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AXIALLY ASYMMETRIC STRESSES IN A
TRANSVERSELY ISOTROPIC, SHORT CYLINDER
SUBJECTED TO SECTORIAL PRESSURES ON

THE END FACES

Isamu A. OKUMURA*

An analysis of axially asymmetric stresses in a transversely isotropic, short cylinder
subjected to sectorial pressures on the end faces is presented. The generalized Elliott
solution is used for the analysis. The solution yields two different elasticity solutions to be
necessary for satisfying boundary conditions at the end faces and the side surface.
Magnesium and cadmium crystals and an isotropic material are treated. Numerical results
for displacements and stresses in these materials are illustrated. The effect of anisotropy
on the displacements and stresses is examined through a comparison with the isotropic

material.
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1. INTRODUCTION

Recent studies on three-dimensional elasticity
problems have turned to those of anisotropic
solids. Although there are various classes of
anisotropy, practical necessity is concerned with
orthotropy, cylindrical anisotropy or transverse
isotropy. Studies on orthotropic and cylindrically
anisotropic solids are few in number at the present
time, because it is hard to find the three-dimension-
al elasticity solutions to these anisotropic solids.
However, there are a lot of studies on transversely
isotropic solids, because the three-dimensional
elasticity solutions to this anisotropy have been
found. Levine and Klosner” analyzed axially
symmetric stresses in a long cylindrical shell
subjected to radial band loads. Atsumi and Ttou?
analyzed axially symmetric stresses in an infinite
cylinder with a spherical cavity. Mirsky” and Chen®
analyzed the wave propagation in an infinite
cylinder and the concentrated force moving with
uniform velocity in an infinite solid, respectively.
Zureick” analyzed axially asymmetric stresses in an
infinite solid containing a spheroidal cavity.

These studies as stated above are concerned with
infinite solids and use Elliott’s and Lodge’s
solutions. Although Elliott’s and Lodge’s solutions
are simple in applications, they seem to have been
hardly applied to three-dimensional problems of
finite solids, for instance, short rectangular prisms,
short cylinders or short hollow cylinders. The
writer proposed the generalized Elliott solution
and analyzed axially symmetric stresses in a short
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cylinder subjected to a radial band load in a
previous paper®. The solution was also applied to
an axially symmetric stress analysis of a short
hollow cylinder subjected to an outer band load”.
However, studies on axially asymmetric stresses in
a short cylinder or in a short hollow cylinder have
not, to the writer’s knowledge, been carried out.

This paper is concerned with an analysis of
axially asymmetric stresses in a transversely
isotropic, short cylinder subjected to sectorial
pressures on the end faces. The generalized Elliott
solution is used for the analysis. The three-
dimensional problem of a short cylinder is much
more complicated than that of an infinite or a long
cylinder, because the method of solution requires
two different elasticity solutions to satisfy boundary
conditions at the end faces and the side surface.
The generalized Elliott solution yields the two
elasticity solutions. Additional solutions are also
used to treat initial terms in Fourier and Bessel
expansions. Magnesium and cadmium crystals; as
examples of transversely isotropic materials, as
well as an isotropic material, are treated in
numerical calculations.

2. THE GENERALIZED ELLIOTT
SOLUTION

Using cylindrical coordinates (7, 6, z) such that
the z-axis is taken parallel to the axis of elastic
symmetry, the generalized Elliott solution® is
expressed in terms of displacement components,
i.e., Uy, 1y and u, as
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and ¢;; denotes the elastic constant of transversely
isotropic solids, and v; and v, are the roots of
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Determining the coordinate system of a short
cylinder such as Fig.l and regarding that the
displacement and stress field is even in z, potential
functions are obtained from Egs.(2a-¢) in the form
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in which A, -, Eu, are arbitrary constants to be
determined from boundary conditions. Further-
more, [u(ansr) and Im(/;;ﬁ’,,r) denote Bessel
function and the modified Bessel function of the
first kind, of order m, respectively, and
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in which A, is the root of a transcendental
equation as stated later. Eqs. (6a, b) and a part of
Eq. (6e) and Eqgs. (6¢c, d) and another part of Eq.
(6e) are the solutions satisfying the boundary
conditions at the end faces and at the side surface,
respectively.

In order to satisfy the boundary conditions as
stated below, Fourier and Bessel expansions are
needed. Since the expansions bring initial terms in
Fourier or Bessel series, additional solutions are
needed to treat the initial terms. They are as
follows :
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The generalized Hooke’s law of transversely
isotropic solids is
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in which 0;; and ¢; denote stress and strain
components, respectively. If we substitute the
potential functions of Egs.(6a-¢), (8a-c) and (10a,
b) into Egs.(la-c), we obtain expressions for the
displacement components. To make the explana-
tion brief, we affix superscripts (1), (2), (0, 1) and
(0, 0) successively to the displacement and stress
components induced from Eqs. (6a, b, €), (6c, d,
e), (8a-c) and (10a, b). Then, the displacement and
stress components are expressed in the sum of four
quantities as
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If we find the strain components from the
displacement components obtained from Egs.(la-
c) and use Egs.(11a-f), we obtain expressions for
the stress components. For example, the expres-
sions for ¢y, and o;, are
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3. BOUNDARY CONDITIONS

We consider a short cylinder whose both end faces
are subjected to uniformly distributed sectorial loads
and whose side surface is free from surface tractions.
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The boundary conditions for that case become
at r=a
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in which
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0 for the other domain

From Egs. (13b) and (14b), we obtain
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Regarding Eq.(18) and imposing boundary condi-
tions (16a, b) on Egs.(14a) and (13a), we obtain the
following relationships :
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Substituting relationships (19a, b) into Eq.(14a), the
expression for ¢ff is rewritten in the form
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Setting =« in Eq.(21) and taking A, as the positive
root of the following transcendental equation :
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Regarding Eq.(24) and imposing boundary condition
(15¢) on Eq.(14b), we obtain the following relation-
ship :
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Thus, boundary conditions (15¢) and (16a, b) were
rigorously satisfied. By making use of relationships
(19a, b) and (25), we can make the expressions for
the displacement and stress components that elimi-
nate arbitrary constants By, Ans and D,,, from the
original expressions. For example, we have
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and the expressions for the stress components
induced from additional solutions (8a-c) and (10a, b)
are
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4. SYSTEMS OF LINEAR ALGE-
BRAIC EQUATIONS

In this article, we consider satisfying boundary
conditions (15a,b) and (16¢). The Fourier-Bessel
expansion of load function (17), under the condition
of Eq.(23), is as follows:
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To satisfy boundary conditions (15a, b), we have
to expand 0,7 and o3 at r=a of Egs.(27a) and (29a)
into Fourier series. Then, we obtain
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in which R, -+, st are Fourier coefficients and
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Using Eq.(32) and imposing boundary condition
(15a) on Egs.(27b-d), we obtain three systems of
linear algebraic equations in the form
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Using Eq.(33) and imposing boundary condition
(15b) on Eqgs.(29b,c), we obtain two systems of
linear algebraic equations in the form
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To satisfy boundary condition (16¢), we have to
expand o2 at z==%h of Eq.(28b) and ¢ of
Eq.(28c) into Bessel series, under Eq.(23). Then,
we obtain
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in which 8 =, =0, ---, {2 are Fourier coeffi-
cients.

Using Eqs.(30) and (37a,b) and imposing
boundary condition (16c) on Eqs.(28a,d), we
obtain two systems of linear algebraic equations in
the form
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Solving the system of Egs.(34b) and (36b) with
Dy and F,y, we obtain
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Solving the system of Eqs.(34c) and (38b) with
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The system of Eqgs.(34a), (36a), (38a) and (40b)
with Cos, Fun, Emn and F,o can be numerically
solved by an iterative method. Once all the
arbitrary constants are determined, the values of
the displacement and stress components of the
short cylinder are completely determined. In order
to facilitate numerical calculations of the system of
linear algebraic equations, displacements and
stresses, it is convenient to replace the arbitrary

constants previously used with the following ones :
cuCons
a

> S]nhclh: (—:ms;fél;%m_lm (\/;;Bna ): an,

-2

74—1(«/” 0) = By s C4Pm0®” " _

q
Caulnoa =Fop: CMFOO_FOO’ cuCo _ =

q q q

5. NUMERICAL RESULTS

Numerical calculations were made for trans-
versely isotropic and isotropic, short cylinders with
hla=1.0, d/la=0.3 and w=0.37. Magnesium and
cadmium crystals, as examples of transversely
isotropic materials, and an isotropic material with
Poisson’s ratio v=0.25 were treated. The values of
the elastic constants of these materials, as deter-
mined by Huntington®, are given in Table 1. The
roots of the transcendental equation were calcu-
lated by the Regula-Falsi method. Numerical
results were obtained by taking the first 40 terms
for m and 38 terms for s and # in the series. The
check for the convergence of 6., 0p and o, at =0
is given in Table 2. Table 2 indicates that the
convergence of the values in the interior points is
very rapid and that the convergence of gg and o,
at z=a is however slightly slow. For the magne-
sium crystal and the isotropic material, the
distributions of 6,,, 0s, 02, and o, in the planes of
#=0 and f=m are shown in Figs.2, 3, 6 and 7.
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Table 1 Values of elastic constants c¢i;.

(in units of 10GPa).

Material Cin e 4 cyy Cis
Magnesium crystal 1.64 5.97 6.17 2.62 2.17
Cadmium crystal 1.56 11.0 4.69 4.04 3.83
Isotropy (v=0.25) 1.0 3.0 3.0 1.0 1.0

Table 2 Check for convergence of g, gge and 0., at §=0.
(Magnesium, h/a=1.0, d/a=0.3, w=0.37).

Number of terms ~0,r/q -0g0/q ~T,2/q
- s ” r=0.4q req r=0.2a r=0.2a r=0.2a r=0.2a
" 2=0.8a 2=0.8a 2=0.8a z=q 2=0.8a z=a
20 20 20 0.0673 0.0001 0.0180 0.7084 0.5368 0.9074
30 30 30 0.0673 0.0002 0.0180 0.7257 0.5368 1.0421
40 38 38 0.0673 -0.0005 0.0180 0.7219 0.5368 1.0036
50 50 50 0.0673 0.0001 0.0180 0.7247 0.5368 1.0374
0.9 T
Orr - z=q 2
q 0.8 /!/):"‘ }d
~——— :  Magnesium I 0.7 ot i !
....... Isotropy 4.2 Tfl
0.6 o r
la
0.5
jilii
0.4
Q.3
0.2
I 0.1 - 1
 EE—— P a=l.sa
1.0 0.8 0.6 LT ol 02 A"0.4 [ 1.0
S A t /}r-’”"—{
1/Q Niaae Z L ] — r/a
l I | h\\\ -0.] 2=0 ’-‘/' i |
3 -0.2 2
—3--0.3
b -0.4
9=7 a=0

Fig.2 Distribution of ¢y, in planes of =0 and 6=7.
(Magnesium and Isotropy, #/a=1.0, d/a=0.3, w=

0.37).

Fig.2 shows that the decay of o,, along the »-
direction is rapid and that the value at the end face
(z=a) becomes discontinuous at the boundary (»=
0 and »=0.3a) of the sectorial load. The value at
the end face was calculated by the method
proposed by Saito”. Furthermore, the values in the
points away from the end face are small due to the
small loading area. Fig.3 shows that the value of
0 at z=a becomes discontinuous at =0 and r=
0.3a like 0,, and that the values in the points away
from z=a are small. Figs.4 and 5 show the
distributions of o0,, at »=0.4a and 2=0.8a and gy
at »=0.2a and z=0.8a along the 6-direction for the

magnesium crystal. It is shown that the decay of o;,
and 0y along that direction is rapid. Fig.6 shows
that the value of ¢, at z=0.8a becomes small
positive one at the side surface (#=a) and that the
values in the points away from z=g are compara-
tively large. Fig.7 shows that the values of 0., are
less than the normal stresses and that the values in
the points near z=a become larger at »=0.3a. In
Fig.7, the values in the plane of 6= are drawn in
the inverse sign. Tables 3 and 4 indicate compari-
sons of the displacement and stress values among
the magnesium crystal, the cadmium crystal and
the isotropic material, respectively. Table 3 shows

L
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i
z’/a<—]-— 0.6 0.4 0.2 0.2

6=m 9=0

Fig.3 Distribution of g in planes of =0 and O=r.
(Magnesium and Isotropy, #/a=1.0, d/a=0.3, w=
0.37).

Fig.4 Distribution of o, along 6-direction. Fig.5b Distribution of oy along f-direction.
(Magnesium, »=0.4a, z=0.8q). (Magnesium, »=0.2a, 2=0.8a).
1.0 a—
Tzz
9 0.9
0.8
e . Magnesium 0.7
------: Isotropy

0.6 =0. 8
oo | N2k
A

0.2 0.2 0.4 0.6 0.8 1.0
:z'/czJ

1.0 0.8
L r/a

Fig.6 Distribution of 0., in planes of §=0 and #=r.
(Magnesium and Isotropy, #/a=1.0, d/a=0.3, o=
0.37).
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. i 0.2
e Magme s ium Ozp -
_____ . Jzr L 2=0.8a
: Ilsotropy I 7 0.1 /“-\( ‘
z2=0,4a
[ l 0.6 0.4 0.2 T 4 'QQ
1.0 0.8 1 I 0.2 s 0.6 0.8 1.0
r/a | 1 I ! r/ad
-0.2
6=1 8=0

Fig.7 Distribution of o, in planes of =0 and O=m.
(Magnesium and Isotropy, #/a=1.0, d/a=0.3, =

0.37).

Table 3 Comparisons of displacement values
(r=0.2a, 6=0.27, 2=0.84a).

Table4 Comparisons of stress values
(r=0.2a, 6=0, 2=0.9a).

qa qa qa
Upf —imeee ug 1y
“n 1 “n

Material

Material Orr/q Jdee/q Ozz/q Ozr/q
Magnesium crystal 0.00657 0.0125 -0.157 Magnesium crystal — -0.114 -0.163 -0.833 0.0628
Cadmium crystal 0.0191 0.0259 -0.358 Cadmium crystal -0.203 -0.327 -0.749 0.0816
Isotropy 0.00634 0.0115 -0.146 Isotropy -0.121 -0.176 -0.826 0.0674

that the values of u,, #s and %, in the cadmium
crystal are more than those in the isotropic material
by 201.3%, 125.2% and 145.2%, respectively, but
the values in the magnesium crystal differ slightly
from those in the isotropic material. Table 4 shows
that the values of oy in the magnesium and
cadmium crystals are less and more than that in the
isotropic material by 7.4% and 85.8%, respective-

ly.
6. CONCLUSIONS

Axially asymmetric stresses in a transversely
isotropic, short cylinder subjected to sectorial
pressures on the end faces were analyzed by the
generalized Elliott solution. The method of
analysis for the three-dimensional, asymmetric
stress problem of the short cylinder was stated
briefly. From the results of the numerical calcula-
tions for the short cylinder, the following conclu-
sions may be drawn : ‘

(1) The values of 0,, and 0y at the end face
are discontinuous at the boundary of the sectorial
load.

(2) The decay of 0, and oy along the radial
and circumferential directions is rapid.

(3) The values of 0,, and 0y in the points away
from the end face are small due to the small loading
area.

(4) The values of ¢,, in the points near the end
face are positively small at the side surface.

(5) The value of #, at r=0.2a, 6=0.27 and z
=(.8a in the cadmium crystal is 201.3% more than
that in the isotropic material with Poisson’s ratio
0.25.

(6) The value of gy at ¥=0.2a, =0 and z=

0.9a in the cadmium crystal is 85.8% more than
that in the isotropic material.

(7) The differences in the displacement and
stress values between the magnesium crystal and
the isotropic material are narrow.

(8) The differences in the displacement and
stress values between the transversely isotropic and
isotropic materials grow wider as those of the
values of the elastic constants become wider.
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