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MODAL ANALYSIS METHOD FOR STIFFNESS
DEGRADATION IDENTIFICATION OF NON-
PROPORTIONALLY DAMPED STRUCTURES

Hong Ying. YUANY Kiyoshi HIRAO™**,
Tsutomu SAWADA®*
and Yoshifumi NARIYUKI*#***

A modal analysis method is presented to identify both the location and the severity of
stiffness degradation for nonproportionally damped structures by using measured lower
modes. A ten-story shear building has been analyzed to demonstrate the availability of the
method. Also the effects of measurement error of modes on identification accuracy has

been examined.
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1. INTRODUCTION

It is generally recognized that damage of
structures caused by an earthquake etc. will result
in degradation of stiffness and in change of
damping. Many methods in time domain and
frequency domain by the use of observed vibration
record have been developed for detecting the
damage of structures. However, someties the
identification accuracy of those methods is greatly
affected by noise”. Also in civil engineering, the
instrument for earthquake record is installed only
in a small number of important structures, but not
most structures. Therefore, an evaluation of
damage through modal analysis methods” which
are based on the measured modal parameters from
ordinary vibration testing is paid increasing atten-
tions.

In our previous studies™, we dealt with the
damage evaluation for a structure without damping
or with proportional damping”. However, it is
necessary to evaluate the damage of a structure
with non-proportional damping” which yields
complex mode shapes, because non-proportional
damping exists in realistic structures”?, e.g.
cable-stay-bridges” or RC bridges with some
deterioration”. In this study, a modal analysis
method is presented to identify both the location
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and the severity of damage of a structure with
nonproportional damping. The numerical result
shows that this method has significant sensitivity
for detecting the location of stiffness degradation.
Also the effects of measurement error of modes on
identification accuracy has been examined.

2. MODAL ANALYSIS INSPECTION
FOR NONPROFPORTIONAL
DAMPING

A system with damping matrix [C ] which can
not be considered as a proportional type is
described by its free vibration equation of motion

p: 1’ 2’ e N
S (1)
where [M ]=mass matrix; [ C ] =damping matrix;
[K ] =stiffness matrix; {Z},=the pth vector of
relative displacements and N = the number of
system’s degree of freedom. The solutions of

Eq.(1) can be expressed” as

(Z=(X}yet s p=1,2, -, 2N veereenne (2)
which {g,} =the pth complex natural frequency

and {X },=the pth complex eigenvector. Eq.(1) is
rewritten as

[MUX }pp*+ [C X D ppy+ TKT{X =0

If Eq.(3) is premultiplied by the transpose of the
complex conjugate of the complex mode shape
{X}, ie., {X)], the system’s free vibration equ-
ation of motion may be written alternatively as

T T T T o TR E | FEOP R (4)

where m,*, ¢, and k,*=real-value generalized
parameters defined as
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my*=A{X1," [M]{X},;
¥ ={X},"[CIH{X};;

k*=A{X}TIK1{X},
Eq.(4) is thus an equation of g, with real
coefficients whose solution yields”

Uy =—Epwy iy ; 12T ] e (6)
where

wy=v k™ mp*

(U,p:a)pllmgﬁz; .......................... (7)
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The w,, ', and &; represent the system’s pth
undamped natural frequency, pth damped natural
frequency and pth damping ratio respectively.
Moreover, if the 1~ Lth conjugate pairs of modes
have been measured, the real-part and imaginary-
part of natural frequency matrix [£] and mode
shape matrix [@] can be expressed as follows

[21.=1Q]1,+i[2]1,=diag [, p2, . el
[@)yu=[0 1, +i[®],=[{X},, {X},
e X ]
........................................... (8)

A commonly used, nonproportional damping
matrix with sufficient accuracy” is defined as

[CI1=BolI1+B I MI+B K] eevveenen (9)
where, Bo (*0), S and B, = the coefficents
regarding to damping; [I]=identity matrix. It
should be noted that the 3o, 51 and B, may be

determined experimentally'.

Let [K1=[K,+[AK], in which [ K is
undamaged stiffness matrix and [ AK] is the
change of stiffness before and after damage.
Substituting the [2], [@], [M], [C] and [K]
into Eq.(3), and then arranging the obtained
equations, the separated real-part and imaginary-
part of the equations can be obtained, respectively.
The equations for the real-part is

[AKI] =180 e, (10)
where [y« = (Bz[@}a[g]a“62[®]b[9}b+
[@],)and [Ex]NxLz_Bo([@]a[g]a"'[@]o
[(21)—[MI(01. [, —121.[2%],—2[D],
[21.021)—BIMIUOL.I21,—[2],[2])—
[Ko) [13].

Also the equations for the imaginary-part is
[AKTIT = [ Fy] vererveemmmvvineninieniinnns (11)
where [Nolyxe= (B[ 01, [Q21,+B1P1.12],+
[©]1,) and [ElexL:“Bo([@]a[g]b+[@]b

[01)—[M1([01,[07.—[01,[27,+2[d]1,

[Q1.121)—-pIMIUoLIR].+[01.12])—

[Kol [I3].

Eq.(10) and Eq.(11) can be further expressed as
AK]IIN, [T =105, [E]] e (12)
The least-square estimate'” of [4K ] in the sense

of trace {(([AKIII], [LI—I[1&], [&IDT

([AK 1N, [ —HE]L [5:]D) to reach the

minimum value is

[AK:‘:[{EJ, [Ez]][[rx}, [Fz}]+ """"" (13)
where [[I1], [13]]1* =the pseudoinverse matrix'’
of [[I], [13]1].

The estimated [AK ] can be used to detect the
location of damage. Differing from the method for
undamped and proportional damping problem
which lead to a normal (real) mode shape”, the
method in this study for nonproportional damping
problem has a better sensitivity to detect the
degradation of stiffness. In fact, while there are
N(N+1)/2 unknown coefficents of [AK ] and N X
L equations in Eq.(10) for undamped problem,
there are 2X N XL equations (see Eq.(12)) and

"N (N+1)/2 unknown coefficents of [AK] in

Eq.(13).

3. SOLUTION OF UNKNOWN CO-
EFFICIENTS

The percentage of change ratio Akyp/kops (p=1,
2, -+, N) for diagonal stiffness coefficients can be
used to detect the location of damage. When a
node with a remarkable change ratio is detected,
each non-zero stiffness coefficient in the column
(or row) corresponding to this node in stiffness
matrix [ K] is multiplied by an unknown coefficient
ay respectively. The total number of « is written as
NF, thus the [K ] is expressed as [K ()], where
{a}=A{m, as, -, anr}”. In Eq.(3), there are N
equations corresponding to each mode. If all those
L measured modes are used, the LX N equations
can be obtained. Substituting the measured [27],
[@1, together with [M], [C(a)] and [K(a)]
into Eq.(3), further arranging the L X N equations,
the following new equations are obtained

[AT @} ={B} creeremmrmmimiiriiiniieniins (14)
where, [A] and {B} are known NF X NF matrix
and NF X 1 vector, respectively. After all the
unknown coefficients {a } are solved, the [K(«)]
is the identified result of [K]. Therefore, the
severity of damage can be identified.

4. NUMERICAL EXAMPLE

A numerical example” of a ten-story shear
building is shown in Fig.l. The structure is
described as a FEM model with 11 nodes, 10
elements and 10 degrees of freedoms. Also the
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Level  Mass(X10° kg) Stiffness(x10° N/m) 10 N A B E B . 10 .
9 b 9 e
8 -1 8 N
10 98 ) 34.31 Tr 17 ’ 7
6 a 4 MODES -~ 6 4 MODES
9 107 37,43 L i oS hbEs 1 =5 HMTEE
. i3] . i :
€8 1 -4 o : 10 MODES - — 4 : 13 QSSE@ -
3+ . 3 % I
5 118 = 40.55 2 % ] ; i
L] 1 ~ - a
T 125 =5 43. 67 0 L i L TR I L L é L1 1 L L L \
L‘——E—‘ﬁ 0 2 4 6 810 12 14 16 18 0 2 4 6 8 10 12 14 16 18
6 184 46.79 ESTIMATED GHANGE RATIO ESTINATED CHANGE RATIO
6 OF STIFFNESS OF STIFFNESS
5 143 49.91 Fig.2 Damage location detection . Fig.3 Damage location detection
s :
L1 of this method for the of previous study” for
t 162 i 53.02 structure with nonpropor- undamped structures.
s 161 56. 14 tional damping.
C3
i—‘*—:D-—] o: MODE SHAPES--ERRGR 1 Table 1 Natural frequencies and
2170 59. 26 w: MODE SHAPES--ERROR 2 : .
%3 st FREQUENCIES-~ERROR 1 damping ratios
L._:D—l o: FREQUENCIES~-ERROR 2
1119 62,47 - x: DAMPING RATI0S-~ERROR 1 )
o £ |, 1 DAMPING RATIOS--ERRCR 2 BEFORE DAMAGE | AFTER DAMAGE
13 T T T T
U i
e ;; e « N | £, (H) £y | f.(H2) s
Fig.1 Ten-story shear building g oy 1
& & 1| 0.500 | 0.020| 0.480 | 0.054
. ge0r |
Table 2 Identified coefficents of = 40 | J [P L#6) 0.020] L26¢] 0.087
[K]; unit : 10°X N/m = 3| 2151 0.027| 2.097| 0.035
=20 b .
BEFORE DAMAGE AFTER DAMAGE E N - - 4 2.934 | 0.035| 2.838 | 0.051
0 20 40 60 80 100
NODE EXACT EXACT IDENT. Eps MEASUREMENT ERROR OF
MODAL PARAMETERS (%)
kop | 113.400 | 88.558 | 98.558 | 0.0 | Fig.d The effect of measurement
‘ 56,140 | —44.910 | —44.910 | 0.0 errors of modal parameters
i : : : : on £, for the structure with
kss | 109.160| 92.318 | 92.318 0.0 nonproportional damping.
k7 84.220 72.055 72.055 | 0.0 . K .
modes. Fig.3 is the result of the detection of our
krs | —40.550 | —32.440 | —32.440 | 0.0 previous method” by using the 1~10 th measured
modes. In Fig.3, even if 8 modes are used, it seems
Kss 77.980 | 65.815| 65.815| 0.0 18- 8 o ’
there are stiffness changes in almost all the nodes.

order of nodes agrees with the numbered levels in
the model. The undamped natural frequencies and
damping ratios of the structure are listed in Table
1. In this example, it is assumed that, a damage
occurs in element 3 (level 2-3) and element 8 (level
7-8). Therefore, the coefficents of stiffness in
nodes 2, 3, 7 and 8 corresponding to those elements
will be degraded. An approximate 15 % minor
degradation of stiffness is considered in those
nodes. Moreover, referring to the study”, the
coefficents regarding to damping 8., 81 and f3; are
taken as the known values in this study, i.e. 8,=1,
£i=1.31X107" and B,=5.47 X 107°. For both
before and after the damage, the calculated modal
parameters are hereby taken as the measured ones.
Furthermore, from observing Fig.2 in which the
nodes 2, 3, 7 and 8 are remarkable, the locations of
damage are detected by using 1~4th measured

On the contrary, this method is significantly
sensitive (see Fig.2). By the same way as stated in
Section 3, the severity of damage can be identified.
A percentage error E,, and a mean error K, of
diagonal stiffness coefficients are defined as

Eﬂpzi { (kPP) EXACT (kpp) IDENT.}/(km))EXACT{
X100
........................................... (15)
where the ND is the number of diagonal unknown
stiffness coefficients among the NF (the total
number of a;). The calculated E;, and identified
result are shown in Table 2, in which the identified
result is well satisfied. Moreover, the mean error
E,, of identification is shown in Fig.4. Referring to
the report”, two kinds of measurement errors
(Error 1 and Error 2) for all the measured modal
parameters (natural frequencies, mode shapes and
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damping ratios) are assumed in this study. The
Error 1 is defined : Each measured value varies
with a same percentage of the value. The Error 2
for mode shape is defined : If a percentage of the
measured value is increased/or decreased in one
node, the same percentage is decreased/or in-
creased in the neighbour nodes. Also the Error 2
for natural frequency or damping ratio is defined :
If a percentage of the measured value is
increased/or decreased in a certain order, the same
percentage is decreased/or increased in the
neighbour order. The calculated results for the two
kinds of errors show that the measurement error of
mode shape has a strong effect on identification
accuracy. On the other hand, damping ratio has a
comparatively weak one. However, as for the
measurement error of modal parameters on
damage location detection, in this example, the
detected locations remain unchanged within 20 %
measurement error of modes.

5. CONCLUSIONS

(1) This study presents a modal analysis
method which can be applied to nonproportional
damping. By this method, both the location and
severity of damage can be identified.

(2) The method for nonproportional damping
problem may have better sensitivity than the
undamped or proportional one.

(3) The measurement error of mode shape has
a strong effect on identification accuracy. On the
contrary, that of damping ratio has a comparatively
weak one. As for the measurement error of modal
parameters on damage location detection for
nonproportional damping, the detected locations
remain unchanged within a certain range of
measurement error of modes.

Moreover, the calculated results show that a
sensitivity for detecting the location of damage is
not affected by Bo (B0, see Eq.(9)). Therefore,
considering the conclusion (2), the sensitivity may
be significantly improved by treating a damped
structure (usually with Rayleigh damping) to be a
nonproportionally damped one which is close to
the structure with Rayleigh damping, i.e., So=0.
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