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A STOCHASTIC SH WAVE MODEL OF
EARTHQUAKE GROUND MOTION

Takanori HARADA*

The temporal and spatial variability of earthquake ground motions has been inferred
experimentally using data from closely spaced seismograph arrays. In this paper, the
earthquake ground motion varying in time-space domain is described analytically by the
stochastic wave filtered by a surface soil layer of irregular thickness resting on half space.
The SH wave is transmitted to the soil layer from the half space. The analytic expressions
of the earthquake responses of irregular ground are based on the perturbation method,
and their accuracy is examined by comparison with the responses computed by the direct
boundary element method for many rough surface models consisting of topography with
sinusoidal shape. Finally, an analytic expression for the frequency wavenumber spectrum
of the stochastic wave at ground surface is then derived.
Key Words : ground motiom, earthquake, stochastic wave

1. INTRODUCTION

The spatial variation of earthquake ground

motions is an important factor that should be
carefully considered in the seismic design of buried
lifelines such as tunnels and pipelines. The
consideration of the spatial variation of ground
motion may also have significant effects on the
seismic response of structures with spatially
extended foundations or multiple supports. In fact,
for buried lifelines, the seismic deformation
method was developed (Public Works Research
Institute, 1977) and is now in practical use in Japan.
For the seismic design of the Akashi Kaikyo Bridge
foundations, a modified response spectrum was
used taking into account the spatial variation of
ground motions around the foundations (Kashima
et al., 1984; Kawaguchi et al., 1987).

The temporal and spatial variability of earth-
quake ground motions has been inferred ex-
perimentally using data from closely spaced
seismograph arrays. The SMART-1 array, for
example, located at Lotung in the NE corner of
Taiwan has provided valuable data for the analysis
of ground motions in time-space domain. Numer-
ous studies using the SMART-1 array data have
been reported (Loh et al., 1982; Harada, 1984;
Harada and Shinozuka, 1986; Harichandran, 1988;
Abrahamson, 1985 and 1991). It is common in
these studies that the accelerograms from each
seismic event are described as samples from space-
time stochastic processes or stochastic waves and
eventually the spatial coherence functions or the
frequency wavenumber spectra are estimated.
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In this paper, the earthquake ground motion
varying in time-space domain is described by the
stochastic wave filtered by a single surface soil layer
of irregular thickness, due to the irregular shape of
the free-surface, resting on half space. The SH
wave is transmitted to the soil layer from the half
space. The analytic expressions of the earthquake
responses of irregular ground are presented on the
basis of the perturbation method, and their
accuracy is examined by comparison with the
responses computed by the direct” boundary
clement method for many rough surface models
consisting of topography with sinusoidal shape.
Finally, an analytic expression for the frequency
wavenumber spectrum of the stochastic wave at
irregular ground surface is then derived.

The frequency wavenumber spectrum can be
directly used for the digital simulation of the
stochastic wave form, on the basis of the spectral
representation method (Shinozuka et al., 1987).
However, other definitions of correlation functions
exist. In order to make clear those definitions as
well as the relationships between other correlation
functions and the frequency wavenumber spec-
trum, the following section describes a brief
summary of the fundamentals of space-time
correlation structure (Shinozuka et al., 1987).

2. SPACE-TIME CORRELATION
STRUCTURE

In the stationary-homogenecous approach, it is
well known that a stochastic wave u,(z, £) with zero
mean value is characterized by the autocorrelation
function defined as :

Ruo (&, 7)) =ETuo(x+&, t+7)ue(x, t)]
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in which, E[-] denotes the expectation operator, x
is a vector of spatial coordinates (x1, xz) and f the
time variable. Since the stochastic wave is assumed
to be stationary in time and homogeneous in space,
the autocorrelation function possesses the symmet-
ric nature with respect to the origin :

Rue (5, T) = Rugug (— &, —T) worveemeeneenees (2)
Assuming that the Fourier transform of the
autocorrelation function exists, the frequency
wavenumber spectrum of uo(x, #) is defined as :

Suao (£, W) = (23%)3_/:[_[

Ruoube*i(nf—wr)dgldgzd[ ....... (33)
and its inverse transform is given by :

Rugo (€, T):fffsuouo(/c,w)e“"f‘w”

ARy @hgap - vvvreeeeeneneeeneens (3b)

The above two equations represent the Wiener
Khintchine relations in three dimensions, where &
is a vector of the wavenumbers (#1, £2) and  the
frequency.

It can be shown from Egs. (2) and (3a) that the
frequency wavenumber spectrum is symmetric :
Suate (K> @) = Sugug (— oy =@ ) weveersrennenns (4)
It is also shown according to Bochner (1956) that
the frequency wavenumber spectrum is real and

nonnegative :
Sugg (3 @) Z 0 vemvmveaimiiiiiiiiiiieieins (5)

1t should be noted here that the autocorrelation
function or the frequency wavenumber spectrum
provide all information concerning the correlation-
al characteristics of the stochastic wave uo(z, £). In
fact other correlation functions can be defined
using either the autocorrelation function or. the

frequency wavenumber spectrum. For example,
the frequency-dependent autocorrelation function
Cupeo(&, w) is defined as :

Cunao (6, 0) =5 [ Rugu (&, 7)™

= [[ Susn (k. ) e +(6)

The frequency-dependent autocorrelation func-
tion is usually used to represent the correlational
characteristics of stochastic wave because the
correlation is in general decreased with separation
distance and frequency. The frequency-dependent
autocorrelation function represents directly such a
correlation.

3. SH WAVE FILTERED BY A
SINGLE LAYER

Response of a single layer with irregular surface
resting on half space subjected to an SH wave as
shown in Fig.2 is considered in this section. The

‘method is based on the perturbation approach

(Kennett, 1972). In subsection 3.(1), the perturba-
tion method by Kennett is summarized and then
the response of the ground with irregular surface in
Fig.2 is derived in subsection 3.(2).

(1) Basic Equations for Ground with

Irregular Interface

For harmonic excitation with frequency w, the
displacement wave field v(x, z) exp (—iwl) corres-
ponding to SH wave propagations in a two-
dimensional homogeneous isotropic medium is
known to be expressed as the matrix wave equation
in the form (Kennett, 1972) :

%B(w,z)-‘:Ao(z)B(x,z) .................. (7)

where B is the displacement-stress vector and Ao is
the operator matrix defined as :

Bsu=c0l[D, Typ] -+eeovrerreereemeesonsanencnns (8)
0 1
Aosy= [72 I OO (9a)
— B pw* 0
with
0r=0/0T, D™ 02 DL rveeveeevresenseieenn. (9b)

where g is the complex shear modulus, and p the
density of the medium.

Welded boundary conditions at the irregular
interface (see Fig.1) require continuity of displace-
ment and traction at each point on the interface.
Therefore, a new displacement-stress vector b,
being measured with respect to the local tangent
plane at each point on the interface, has to be
introduced. The new displacement-stress vector
takes the form (Kennett, 1972) :

L
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b(:c,f)=([-f—%@0>3(x’f) ......... e -+ (10)

where b and B are evaluated along the irregular
interface located at the depth z(x) defined by :

Z(X) =2 F(L) oeeersereeeeiiil (11)
with z being the average depth of the interface and
flx) being the lateral fluctuation of the interface
(see Fig.1). In Eq.(10), I is the unit matrix and @,

is given by.
0 0
.............................. (12)
—udy 0

The irregular interface boundary condition can be
expressed in the form :

bl(x’f):bz(x,f) ............................... (13)

where subscripts indicate the respective media.

In order to obtain the approximation of Eq.(10),
the scattered wave field B(z,f) (displacement-
stress vector in the medium with irregular inter-
face) is approximately related to the background
field B(z,z) (displacement-stress vector in the
medium with horizontal plane interface) by using a
Taylor’s expansion around the average interface
depth 2(x) =z, and then substituting into Eq. (10),
and omitting terms of order higher than f and
0f/0x, one obtains :

b(x,f):{]-l“on-f-gﬁQD}B(;c,z) .......... (14)

Furthermore, introducing the new notations, 5°
and B°, which represent the background wave
fields, and denoting the first-order approximations
of b and B by b' and B', respectively, one obtains
the first-order approximation of Eq.(14) as :

v x, )=B"(z,z)+ {on—l—%Qo}B" (x,2)
........................................... (15)

with the following condition because b equals to B
at the interface z(x) =z in the case of horizontal
plane interface (f=0) :

BO(2,2) =BO(, 2) evrrreeeereriiiaerenennens (16)

The Fourier transform of Eq.(15) with respect to «,
using the result that the Fourier transform of a
product is the convolution of the Fourier trans-
form, yields :

b (k,f)=B'(x, z)
+ff(ff—/f’)](fc, £)B(k', 2)dk’ -+ (17)

where

Qosg= {

T, ) =Ac (&) +i(k—k) Qo (k) -+reveren (18)
with
0 L
Jsu= OCE i, (19)

0Cikk’—pw® 0

In Eq.(19), Cs is the complex S-wave velocity given
by :

Co=Co(1=1Dy) +vevemmmrrimiiieeesiienaienni, (20)
with CJ being the elastic S-wave velocity and Dj
being the ratio of the linear hysteretic damping for
S-wave.

The irregular interface boundary condition given
by Eq.(13) can be written for the first-order
approximations in frequency wavenumber domain
as :

Bi(k,2)=Bi(k,2)+S(k,z) «rerereee (21a)
where
Ste,2)= [ k=K Lar (6, ) BE (K, 2) i
......................................... (21b)
L21:]2_]1 = —le ............................. (21(:)

Equation (2la) indicates that the presence of
irregular interface results in discontinuity in the
scattered wave field B(x,z) at z(x) = z. This
discontinuity acts like a seismic source S which can
be evaluated directly from the background wave
field.

(2) Response of Ground with Irregular

Free Surface

Response of a single soil layer with irregular free
surface resting on half space subjected to incident
SH wave as shown in Fig.2 is considered. For a
free surface the traction has to vanish, so that for
an irregular free surface z(x)=f(x), (z=0), the
scattered SH wave field takes the form :

bk, )=Bk, fY=collU(k,f),0] ---eme-- (22)
Then, the first-order approximation of the inter-
face boundary condition given by Eq.(17) can be
expressed as :

B(k,f)=B(x,0)
+j<:>f(’f_‘/f/).lr(lfa VB (x’,0)dk’ - (23)

Making use of the propagator matrix P(x, z, 2)
which satisfies (Kennett, 1972)

%P(/c, 2,20 =Ao(k,2) Pk, 2, 20) - (24a)

Pk, z, 20) =P (£,20,2) reerererenvennenns (24b)
the displacement-stress vector at the bedrock, z(x)
=H, can be transferred to that at the free surface,
z(x) =0, such as :

B(k,00=P(k,0, H)B (g, H) ++-revvvvvenes (25)
For an SH wave the propagator matrix is given by :

Psy (&, 2, 25)

SinT(Z“ZO)
uy -+ (26a)
—ursiny(z—2y) cosy(z—2z)

cosy(z—2)

]
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where 7 is the veritical (z axis) wavenumber given
by :

r= <wa45>2_’:2 Ly (7) 20 creeeneeeneens (26b)

In order for the physical condition of a wave
propagating in the positive direction of the vertical
axis (z axis) to be zero at infinity, then the
imaginary part of the vertical wavenumber I,(7) in
Eq.(26b) must be positive.

It is assumed now that an input earthquake
motion is an inclined SH wave with the amplitude
vi» and the horizontal wavenumber &,. Then, the
input motion (represented by displacement-stress
vector ) at the bedrock is expressed in the form :

Bk, H)=B(ko, H)0 (& — ko) ++rereeeenr (27a)

where § is the Delta function, and k, is given by :

in which @ is the angle of the incident SH wave,
measured clockwise from the vertical axis as shown
in Fig.2. For vertical incidence, 0=0°, then £,=0
from Eq.(27b). The input motion B at the bedrock
is related to the incident SH wave such that :
Bk, H)=R (k) v (s, H) wovveernveennnens (28a)

where v is the displacement vector in half space
and R is a transform matrix from the displacement
vector to the displacement-stress vector which are
defined as :

Vo= Col{vm’ Uout] ............................... (ZSb)
1 1
R= [ ) ) ] .......................... (28¢)
Wayn THL

in which vg is the displacement amplitude of the
outgoing SH wave in half space.

Substituting Eqs.(25) and (27) into (23), one
obtains :

Bk, f)=P(k,0, H)B'(k, H) (k— ko)

+ (k=K J (K, £0) P10, 0, HYB (Ko, H)

........................................... (29)

By considering the boundary conditions in which a)
traction vanishes at the free surface and b) the
incident SH wave is specified at the bedrock, these,
together with the relationship of Eq.(28a), then
Eq.(29) can be more explicitly expressed in the
partitioned form :

Ulte, | | Fu Fu [vm(/c,H)
{ 0 }M[FZI Fzz} Vb (e, H)
Ju .112] [Fﬁ quz} [ vin (Ko, H) :l
Joo Je || FS FS 1 vou(ke, H)
........................................... (30)

where Fy; represents the (4) th component of the

}5(/{“/{0)

+f(/f_/fo)[

matrix PR and FS=F;; (ko,0, H). In Eq.(30), the
relation vh(k, H)y=vix(x, H) is used because the
incident motion displacement is specified at the
bedrock. From Eq.(30), one can obtain the
scattered wave field U’ (¢, y=0v'(x, f) at irregular
free surface such as :

' (k. f)= [cofyHa(’f_KO)

_ sinyH
=R qro g yoH costH

kKo~ K& ’)’0)]
e L L D)y e 3
( TTo 7 v (31a)

1
|t sinTH
tan cosyH
. py costH
1=t
_ i sinyH
q pol'}‘ilg— sinyH
7 cosyH
In Eq.(31a), the first term of the right-hand side
represents the response displacement at free
surface with a horizontal plane surface, and the
second term the scattered wave displacement due
to irregular free surface.

4. ACCURACY OF THE PERTURBA-
TION METHOD

Since the analytic expression in Eq.(31) is based
on the perturbation method, it is necessary to
examine the accuracy and to reveal the practical
limits imposed on Eq.(31). For this purpose, the
response displacements at free surface are com-
pared with those derived by the direct boundary
element method. Four ground models are used in
this comparison, each having the free surface
topography of sinusoidal shapes with different
heights and wave lengths. The accuracy of the
direct boundary element method used in this
comparison is described in subsection 4.(1), and
then, the accuracy of the perturbation method is
examined in subsection 4.(2).

(1) Accuracy of the DBEM

The boundary element method used in this study
is based on the formulation (Wong and Jennings,
1975).

The frequency responses of the two-dimensional
semicylindrical canyon and hill as shown in Fig.3
are computed by the boundary element method,
and are compared with the exact solutions
(Trifunac, 1973; Men and Yuan, 1992). Fig.3
shows the distribution of boundary elements along
the surface of a canyon and hill used in this study.
A total of seventy-one constant elements are used

B TS (31b)

......................... (310)

L
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Fig.3 (a) Distribution of boundary elements along the
surface of a semicylindrical canyon (71
constant elements are used)

i,

-3a 0, da
Fig.3 (b)

Distribution of boundary elements along the
surface of a semicylindrical hill (71 constant
elements are used)

for calculation. Fig.4 shows an example on the
frequency response distribution along the surface
in and around the canyon by using discrete points
(boundary element method), together with the
exact solutions (Trifunac, 1973) using solid curves.
Only the case for the dimensionless frequency
wal/rCs=1.0 is shown, where one half of the S-
wave length is equal to the radius @ of the canyon.
Note that this is the dimensionless frequency 7 in
Trifunac’s paper. The horizontal axis is the
dimensionless space coordinate x/a, and the
vertical axis represents the amplitude of frequency
response relative to the incident wave amplitude
Vin. In Fig.4 the comparisons are shown for four
different incidence angles 6(0°, 30°, 60° and 90°).
For the same conditions in the comparisons using a
semicylindrical canyon in Fig.4, the comparisons
using a semicylindrical hill are also performed. The
results of comparison between the boundary
element method and the exact solution (Men and
Yuan, 1992) are shown in Fig.5. Excellent
agreements are observed from Figs.4 and 5 in the
results by both methods, indicating the accuracy of
the boundary element method used in this study.

(2) Accuracy of the Perturbation Method

The analytic expression in Eq.(31) for the
response of the irregular free surface to the
incident SH wave may be applied to the response of
a semicylindrical canyon and hill used in subsection
4 (1) for examining the accuracy of the boundary
element method. However the direct comparisons
between the perturbation result in Eq.(31) and the
exact solutions for a semicylindrical canyon and hill
are not possible. The numerical Fourier transform
is necessary for comparisons because the perturba-
tion result in Eq.(31) is expressed in the frequency-
wavenumber domain (w—«), while the results of
the boundary element method and the exact
solutions for a canyon and hill are expressed in the
frequency-space domain (@ — x). In order to
perform the direct comparison between the
perturbation method and the boundary element

Exact 6= 0
=10

Exact

Exac

Exact

Fig.4 Comparisons in the frequency responses of
semicylindrical canyon computed by boundary
element method (discrete points) and the exact
solution (lines) by Trifunac (1973)

v/vin

Exact 6=10

Exact 6=30

Exact 8360
Exact 6390

z/a

Fig.5 Comparisons in the frequency responses of
semicylindrical hill computed by boundary ele-
ment method (discrete points) and the exact
solution (lines) by Yuan and Men (1992)

method without using the numerical Fourier
transform, the frequency responses to incident SH
wave are compared for the half space ground
models with irregular free surface consisting of
sinusoidal shapes having four different heights and
wave lengths. The four half space ground models
are shown in Fig.6, and the free surface heights
and wave lengths in each model are indicated in
Table 1.

For the half space ground model with irregular
free surface consisting of sinusoidal shapes, the
analytic expression of Fourier transform is possi-
ble, and then the response displacement in
frequency-space domain with x, = 0 can be
obtained as :

v’(x,f(x),w)ZLZv’(K,f(x))ei“Idx
(&)
Joer-2y

where f; is the height of sinusoidal topography of
free surface, and x* = 2x/L is the horizontal
wavenumber of sinusoidal topography of free

=|1+£ cosk*x| 204+ (32)

]
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Cs=370m/s, D =008

Cs = 370m/s, D=008
The half space ground models with four different
sinusoidal topographies used in the examination
of accuracy of the perturbation method

Fig.6

Table 1
Model Height (m) Wave Length (m)
A © 10 320
B 10 160
C 10 80
D 20 80

surface with L being the periodicity length (wave
length) of sinusoidal topography. In the case of a
plane free surface, fo=0, and then the frequency
response displacement is constantly 2v;, in every
position x. In the case of sinusoidal free surface the
spatial variation of the frequency response dis-
placement is sinusoidal (cos&*x) which is the same
as the spatial variation of free surface topography
since the perturbation approach in this study
truncates the higher order terms. In Eq.(32), for
the frequency that satisfies the condition £*=
w/Cs, the response displacement approaches
infinity. However this phenomena is caused by
neglecting the higher order scattering waves. To
remove this unrealistic higher response to the
frequency o= £*Cs, material damping is taken into
consideration in Eq.(32), even though the half
space ground model used in the computation by the
boundary element method has no material damp-
ing. In the comparison the material damping ratio
is assumed to be D=0.08 in both methods.

In the perturbation method the analytic express-
ion is obtained by neglecting terms of order higher
than irregular height f and slope 8f/0x. Therefore,
the height and the slope are the key parameters for
the bounds of accuracy of the perturbation method.
In this comparison, the parameters « and j are
introduced which correspond to the relative height
and the approximate slope defined as :

azu_.ff_ﬂ_fix_.z fmaxa) , B: 4fmax (33)

ot S s
where fmax is the maximum height of irregular
surface, Cs is the S-wave velocity, and L is the

Swavelength

minimum periodicity length of irregular surface. In
the models used in the comparisons, B==0.125,
0.25, 0.50, and 1.00, since fmax=10, 20 m, and L=
80, 160, and 320 m are used (Table 1). By changing
the excitation frequency in the ground model with
each slope parameter 8, ten cases with different
height parameter « are computed, i.e, a=0.02,
0.06, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, and
0.24.

In order to facilitate the comparison of the
perturbation method and the boundary element
method, the following two L, norm differences are
computed :

él([l)ﬂ"‘!vpl)z

ABSi.80,=100 e 34a)
S
2 [Re(vs) —Re(vp)]?
RE 5r0r=100 Z=1
.gli’e (vp)?
........................................................ (34b)

where v; is the frequency response displacement by
the boundary element method, vp is the frequency
response  displacement by the perturbation
method, and Re represents the real part of the
complex variable.

The two L, norm differences are plotted in Fig.7
against ten height parameters « for the four slope
parameters 3. L, norm differences increase rapidly
when increasing the height parameter and the slope
parameter. In this particular example it may be
acceptable for the values of @<0.10 and £<0.25.
Therefore, the perturbation solution may be
acceptable for the following ranges :

hsar, fi<Bla=01, =025 (35)

where f; is the height of sinusoidal topography of
free surface, A is the S-wave length, and L is the
periodicity length (wave length) of sinusoidal free
surface topography. Fig.8 shows two examples of
results of comparison for the two height parameter
a=0.06, 0.10, with constant slope parameter =
0.25. It is observed from Fig.8 that the differences
in both methods are small.

5. FREQUENCY WAVENUMBER
SPECTRUM OF STOCHASTIC SH
WAVE

By assuming that the incident SH wave motion is
the stationary stochastic process and the fluctuation
of irregular free surface is the stochastic field with
zero mean, eventually the response displacement
wave field may be a stationary and homogeneous
stochastic wave. Then, its frequency wavenumber

L
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Fig.7 L, norm comparison of the perturbation method
and the boundary element method : (a)
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spectrum is obtained as :
Suo (5, @) =0k, @ )2 veeerrvreemeniinenins (36)
Substitution of Eq.(31a) into Eq.(36) yields :
Su (1, @) = [|AI%0 (k= ko)

+ [BIZSff (/f_"fo)] Svinvin (CU ) M (373.)
where Sy is the wavenumber spectrum of the
fluctuation of irregular free surface f(xr). The
quantities A and B appearing in Eq.(37) are given
by :

= 2P
B B (37b)

2¢rosinyH (m—xg_ 7’0)

"~ costHcosreH\ 770 r
Where p and ¢ are given in Eqgs.(31b) and (31c),
and 7, corresponds to the value of y when k=rx,.
The validity ranges of Eq.(37) may be estimated
from Eq.(35) by changing f; and L to the RMS
(root mean square) height and the mean wave
length of stochastic field f(x) which are obtained
from the wavenumber spectrum moments of
stochastic field f(x) such as :

Fos= /flsﬁ(,{)d,f ....................... (382)

f_isff(ff )dk

jj" ICZSf/(K )dIC
where frus is the RMS height of f(x), and Lygay is

Lypan=2r

B=0.25 =008
v/2u;,
2

1R

(2)

=S

b
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k8 i
Examples of the frequency responses along the
sinusoidal surface computed by the perturbation
method (dotted lines) and the boundary element

method (discrete points) : (a) @=0.06; (b) a=0.1

Fig.8

the mean wave length of f(r).
6. CONCLUSIONS

In this paper, a closed form analytic expression
of the frequency wavenumber spectrum is estab-
lished. The corresponding earthquake ground
motion is produced by the earthquake response of
a single soil layer of irregular thickness resting on
half space. The earthquake motion, assumed by a
single plane SH wave, is transmitted to the soil
layer from the half space. The analytic expressions
of the earthquake responses of irregular ground are
based on the perturbation method, and their
accuracy is examined by comparison with the
responses computed by the direct boundary
element method for many rough surface models
consisting of topography with sinusoidal shape.
The error in the perturbation method is acceptable
for the height of sinusoidal topography of less than
about 10 percent of the shortest S-wave length and
the slope of less than about 0.25. Finally, an
analytic expression for the frequency wavenumber
spectrum of the stochastic wave at irregular ground
surface is then derived. Although the present paper
considers the inhomogeneity of local soil layer
caused by the lateral variation of the thickness of
soil layer only, the effect of the inhomogeneity

_ caused by the spatial variation of soil properties on

the ground motions can be also studied using the
perturbation method presented in this paper
(Harada et al., 1990). The sample stochastic wave
form can be efficiently simulated on the basis of the

|
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spectral representation method where the simu-
lated wave consists of the superposition of a
number of plane waves having amplitudes consis-
tent with the frequency wavenumber spectrum
(Shinozuka et al., 1987).
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