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ULTIMATE STRENGTH AND ITS PRACTICAL
EVALUATION OF CYLINDRICAL STEEL SHELL
PANELS UNDER VARIOUS COMPRESSIONS

Tetsuya YABUKI®, Yasunori ARIZUMI**
and Shigeru YASHIRO™**

This study investigates ultimate stability strength behaviors of cylindrical steel shell panels

under various types of uniaxial compression using the non-linear finite element procedure

for the ultimate strength determination of shell-type-plate. The effects of residual stress

and initial geometric imperfection are all included in the analysis. The numerical

calculation method is verified and compared with previous theoretical works. Based on

the investigation results, a practical formulation for the ultimate strength is also proposed.
Key Words : steel plate, shell, stability, ultimate sirength, envelop

1. INTRODUCTION

There have recently been many investigations
into nonlinear behavior of cylindrical steel panels
under edge-loads”™. Those previous works were
only concerned with the panels under pure
compression” or bending? ™. However, steel thin
plate panels of cylindrical shell-type under edge-
loads combined by uniform compression and
bending component are important elements of
spacial arch ribs and/or box girders with various
cross sections. In considering limit state of those,
the ultimate stability strength of the panels affects
strongly. Neverthless, it is not sufficiently clear yet.

In this paper, the ultimate stability strength
behaviors of cylindrical steel shell panels with
residual stresses and initial imperfections under
various compression, i.e., edge-loads combined by
uniform compression and bending component are
investigated by a nonlinear finite element approach
using isoparametric shell model as shown in Fig.1
developed for determination of the ultimate
strength of shell type plate®®. The method of
analysis is verified and compared with previous
theoretical works”®. The exact behavior of thin
walled structural members, subject to buckling
loads, is still beyond present approach. Consider-
ing simplifications may be made by treating the
member as an assemblage of individual shell panel
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Fig.1 Cylindrical Shell Panel Model

elements simply loaded and supported along their
mutual edges. The simplest stress system that can
be applied to such clements is that of uniaxial
inplane compressive loading in longitudinally
flattened direction as shown in Fig.1 and it gives
conservative evaluation for instability of the
clements. It might be suitable for tracing the
buckling behavior of the structural members that
so-called follow forcing is applied to the elements.
However, the external restrictions exerted to the
elements for this forcing cause unreal behavior,
which is inconceivable in the structural members
subject to buckling loads. Therefore, herein, the
abovementioned simplest stress system is adopted.
This paper concentrates specifically on cylindrical
shell panel with the residual stress caused by
welding as shown in Fig.1 assumed in the Merrison
rules” under nonuniform loading. Futhermore, the
paper is concerned with the practical prediction of
the complete collapse of the panel elements. The
practical prediction is formulated using the envelop
of resulting curves based on numerous data for the
ultimate strengths of the panels parametrically
calculated. The work is intended to be of direct
practical suitable to the thin-walled, steel-plated,
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box sections of arch ribs and/or of girders with
various sections.

2. ANALYSIS METHOD

(1) Updated Lagrangian Formulation

Isoparametric shell elements are used for the
present work and the element formulations are
based on general incremental equations derived
from Updated Lagrangian continum mechanics. By
assuming perfect satisfaction of equilibrium in
previous increments, the virtual work principle
expressing the equilibrium and compatibility
requirements of the element at the current load
increment in the Updated Lagrangian formulation
is given as follows:

j;m)Si‘]”“’éAe,,-dV(”)=R‘”*“ .................. (1)

where R”*Y is the external virtual work and 0
means variation operator, the S7*" and the Ae;;
are the components of the 2nd Piola-Kirchhoff
stress tensor and Green-Lagrangian strain tensor
(both referred to the deformation stage in the
previous increments), as follows respectively :

Sé}””=a}f’+z]5,-j, AE,‘J':AE{'}"%“AE% """ (2a,b)
in which 0% = Cauchy’s stress in the previous
increments ; AS;;=the increment in the previous
stress. Further, Aek, Ael are the linear and
nonlinear parts of the strain increments, respective-
ly. They are defined as follows :

Agij:%(Auij'{_Auii)z

A5?§=%Auu'ﬂuw, A=

where Ax;=the increments of displacements ; ;™
=Cartesian local coordinate of any point in the
element at the previous increments shown in Fig.2.

The material property is modified by elastic-
perfectly plastic model. The incremental stress-
strain relationship for the material under going
plastic flow is approximated using the von Mises
yield criterion with its associated the Prandtl-Reuss
flow rule. The von Mises yield criterion states that
the following inequality holds for any for the stress
state in the reference elements :

1
f:”2'[0121+0'222+ (011~ 022)*

6 (024 02+ 0B) ] S Ghereeererveeneens (4)
where oy =the uniaxial yield stress ; 0;; = direct
stress components in the i-direction ;0:;=the shear
ij stress. The incremental stress-strain equations
can be expressed as:

AS; ;=D ™ Ay eeeevveeemmnnemenninienniiiiens (5)
where D= D, for elastic state ; D=D, for elasto-
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plastic state. Using the Prandtl-Reuss flow rules,
the equivalent elasto-plastic moduli D, can be
defined as follows :

[D]1 {5130} {8f/da } T D.]
H'+{dfloo} " [D.] {0floo }

[Df’] =[D.]

where H’'=the effective strain hardening modulus.

Substituting Egs.(2), (3) and (5) into Eq.(1), the
equilibrium equations in the current load incre-
ments are obtained :

fv D Ach3AekdV ™+ f olpoAcdV

=R(n+1)__f( )O.;]n)a'Alejdv(m
P

(2) Finite Element Formulation

Isoparametric shell elements are used to obtain
the finite element solution schemes for the
element. Referring to Figs.2 and 3, the geometry
of the variable number nodes in the shell element
at the previous increments is interpolated as
follows :

8
Xi(") :kZ;Nk (E’ N )m)-Xi,k

8
+’§Nk(§,ﬂ)(")%c(mv3%: ........... (8)

where X" = Cartesian global coordinate of any
point in the element at the previous increments ;
N (&, n)® =isoparametric interpolation functions
defined by the isoparametric element coordinates
& 1 ; X, =X of nodal point k ; #,=thickness of
plate at nodal point k ; Va7 =component ¢ of unit
normal vector, V3, to the surface of the plate at

nodal k in the previous increments. Substituing

L
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Aaf? and Aad? be the rotations of the normal

vectors about the vector Vi, and V., from the
configuration at the previous increments to the
configuration at the current increments into
Eq.(8), the increments in the previous values of
displacements are defined as follows :

8
A Ui(n)zglNk (S’ 7 )(mAUi(,?c}”i“

8 ¢
2N, 1) (Viidas)

— VR AQE)) weeneeeneeeiieeeeane (9)

The usual assumption for shell-element theory is
now made that the element is in a state of stress
condition (gz;=normal strain in the direction of the
shell thickness=0). Thus, substituing Eq.(9) into
Egs.(2) and (3) yields :

AEij: {Aﬁu, AEgz, A'Slz, AEzg, AEgl}

={Aek}+{Ae} - e (10.a)
= [A] {46+ [A]] (46)
(A6} ={Auw, Aun, Ausi, Attrz, Atizs,
Athsz, Athys, Athoz, Athaz} T woveerenens (10.b)

The matrix [A,] and [A,] are shown in the
APPENDIX. The displacement derivatives corres-
ponding to the global coordinate system can be
obtained by employing the Jacobian transforma-
tion :

6Au1 BAuz (’Mug

6.1’1 ’ alj ’ 5:61

6Au1 aA%z 3Au3

a.rz ’ 0xz ’ ze

0Au;, 0Au, 0Aus

O0xs > Oxs * Oxs

04U, 04U, 8AU;

NS
— rrri-1| 04U, 04U, 04U,
=[T171J17 | 757, 75,2, 75, | LT
0AU, 0AU, 04U,
o " aC ' ot
........................................... (11)

where [J]=1Jacobian matrix ; [ 7] = transforma-
tion matrix. Substituing Eq.(9) into Egq.(11)
yields :

{Ag}zél[(;k] {AT} ceeveeeevneieieieiinnen (12)

where
(6= 181717, %1catT17 4],

{4 U} ={4 Ul,k; A Uz,k, A Us,k, Aa’l,k, Aaz,k} s
[B]=[Vig, — Vail roevvveeerereronnnne (13.a,b,c)

The matrixes [Bx] and [C,] are shown in the
APPENDIX. Substituing' Eq.(12) into Eq.(10),
the derivation in the elastic and plastic parts of the
strain increments can be rewritten as follows :

5 l4ek) = 2 [BAO(ATY,
01l =3 25141161 4D

%éme][ak]a{w} ..... (14.2,b)
where
(BA=[1HI (717, 21L171719,1] - 15)

The matrix [ H,] and [L,] are shown in the
APPENDIX. From Egs.(7) and (14), the follow-
ing incremental stiffness equation can be derived;
eventually :

[KPI{ATY = {F3 —AFE} -ooveeeeee (16)
where [K®]=the tangent stiffness matrix;
{F2}y=an external load vector at the current
increments ; {Fi%} =an internal load vector to be a
function of the current stress resultants. The
tangent stiffness [K ®] is dependent on the current
stress resultants, the current configurations and the
current elasto-plastic moduli as follows :

k=" [* [ 1BAT DA 1BA 1 1dzdnat

+ [ [ 16arte116, 1/ 1dgdnac

where
oulll olI] oilI]
onlI] opll]

sym. oll]

(3) Numerical Solution Technique

The elasto-plastic moduli are calculated using a
rigorous multi-layer approach based on the usual
Gauss integration (§, 1, {=2X2X5), and these"
are formed by numerical integration. The gov-
erning equations of equilibrium are solved numer-
ically, using an incremental displacement method
combined with Newton-Raphson iteration.
Assuming that the element is not subjected to any
external loads excepting at the mesh points under
the applied, enforced displacments ({4£”}=0),
the incremental stiffness equations can be express-
ed as follows:

K(;g—l) Ka(zl—l) A U’;n) Afﬂ(n) Ra(n~1)
Kbna—l) Kb(g;—l) A Ué.”) - Afb(n) + ;n—l)
........................................... (19)

where {AU"} =the unknown increments of dis-

[o]l=
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placements ; {A U} =the applied, enforced dis-
placements ; {Af ™} = the increments of loads ;
{R™ P} =the out of balance load vectors (i.e.,
unbalanced force residuals). Thus, from Egq.(19),
the unknown incremental displacements can be
solved as follows :

(AT = (K421 (R}

— [K DT {ATP}) ceeernevnnns (20)

The unbalanced force residuals vanish if the
external and internal forces are in exact equilib-
rium at the onset of the external increment. The
inclusion of the unbalanced force residuals in
Eq.(20) enables Newton-Raphson iterations until
the convergence criteria are met. A solution is
regarded as converged when each norm ratio for
the incremental displacements and for the unba-
lanced force residuals is within the tolerance of ;=
0.001. The norm ratio is defined as a ratio of norm
of incremental values to the norm of total ones in
.an increment. Thus:

lAT»INZATI<er, [AR PINZA < er---- (21)

The lack of equilibrium for the shell element is
associated with the residual stresses adopted herein
as shown in Fig.l. Before any incrementing is
applied to the shell panel, iterations are made to
eliminate this lack. These initial iterations cause
some residual deformation to the panel element
and the deformed configulation, in general, is not
equal to a desired initial imperfection as shown in
Fig.4. Herein, the desired initial imperfection is
given as:

Wo= wocos%”—s mlfbﬂ .......................... (22.2)
Thus, a renewed initial crookedness, Wrenewar, given
by subtracting the total residual deformation,
Wresiauai, as shown in Fig.4, from the desired initial
imperfection is considered as follows :

Wyenewal = 2Wo— Wresidual *+++++++++weerremrenns (22.b)
Then, the iterations are renewedly made. This
treatment process is repeated until Wyesiguar becom-
es equal to wy, i.e., the desired initial imperfection
given by Eq.(22.a) is ensured in the panel element.
Fig.5 shows typical result on the renewed initial
crookedness after abovementioned treatment. The
curves show that the desired initial imperfection is
eventually ensured by the adopted approach.

Here the load is applied by incrementing
displacement which corresponds to the desired
loading.

3. COMPARISON WITH PREVIOUS
WORKS

The writers could not find in the literature any
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Fig.5b Initial Crookedness

experimental studies of shell panels under non-
linear behavior. The adopted method was there-
fore applied to analyze recently available theoretic-
al works on nonlinear behavior for shell panel
elements. First is the geometrical nonlinear
behavior for a cylindrical shell” as shown in the
inset of Fig.6. The longitudinal boundaries of the
shell are hinged and inmovable, whereas the
circular edges are completely free. Considering the
symmetric behavior of the shell panel, a nine-
element model for the quarter shell is adopted. The
load is applied by incrementing the enforced
displacement at the center of the shell. The figure
of the load-deflection curve is shown in Fig.6. As
obvious from Fig.6, the result obtained here shows
good agreement with that previously reported and
recognized in Reference”. Next is the material and
geometrical nonlinear behavior for a simply
supported, initially unflatted plate” with the
residual stress under uniaxial compression as
shown in the inset of Fig.7. The self-equilibrating
form of the residual stresses applied during the
welding process is considered as shown in the inset
of Fig.7. The initial imperfection adopted is an
doubly sinusoidal. These are all the same as Little’s
example. Considering the symmetric behavior of
the unflatted plate, a twelve-clement model for the
quarter shell is adopted. The material is mild steel
oy=250 MPa, E=205 GPa, v=0.3. The compari-
son is performed for the plates having a thickness

L
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Table 1 Panel Parameters and Their Ranges Selected in the Study

Irem Symbol Range of values
8] ) 3
Aspect ratio ab 0.5, 0.75, 1.00, 1.25
&=0; 30, 40, 55, 80
Width-to-thickness ratio b/t ¢=1; 40, 55, 80, 110
$=2; 60, 90, 120, 160
Initial imperfection Wy 0.0, b/150
Yield stress parameter E /oy 875, 656
Residual compressive stress | O ,c/ Oy 0.0,03,04,0.5
Shell curvature angle alr 0.0, 0.01, 0.025, 0.05
Stress inclination [ 0,1,2

e Present method .
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Fig.6 Comparison of An Available Theoretical Solu-
tion by Surana
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Fig.7 Comparison of An Available Theoretical Solu-
tion by Little

of {=8 mm, an aspect ratio of @/b=0.875, and
various b/t ratios of 30, 40, 55, 80. These properties
are all the same as Little’s work. Again, the finite
element solutions obtained here are in close
agreement with the solutions reported and recog-
nized by Little.

4. PARAMETRIC STUDY

Data presented herein are using numerical
model for each panel illustrated in Fig.1. The
panel parameters and their ranges are selected in
the study as given in Table 1. The ranges of these
parameters are generally within found in steel arch
and/or girder bridges. Initial imperfection with @e/b
=1/150 of out of plane specified in JSHSB™ is
defined as follows :

wozwocoslg—”-sm%l ............................. (23)
and is considered for each panel. The panel
element has boundary restraint as constrained
transverse boundaries to remain straight at loading
edges and longitudinal boundaries to remain its
original curvatures at free loading edges. This is an
approximation of the boundary condition for a
panel in box section of the arch rib and/or girder.
Conventional stress blocks assumed for residual

stresses in the Merrison rules” is adopted as shown
in Fig.1. Experimental results previously for
thinner plates” have dictated that the pattern of
residual stress has a maximum stress in tension
equal to the yield stress of material, oy, and the
stress in compression equal to 40% of oy and this
dictation is adopted here, also™. By referring the
results of preexamination”, the quarter-panel is
meshed with twelve-elements (three for longitu-
dinal and four for transverse) for uniform com-
pression and the half-panel meshed with eighteen-
elements (three for longitudinal and six for
transverse) for nonuniform compression.

(1) Load-Deformation Curve

A typical deflection mode is shown in Fig.8. In
order to grasp load-deformation curves for the
panels, the curves are analyzed for various panels
with standard initial imperfection and residual
stresses. Some selected results are given in Figs.9,
10 and 11. The curves shown relate the load as a
resultant by stress distribution at loading edges of
the panel, nondimensionalized with respect to
elastic limit load, to the corresponding displace-
ment as the resultant by the applied strain on the
panel, nondimensionalized by the elastic limit
displacement. From the results on the load-

]
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Fig.9 Load-Deformation Curves (N/Ny—eley, 0,=0)

deformation relationships, it seems to cause a
tendency whose a slender panel leads to a
load-deformation curve slightly falling to a plateau
over its peaking. Hereafter, the ultimate stength is
defined at a peak of a load-deformation curve.

(2) Effect of Aspect Ratio

Fig.12 presents relationship between the ulti-
mate stress, Omax,1s: and aspect ratio, a/b, for three
different compression patterns (=0, 1, 2), where
the ultimate stress is defined by multiplying
Young’s modulus, E, to average strain for ¢=0
and maximum compression strains for ¢=1 and 2,
at loading edges respectively. Table 2 also shows
the relationships for various values of the aspect
ratio, a/b and width-to-thickness ratio, b/f subject
to various compressions. It is clear that the lowest
failure loads generally occur with an aspect ratio
less than unity. At the certain value, 0.5 of the
aspect ratio, the ultimate load of the panel is
merged into the lowest mean load over the full
ranges of b/f and a/b ratios, except the case of b/t=
55 for ¢=0. Although the ultimate stress for the
width-to-thickness ratio, b/f{=55 under pure
compression, ¢=0 varies with the aspect ratio a/b,
the collapse load is fairly insensitive to the aspect
ratio as shown in Table 2. Therefore, the critical
aspect ratio of @/b=0.5 is used in the parametric
study. :

(3) Effects of Initial Imperfections

Some selected results of the effects of the initial
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Fig.10 Load-Deformation Curves (N/Ny—¢ley, 0,c/0y
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Fig.12 Relationship Between the Ultimate Stress,
Omaxst>» and Aspect Ratio, a/b

imperfection on the ultimate strengths are shown in
Table 3 where the ultimate strengths are the
nondimensional maximum edge loads of the
reference panels with o,/0y=—0.4 and various
values of a/r and b/t, under uniform compressing.
In the table, #,/b=1/150 is the tolerance limit of
fabrication imperfection specified by the JSHSB.
As obvious from the table, the ultimate strength
without the initial imperfection is higher than that
with it, in all cases. The percentage of difference in
the two increases as decrease of a/r and/or b/t.

(4) Effects of Residual Stresses

The effect of the residual stress on the ultimate
strength is checked by varying the compression
component in the residual stress distribution. The
typical results on the shell panel with a/r=0.025

L
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Table 3 Results of Omax,15:/0y for Various Values of a/7, Table4 Results of Omayis/0y for Various
i, b/t Values of ¢, o/0y
& o 30 % T 55 80 ¢ =
) @ ® @ &) ® 0 0.3 -0.4 -0.5
0.0 0.989 0.848 0.652 0.485 O] @ [©)] “@) &)
oo /150 0811 0.698 0.580 0453 0 0.619 0.570 0.562 0.553
0025 0.0 0.938 0.802 0.627 0.469 1 0.705 0.703 0.691 0.693
b/150 0.788 0677 0.562 0.438 2 0.891 0.906 0.908 0914
005 0.0 0.877 0.743 0.592 0.446 Z; = i.Sfa_r ¢=0; b/1=80 for g =16/t =120 for $=2;
b/150 0.751 0.645 0.532 0414 =0.5%, =b/150, a/r=0.025
Note : $=0,a/b=035,0, /0, =04
Ot [ O
Table 2 Results of Omax,15:/0y for Various Values of ¢, I P
b/t’ a/b Elastic. huEkling curve
0 Wi ab 078
W @ 0.5 0.75 1.0 125
[&)] ) ) ©) 050 >
30 0.788 0.799 0.845 0.900 3
o 40 0.677 0.680 0.709 0.754 025t | onfo,mo4 | el
55 0.562 0.558 0.575 0.600
80 0.438 0.441 0.457 0.475 o 55 5 5
40 1072 1.093 1.146 1.221 R
. i 0887 0891 0932 0986 Fig.13 Typical Dimensionless Presentations of the
80 0689 0699 0727 0766 Panel Strength Results and Panel Slendernesses
110 0.582 0.606 0.622 0.720 for ¢ :0 :
60 1.292 1.363 1.406 1.426
90 -1.065 1.142 1.224 1.298 G /G
? 120 0.908 0.971 1.054 .
160 0.772 0.837 0.874

Note : - means failure by the residual stress, a/b = 0.5, %, = b/150, a/r =0.025

are listed in Table 4 for ¢ =0 loading with b/{=55,
¢=1 loading with b/{=80, and ¢=2 loading with
b/t=120. It is clear from Table 4 that the ultimate
strengths of the panels with the residual stress
under ¢=0, 1 decreases as increase of oy, while
the ultimate strength of the panel under ¢=2
increases. The difference in the ultimate strengths
with and without the residual stress is remarkable,
but that in the strengths with o,./cy=~—0.3, —0.4
and —0.5 is very small.

(5) Effects of Shell Curvature and Width-

Thickness-Ratio Parameter

Figs.13, 14 and 15 show typical dimensionless
presentations of the panel strength results and
panel slendernesses for ¢$=0,1,2 and four diffe-
rent shell curvatures, a/»=0, 0.01, 0.025 and 0.05,
where r=radius of curvature. The modified panel
slenderness ratio, R, is defined as follows :

\/E(—l—vz) U4 b ................... (24)

where v = Poisson’s ratio, K = elastic buckling
coefficient of a plate with a/»=0 under edge
loading ;i.e., K=4 for $=0,7.81 for ¢=1, and
23.9 for ¢=2. In these figures, the elastic buckling
curve for plane plates (a/#=0) is also shown for

_ Elastic buckiing curve .

E19,-075

afr=00
alr=001
a/r=0025.
alr=005

W= 07150

0 05 10 15
R

Fig.14 Typical Dimensionless Presentations of the
Panel Strength Results and Panel Slendernesses

for ¢=1

comparison purpose. A general conclusion that
may be drawn from the parametric study for the
influence of the shell curvatures is that the panel
strength decreases as increase of a/r. The most
interesting feature of these results is that the actual
strength of the panel with large width-to-thickness
ratio under a loading combined by uniform
compression and bending component exceeds the
elastic buckling strength, i.e., they exibit post-
buckling strengths.

5. PRACTICAL FORMULATION

The extensive numerical results obtained from
the study make the development of a practical
formulation for determination of the ultimate
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Fig.15 Typical Dimensionless Presentations of the
Panel Strength Results and Panel Slendernesses

for ¢=2

stability strength of the panels. The first step is to
formulate a standard fitting curve for the analyzed
ultimate strength results on the panels with a/#=0
for various of the modified panel slendernesses
under the uniform compression (¢=0) as shown in
Fig.16. As a result of curve-fitting for the
calculated ultimate strengths, it is found that
expressing the practical formulation in a term of
coefficient of the exponent gives good prediction,
given by: '

Omaxdst <£%"~)0‘592 for R=20.6
Oy R

st =9 5 (Gos— 1D R—0.5605+1.5

Oy
for 0.2<R<0.6
...................................... (25.a,b)
where Go6=(R.,/0.6)**, and R.,. is a critical
modified slenderness ratio for a panel under the
uniform compression as shown in Fig.16 and a
ratio of 0.395 is given to the panel with a/»=0 by
curve-fitting. .

The second step is to establish the ultimate
strength formula being applicable for the effect of
shell curvature. Fig.17 shows the relationship
between the shell curvature parameter, a/7, and
the critical modified panel slenderness, R,

evaluated by the abovementioned curve-fitting
approach. By applying a regression analysis on
statistics, a prediction formula for the R,,. can be
obtained as follows : '

Reye=0.305—1.08a/7 +++rrrerreerereeiresranns (26)
This formula is also shown in Fig.17. It is proposed
to use the same R, value to evaluate the effect of
shell curvature on the ultimate strength.

The third step is to establish the ultimate
strength formula being applicable for the effect of
bending load component. A simple way of
recognizing the bending component effect is to use
so-called “effective width-to-thickness ratio
concept”, in which the stability strength of the

¢ =0

i : a/b=05
025 : ! E/oy=875
: a/r=00

[ 02 R 05 06 5 w

Fig.16 A Standard Fitting Curve for the Analyzed
~ Ulitmate Strength Results on the Panels with a/r
=0

Ree

\ Rae=0395-108a/r

=  under uniform compression

o 0.02 6.04 0.08

Fig.17 Relationship Between the Shell Curvature
Parameter and the Critical Modified Panel

Slenderness

panel under the combined loads is related to that of
a panel with a reduced width-to-thickness ratio
under the uniform compression. A factor of the
reduced ratio, f, is defined as follows :
R, /K
fo"Rcm T s 27

where K. is the elastic buckling coefficient of a
plate with a/7=0 under the uniform compressive
edge loading, i.e., K.=4, and R,, is the critical
modified slenderness for a panel under the
combined loading. This R, is evaluated by the
aforementioned curve-fitting for various values of
¢ and a/r. The results are given in Table 5.
Substituting R., of those into Eq.(27), the f; is
evaluated for various of ¢. Fig.18 presents f;—¢
relationships for a variety of a/r parameters. The
noticeable feature of these results is that the factor
of the reduced width-to-thickness ratio, f,, is not
explicitly effected by the parameter of a/r. Namely,
the parameter of a/7 in the R, . has implicit effects
on the fo. By applying the regression analysis to the
fo— ¢ relationships, a prediction formula for the f,
can be obtained as follows :

fb:1+0514¢+0719¢2 ...................... (28)

This formula is also shown in Fig.18. It is proposed
to use the £, formulated by Eq.(28) to evaluate the

L
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Table 5 Results of R, and f,

alr

¢ 0 0.01

0.025 0.05

cr fO Rcr

(O] @ 3 )

Rcr f() Rcr fO

(6) 0] &) &)

O 0.395 1 0.383 0.366 1 0.341 1
1 0.631 | 2.232 | 0.608 | 2.218 | 0.573 | 2.188 | 0.524 | 2.147
2 0.792 | 4.901 | 0.764 | 4.876 | 0.721 | 4.815 | 0.658 | 4.717

alb=05
E/o =875

fo=140.514 9 +0.7199°_
- )

. ajr=0
o alr=001
f w alr=0025
o a/r=005

4 05 10 15 20 ®

Fig.18 f,—¢ Relationships for a Variety of a/» Para-
meters

effect of bending load component on the ultimate
stability strength.

Therefore, Eq.(25) can be rewritten as being
applicable for the cylindrical panels under the
combined edge-loads, given by ;

Omax,1st __ (Rcr>0'592 .

Oy ’

R

2
Rev=fy' Reye'——= ; Rer.e=0.395—1.08 a/7 ;
JoRere™
Fr=140.514¢+0.719¢% -+ervreeee- (29.a,b,¢,d)

provided that :
for 0.2<R=<0.6 and ¢=0

P:@;_LYJL‘=25 (60.6_ I)R_O.5505+1.5 5

Fos= (Repe/0.6)05% woviiriiiiiieiiinnnnn, (30.a,b)

These equations are, finally, proposed formula for
“the ultimate stability strength of cylindrical steel
shell panels with residual stresses and initial
imperfections under edge-loads combined by
uniform compression and bending component. The
accuracy of this formula in predicting the strength
of panels is examined by the parametric study and
partially demonstrated in Fig.19 for ¢=0, Fig.20
for ¢=1 and Fig.21 for ¢=2, and various of a/7.
Fig.22 shows for ¢ =0,1,2 and two sets of
different yield stresses of material E/cy=_875 and
656, respectively. The absolute values of differ-
ences between the results by the proposed

prediction formula and by the ultimate strength
analysis are gathering from 0.001 to 0.066. The
mean value and standard error are 0.021 and 0.003.
Therefore, it may be concluded from those results
that the prediction formulas proposed by Eqs.(29)
and (30) evaluate the ultimate stability strengths of
the panels under the combined edge-loads accur-
ately enough for practical purpose. The proposed
formula is compared with other formulas for a
simply supported plate under the uniform
compression””'?'" as shown in Fig.23. From the
Fig.23 it is seen that the proposed formula gives
rather smaller strength than the other ones. This
tendency may be caused by treating the lack of
equilibrium associated with the residual stresses. It
seems that the other propositions treat the lack by
adding internal loads caused by the residual
stresses to the applied enforced displacements. As
the comparison purpose, the results obtained by
adding the internal loads to the applied enforced
displacements are also shown in the Fig.23 as the
corresponding results. The results correspond to
the other propositions and are merged into them.
The proposed formula is also compared with the
experimental results'”. The experimental result
formulated by the mean minus two standard
derivation curve shows qualitative and quantitative
agreement with the proposed formula, approx-
imately. Since the experimental data are the results
tested using the stub columns, the reference plates
might be supported in between simply and fixedly.
Therefore, it seems that the comparison result with
the proposed formula and the experimental data is
reasonable.

6. CONCLUDING REMARKS

The above conclusions and recommendations are
based on the ultimate stability strengths of the
cylindrical shell panels under the combined edge-
loads and on a limited amount of theoretical work
within the structural parameter range of the
practical steel arch and/or girder bridge structures.
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Fig.19 Comparison of Analyzed and Predicted
Strengths for Various of a/r for ¢=0
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Etastic buckling curve

‘Analytical Proposed
Resut  Sirength Curve

o
o
o

o 05 10 1.5

Fig.20 Comparison of Analyzed and Predicted
Strengths for Various of a/r for ¢=1

Research is clearly needed on experimental
definings. As the formulas proposed herein are
easier to use and no instability analysis needs to be
performed on the cylindrical panels, it can be
recommended for practical predicting. Finally, the
authors are grateful to Messrs. Y. Nagamine and S.
Miyagi, graduate students of University of Ryukyu,
for drawings and typings of the manuscript.
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