ~a material which is statistically
nonhomogeneous. While the permeability of a rock
mass is considered, the method of computing the
bounds can be applied to other properties such as
elasticity or thermal conductivity. If these bounds
are used in analysis of a structure made of the
material, the best or worst case of the structure
performance can be predicted. It should be
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Fig.8 Distribution of flow velocities in elements of
heterogeneous medium

emphasized here that the range of the bounds
depends on the quality and quantity of the
informations on the heterogeneities, and the range
becomes sharper as better informations are avail-
able. Therefore, in order to estimate the material
property with the desired accuracy, one may judge
the precision of the measurement that is required
to make the predicted bounds lie within a range
which is determined from the accuracy.
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APPENDIX A APPLICATION OF
EQUIVALENT INCLUSION METHOD
TO ROCK HYDRAULICS

Let V* be a homogeneous porous medium, with
reference permeability k° and eigenvelocities v*,
subjected to the periodic boundary conditions.
From Egs.(1-a, b, 9), the governing equation for p
in V* for prescribed v* is

Ve (k- (Veplx)+V -v¥(x)=0-(A.1)
Expansion of p and v* in the Fourier series yields
the solution of Eq.(A.1), and the pressure gradient
field produced by v* is given by

re(x; v*)=é§?r"(5)‘?v*(E)eXP(f'x),

groey=_588

Fre(&) TN
where & is determined from the edges of cubic V*
and Zv* (§)= <v* (x)exp(—&-x)> is the
Fourier series coefficients. A constant pressure
gradient field is added to I'°, since it is a
homogeneous solution of Eq.(A.1).

Equations (10-a, b) are easily derived from
explicit form of I"°. First, kernel exp(&-x) for &
O satisfies

<exp (B ) > =0, cveermrrnerseeneenniniiinns (A.3)
and hence the volume average of each term in the
sum of I'° vanishes. This leads to Eq.(10-a). Next,
by definition, FI'° satisfies

FLO(—E)=FO(E) veoeevvreavveeenne (A.4-2)

Fgre(§) -kgre(§)=gr-c§) .- (A.4-b)
Thus, FI'°(—&) - (k°-%I'°(&)—1I) vanishes, and
hence the volume average of v-¢q always becomes
zero. This leads to Eq.(10-b).

APPENDIX B FUNCTIONAL FOR
EIGENVELOCITY

Functional J given by Eq.(13) is of the essentially .

the same form as the functional used in the Hashin-
Shtrikman variational principle, which is based on
the assumption of the statistical homogeneity”™
and requires some approximation to compute its
value. However, [ is derived without making any
special assumptions and is computable.

Since I'’ is explicitly given, the property of / can
be discussed without introducing additional physic-
al assumptions or approximations. First, it is seen
that operator <v*-I'°(v)> is self-adjoint for its
argument v¥, and hence the first variation of J
becomes

o] (v*; ¢°) = <dv*
(k=Ko =TI () —¢°) > .- (B.1)

The Euler equation of J coincides with Eq.(12),
which can be rewritten as

k- (@) +I°(x; v¥)+v*(x)

:k(x)-(qo+ro(x;v*)). ............. (BZ)
This is the consistency condition.

The consistency condition has a unique solution,
for which J becomes (locally) stationary. When k—
k° is negative-semi-definite, the stationary value
becomes the global maximum. This is easily seen
from how [ is constructed in Section 3. Or it can be
shown from the negative-semi-definiteness of <v*
-I'°(v*) > ; with the aid of Egs.(10-a, b), <v*-I'°
(v*)> is written as

<(v—Kk°-q) I">=—<I"kT°>,

......................................... (B.3)
and is negative-semi-definite. Hence, functional J
is concave, and the stationary value is the global
maximum. In a similar manner, it is shown that the
functional has the global minimum when k—k° is
positive-semi-definite.

APPENDIX C PROPERTIES OF IN-
TEGRAL OPERATOR

When k° is isotropic, k°=%°, Eq.(A.3-b) becomes
Fro(§)=E®E&/(k°6 &), and it satisfies

ei.gpo(g).eizgpg(g):%. ........... (C.1)
Then, it follows from Eq.(A.3-b) that e;-I'°(¢*
e{) is

eI (x; coﬁez-)=£§)(er1"’(€)-ei)

<@* (y)exp (& (x—y)) >
:é(@s(x)—fﬂ); ....... (Cz)

this is becauase <¢® (g )exp(—&-y)> is the
Fourier series coefficient of the characteristic
function, and <¢?> becomes f%. Therefore, the
volume average of Eq.(C.2) yields

<(¢%) I'’(¢%e) >
1
=F<¢a(¢5-ﬁ)>v' ................... (C.3)
This relation leads to Eq.(17).
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