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P Discussion

The idea of a mooring foundation seems very
hopeful in the future. The writer is especially
interested in the authers’ treatment of the buoyan-
cy acting on a long cable. At the same time, the
writer wishes some questions on that point be
clarified.

For a simplified discussion, let the followings be
assumed : a completely flexible cable is deformed
in a vertical plane {z, z}; and its extension and
volume change by the tensile force and the
hydraulic pressure are negligible.

In case a cable element ds is isolated in the
water, the Archimedes’ principle gives us the
buoyant force

b:AT{O7 1} crerecerernerneriiiinnnii e, (12)
where b is defined per unit length; and brace { }
means components into {x, z}. As well known,
this buoyancy is a resultant of the hydraulic
pressure acting on the two cross sections and the
side surface. If element ds has no curvature as
shown in Fig.15, the cross-sectional pressures are
given by

P,=Ayrh{cos®,sing },

Py=—Ay(h+dh) {cosg, sing }-----evreee (13)
where £ is the depth of water; and ¢ is angle of line
ds from the x-direction. Then, the pressure on the
side surface per unit length is derived as follows :

_ bds— (P, +Pp)
p= ds
=A7{—cosd sing, cos?@ } ++-+erreerreenn. (14)
Under the former assumptions, this result leads to
the authors’ Egs.(1.a-c).

Instead of the usual b, the authors employed side
force p as an alternative buoyancy to describe the
equilibrium state. But, is this expression itself
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correct for a general element ds? For instance,
consider a (rigid) ring of radius R in the water
(Fig.16). By the integration of (14), we have

fpds=A7’j;M {—cos¢sing, cos’d } Rde

=eee= {0, TRAY } -vveerrmrerensnnnens (15)
This result does not agree with the usual buoyancy:
2nRAY into z.
In case of an element ds having curvature ¥, let

bds

o,

Fig.15 Straight cable element
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Fig.16 Circular ring
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Fig.17 Curved cable element

the writer develop the hydrostatic forces, more
precisely. Since the cross-sectional pressure at s is
written as

PC=Avh(s){cosp(s),sing(s)}--reemees (16)
its change for distance ds is given by the differential

. dh | cos¢ —sing | de¢
dap° _AYEE{ sing }ds+A7h[ cosp } ds ds
ZAT[ cos¢ sing—khsing ]ds
—sin®¢p+khcos¢p

where relations dh/ds= —sin¢g and d¢/ds=k have
been adopted.

Next, we consider the hydrostatic pressure on
the cylindrical side surface. Angular coordinate 0§ is

introduced in the cross section from the intersec-
tion line with the {z, z} plane, as shown in Fig.17.

Since the fiber length at 6 is ds*= (1+«&rcos0)ds

with #» being the radius of corss-section, the
pressure on area element 7dfXds* is given by
d*P*=yd0- (1 +xrcosf)ds- (h+rcospcosf)r
........................................... (18)
Apparently, the pressure around the cylindrical
surface is in a self balance into the y-direction. By
the integration of its projection onto the {x, z}-
plane, d*P*cosf, we have the magnitude

dpi= [ d*Pcosb=--

=A7(hetcos@ ) ds -oroveeereeeeenennn (19)
This force acts into normal to line ds in the {x, z}
plane. By the resolution into the spatial {z, 2}, we
have th pressure force per unit length :

*(:—d%) =Ar(h(s)k(s)+cos¢) { “:2(1; }
........................................... (20)

The buoyancy of the Archimedes’ principle is
obtained by the sum of the former pressure forces:

P+ Py+prds=PC— (P°+dP°) +p*ds

,,,\ ds\/’

X

Fig.18 Forces at cable end

In a usual mooring system, the radius of cable
curvature is comparative to the depth of water. The
hydrostatic pressure on the side surface is esti-
mated by p* of (20), instead of by p of (14).
We now consider element ds in a long cable
anchored on the bottom of water. At the bottom
end (see Fig.18), together with the anchor force
To, the hydrostatic forces act: P of (16) on the end
cross-section, and p* of (20) on the side surface. By
the statics (21) on any cable configuration, the
effect of P° and p* is equivalent to the change dP¢
by (17) of cross-sectional pressure and the buoyan-
cy Ayds into z, and so on along the cable length.
Then, either under the side pressure p* and the
total end force T+ PC |;—o, or under the buoyancy
b and the anchor force T, a mooring cable can be
analyzed. But, the writer suppose the latter method
is more effective in our usual engineering. In this
treatment, the hydrostatic (s )7 in the material is
an additional force which has no effect on the
behavior of cable. It is only the buoyancy given by
(12) to be taken into account. The simple
expression A7y {0,1} for the buoyancy is not
affected by any other factors such as the configura-
tion of cable. This is why the Archimedes’
buoyancy exists as a principle. In the former
treatment, the expression (20) for the side pressure
p¥ is relatively complicated, containing direction
angle ¢ and curvature £. The dealing with the
higher derivative k£ can cause a numerical error in
the actual analysis. Even, in case there exist the
elongation of cable and the change of cross-section
area, the circumstances do not change in principle :
it is enough for the usual buoyancy to be defined
per unit volume after the deformation.
(Received July 15, 1993)
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P Closure

The authors- greatly appreciate the important com-
ments and indication of limitations in our paper by Dr.
Ai. Judging from the period of review of this discussion
because the authors received it in the middle of January,
we felt it was a very delicate problem on buoyancy of
cables.

The authors accept the writer’s indications and must
admit that the side pressure must be replaced by Eq. (20)
of the writer. Since the authors’ original governing
equations exactly hold for the straight cables and since the
cables in this particular problems are almost straight and
the total buoyancy of cables is much smaller than the total
cable tension and buoyancy of the floating body in any
configuration, the conclusions on the resisting behavior
and usefulness of the submerged floating foundations do
not change.

As has been pointed out by the writer, the authors have
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neglected the effect of curvature of cables in estimating
buoyancy because it has been assumed to be in the order
of strains just like the formulation of a finite displacement
beam theory in small strains. But the writer has shown
that the accumulation of such errors due to the curvature
leads to a significant error of the results of long cables.

Furthermore the writer has proved that the precise
extimate of side pressure leads to correctness of usage of
under-water weight of cables. Therefore it has been
proved that the equilibrium equations using under-water
weight yield exact solutions provided the final cable
tension is evaluated by subtracting the total hydrostatic
pressure acting on that cross section.

Finally again the authors thank Dr. Ai for the
discussion to our paper.
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