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ABSTRACT
Presented is a review of shape optimal design and shape design sensitivity analysis with an emphasis on techniques dealing with shape of
the boundaries of two- and three-dimensional bodies. Attention is focused on the continuum structural shape optimization based on
numerical models by either finite elements or boundary elements. This requires sophisticated design sensitivity analysis techniques and a

careful choice of design variables.

1. INTRODUCTION

Engineering design is an iterative process, in
which the design is continuously modified until it
meets the criteria set by engineers. A traditional
design process is carried out by the so called trial
and error method, in which the designer uses his
experience and intuition to lead the design process.
This manual design process has the advantage that
the designer’s knowledge can be utilized in the
design. But as the design problem becomes more
complex, design modification becomes more
difficult, requiring a new tool.

For a particular design problem, there may exist
a number of solutions that satisfy given conditions.
The optimum design is a rational approach finding
a solution which is optimal in the sense defined.

One category of problems attaining much
attention recently is the optimal shape design. It is
one order of magnitude more complex than the
more classical size or parameter optimization. Due
to variety of difficulties, it is not yet in the stage of
practical applications, although theoretical base is
well set up now. The importance of shape
optimization is evident, since the first thing in a
design problem is to determine the shape of the
object to be designed when we look at any design
problem. For determining optimal shape of elastic
bodies in the general case, the main mathematical
difficulty lies in that the domain of the governing
equations is not specified beforehand, but is to be
determined from conditions that the objective
functional attains an extremal value possibly under

many other constraints. These are so-called
problems with unknown boundaries. As well as
having a direct practical importance, such problems
are of great interest from a mathematical point of
view: to develop effective tools to such problems is
a real challenge.

An accurate shape design sensitivity analysis
(SDSA) is considered basic prerequisite to efficient
handling of the shape optimization process. This
has been a major topic of intensive research. The
present paper reviews recent works in shape
optimization and shape design sensitivity analysis.
It is focused on the shape design sensitivity analysis
methods and is limited mostly to design variables
that control the boundary of two- and three-
dimensional objects. It does not include works on
topology optimization and sensitivity analysis of
skeletal structures, because these problems belong
to another category. However, the interested
reader is referred to a survey by Topping” and
Levy” on this topic. ‘

Section 2 deals with procedures for properly
defining shape design variables so that the finite
element or boundary element mesh provides
accurate state variables and accurate sensitivity
results. Section 3 deals with shape optimal design
problems treated up to now. Section 4 reviews the
developments of shape design sensitivity analyses
based on variational formulation and boundary
integral formulation. Section 5 lists the shape
design literature by areas of applications. The last
section concludes the surveys.
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2. SELECTION OF BOUNDARY
REPRESENTATION METHOD
AND DESIGN VARIABLES

The representation of the shape to be designed
using a set of parameters or design variables is a
key step in the process of formulating most shape
optimal design problems, and remains one of the
major difficulties. The optimum shape is highly
dependent on the design parameterization
selected. An inappropriate parameterization can
lead to unacceptable shapes”™”. And, changing the
geometric shape of the design model to reflect
successive changes in design parameters is a
tedious, complicated, and inefficient process.

In general, structural shape design problems can
be classified into three types, in terms of the
characteristics of the design boundary. In the first
type, the shape of an arbitrary open or closed
boundary, such as a fillet?™ or a dam surface’ ™,
is to be determined. In the second type of problem,
dimensions of pre-defined shapes, e. g., the radius
of a circular hole, the major and minor axes of an
elliptic hole, dimensions of a slot, length of a
rectangular membrane, or radius of a rounded
corner, are to be found® ™. In the third type,
locations of the design boundary, e. g., the
locations of the center of a circular hole, an elliptic
hole, hole of an arbitrary given shape, or slot that
has either arbitrary or pre-defined shape relative to
the global reference frame, are to be
determined®~”. Shape design of the open bound-
ary of a structure has been studied for some
time? 20~ However, design problems with a
closed boundary, pre-defined shape, and locations
of the design boundaries have not yet been
extensively treated.

During the past years, a few methods have been
used to parameterize structural boundaries for
optimal shape design : boundary shape described
by coordinates of boundary nodes™*"™, coeffi-
cients of polynomials”**™?, control points of
splines or spline blending functions™ ¥ ™0,
and parameters of generic primitive models
D% A selection of a particular parameterization
means a restriction on the set of feasible designs
that may be different from original intention.

(1) Coordinates of element boundary nodes

The use of coordinates for boundary nodes in the
finite element or boundary element model as shape
variables is the earliest method™??*™ %™ Tt is
simple and easy. However, severe drawbacks have
been reported” : (1) the number of design
parameters tends to become very large, which may
lead to high computational cost and difficulty; (2)
smoothness of the design boundary is not retained

23),24),28),29),

across boundary nodes, which may lead to an
unacceptable or impractical design; and (3) analysis
error due to a selected discretization can be
amplified and thus the optimized shape based on
this wrong information is meaningless when looked
at from the design problem initially set. Such
problems can be seen in the typical fillet or hole
problems”¥49%7,

(2) Polynomials representation of bound-

aries

Polynomial representation is a natural choice for
describing boundaries. Some early references
are®™, The total number of shape design
parameters can be reduced by using polynomials
for shape representation. However, as reported by
Ding”, using high order polynomials to represent
the boundary shape may result in oscillatory
boundaries.

A more general approach is to define the
boundary as a linear combination of certain shape
functions with the coefficients being the design
variables. Thus, Kristensen and Madsen® defined
the boundary using linear combination of ortho-
gonal functions added to the initial design by
treating the coefficients of the functions as design
parameters. Dems™ also used a set of prescribed
shape functions and applied it to the simple case of
piecewise linear boundaries.

(3) Spline representation of boundaries

The use of high-order polynomials to describe
the boundary can result in an oscillatory boundary
shape as mentioned already. Splines eliminate this
problem, since they are composed of low-order
polynomial segments that are combined to maxi-
mize smoothness of the design boundaries. Furth-
ermore, the spline representation has been shown
to yield better sensitivity accuracy than a piecewise
linear representation of the boundary™.

The cubic spline function, which has two
continuous derivatives everywhere and possesses
minimum mean curvature, is a natural choice for
defining the boundary™®®. Braibant et al.*>**
used Bezier and B-spline blending functions to
describe design element boundaries. The blending
functions provide great flexibility for the geometric
description. With the spline formulation'®*"*%
boundary regularity requirements are automatical-
ly taken into account and also an analytical
formulation of the sensitivity derivatives can be
established.

(4) Generic primitive models

Many CAGD (Computer Aided Geometric
Design) programs or pre-processors in FEM
packages have modules which can generate
geometric models defined by parameters of generic
primitive model. Some examples of primitives are
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unit sphere, unit cube, unit cylinder and so on.
Sometimes the primitives are defined by B-Rep
(Boundary Representation), such as NURB (Non-
uniform Rational B-spline).

These primitives are used to define the shape of
the solid model or boundary shape. In this case, the
design variables are parameters of the primitives
which define the model. Some efforts are
seen®®% (o connect the shape optimization
technique with those models defined by generic
primitives.

(5) Design element concept

One way to achieve an adequate finite element
model is to use the design element concept that was
first introduced by Imam™, and is used by several
researchers®?- 4039 T this approach, the
structure is divided into a few regions. Each of
these regions corresponds to a design element that
is described by a set of master nodes that control
the geometry of the design element”. Associated
with the design element is a set of suitably chosen
design variables that specify the locations of the
master nodes only. The design element boundary is
described by using two- or three-dimensional
isoparametric  finite  element  interpolation
functions™*®, or spline blending functions***.

3. SHAPE OPTIMIZATION

Finding the optimum shape of a structure under
some constraints has been one of the most
attractive concerns of many great mathematicians
for along time from Galileo Galilei, who presented
the problem of finding the shape of a cantilever
beam in order to obtain a uniform stress distribu-
tion in the 17th century, to many researchers in the
20th century. Euler and Lagrange had set the
necessary conditions for optimization problems.
Since then there are many analytical tools that
contribute to the study of optimum design of
structural components. The work of Michell
(1904)” was a prevailing basic theory of these
analytical optimization works. The conference
book edited by Haug and Cea (1981)® provides an
extensive review of analytical works in this field.
Unfortunately, these analytical approaches have
limitations in solving practical problems. However
they are very valuable and important because they
can provide insight into the design process as well
as lay down a foundation for numerical methods.

Numerical optimization methods have seen
extensive development over the past thirty years. It
was Schmit®™ who proposed a general approach to
structural optimization in 1960, which indicated the
feasibility of coupling finite element analysis and
non-linear mathematical programming for the
optimum structural design. Following Schmit’s

work, major advances in structural optimization
have been made by Kicher, Gallagher, Gellatly et
al. % However the major interest of their effort
was the member sizing problem where design
variables are the cross-sectional area or thickness.

(1) Shape Optimization using FEM

One of the first treatments of shape optimization
was presented by Zienkiewicz and Campbell™.
They formulated the shape optimization problem
using an FE model and treated the boundary nodes
of the FE model as design variables. They obtained
derivatives by directly differentiating the discre-
tized equations and employed a sequential linear
programming method for numerical solution.
Francavilla et al, Schnack®, and Oda® employed
the finite element method for a fillet optimization
to minimize stress concentration. Similar but more
extensive methods to minimize stress concentra-
tions are presented by Tvergaard®, Kristensen and
Madsen® with a sequential linear programming
method.

Bhavikatti and Ramakrishnan® presented a
refinement of the formulation of *” and Ramakrish-
nan and Francavilla®” employed a similar finite
element formulation, but they used a penalty
function method for numerical optimization. A
function space gradient projection method for two-
dimensional elastic bodies was presented by Chun
and Haug®, using the design sensitivity analysis
methods similar to those presented by Rousselet
and Haug®”.

Optimality criteria have been developed for
selected classes of shape optimal design problems.
Banichuk’™ formulated a general problem of
selecting the optimum shape of the cross section of
a nonhomogeneous shaft, to maximize torsional
stiffness, with a given amount of material available.
He used variations of functional with respect to
both the warping function and boundary variation,
using material derivatives, and obtained a neces-
sary condition for optimum location of the
boundary. Dems and Mroz”"™ ™" presented a quite
general approach of shape optimal design using
both the optimality criterion method and the
variational calculus, and the optimality conditions
were generated for both the conservative and the
nonconservative load system.

Three dimensional shape optimization problems
were proposed by Kodiyalam and Vanderplaats™
using the forced approximation technique, in which
the approximate stresses were obtained through
linearization of nodal forces instead of direct
linearization of the stresses. Applications of three-
dimensional shape optimization are found in”**
33),78),79)

Bendsoe and Kikuchi®

34)

and coworkers®™™®
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proposed a topological shape optimization method,
called homogenization method that utilizes infinite-
ly many microscale holes in a design domain. For a
skeleton topology optimization readers are refer-
red to the two papers by Topping” and Levy”.

(2) Shape optimization using BEM

Because of convenience in remeshing compared
to FEM as well as relatively good accuracy of the
solutions at the boundary, the BEM has become an
attractive analysis method in shape optimization.

The use of the BEM in shape optimization
started from the 1980’s. One of the first formula-
tion of shape optimal design was presented by
Futagami**>. He coupled the BEM with the linear
programming to optimize systems governed by
partial differential equations Barone and Caulk™
optimized position, size and surface temperature of
circular holes inside a two-dimensional heat
conductor to produce the minimum variation in
surface temperature. They employed a special
boundary integral method and a conjugate gradient
method. Mota Soares et al.*** presented a model
for optimization of the geometry of solid and
hollow shafts in terms of boundary elements and
the nonlinear programming. They extended the
formulation to  two-dimensional elasticity
problems™*. The determination of the optimum
shape under displacements and geometrical con-
straints was presented by Zochowski and
Mizukami*® with the objective of minimum area.

Meric®™ applied the BEM to solve the
necessary conditions for optimality of performance
index derived by the calculus of variations using a
Lagrange multiplier technique. He extended his
method for non-linear anisotropic heat conduction
problems and applied his method to obtain an
optimal outer boundary profile of an orthotropic
solid body™. Optimal cross-sectional shapes for
minimum viscous drag for fully developed magne-
tohydrodynamic channel flow are investigated by
using a similar method™. Kobelev? also used the
BEM for the best shape of an elastic bar in torsion.
On the other hand, Burczynski and Adamczk™*?
started with integral optimality conditions and used
boundary element method. The resulting nonlinear
system was solved by the Newton-Raphson
method.

Sandgren and Wu® obtained the optimal shape
of ladle hook with substructuring method. They
have shown that the subregion approach can
reduce the computing time significantly. Carter et
al”. described an iterative numerical optimization
procedure for generating the cryosurgical probe tip
geometry to produce the desired lethal tempera-
ture envelope for a steady state axisymmetric
system. They used the Kirchhoff transformation to

include the nonlinear effect of variable thermal
conductivity at cryogenic temperatures. Gracia and
Doblare®” obtained the solution of the shape
optimization problem for simply and multiply
connected orthotropic sections under Saint Venant
torsion. Espiga et al.”® used the BEM for two-
dimensional elastic orthotropic solids.

Saigal and Chandra® adopted the implicit
differentiation of discretized boundary integral
equations for the shape optimization of heat
conduction problem. A boundary element formula-
tion for acoustic shape sensitivity analysis is
formulated by Kane er al."”. Shape optimization of
structures to minimize stress concentration is
formulated as a sequential linear programming
problem with an adaptive move limit by Xu and
Yu™. A method for automated grid refinement and
grid adaptation of boundary elements is introduced
by Hajela and Jih™ to interface with the optimum
shape design problem. They used a predefined
control function in a variational formulation and
master node concept to obtain an optimal node
distribution.

Kwak and Choi” developed a general procedure
and formulas for the SDSA based on the BIE
formulation for a potential problem and applied it
to a seepage problem. They extended the formula-
tion to plane elasticity problems and studied a fillet
and an elastic ring design problem’™. Lee and
Kwak™*® extended the adjoint method of Choi and
Kwak to two dimensional thermoelasticity prob-
lems and considered a shape optimal design to
minimize the weight of a turbine disc under stress
constraints. Lee and Kwak™ also extended the
approach to transient diffusion problem and
applied to a shape optimization problem of a glass
forming plunger to minimize the variation of
temperature along the cavity surface.

An optimal design technique for magnetostatic
fields is described by Ishiyama et al.”'™. They have
shown two application examples ; a 1-Tesla
superconducting magnet system with a magnetic
shielding for magnetic resonance imaging (MRI)
and a magnetic levitation system.

Chaudouet er al." applied the BEM to three
dimensional optimum design with a growing-re-
forming technique. A modular approach for shape
optimization used in the finite element® is
employed for the boundary elements by Yang'.

Stochastic shape optimal design problems are
investigated by Nakagiri'®, Tada et al™ and
Burczynski'™. The boundary element SDSA and
the optimal design of vibrating structures for the
criterion of maximizing the lowest natural frequen-
cy are considered by Fedelinski and Burczynski'™.

The coupling of FEM and BEM is employed by
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Kamiya and Kita" that takes the advantages of
easier remeshing of BEM and the sparse matrix of
FEM. They also proposed a numerical approach to
search for the design synthesis of the optimal shape
of a spring wire under a minimum weight
restriction and stress criterion™.

4. SHAPE DESIGN SENSITIVITY
ANALYSIS (SDSA)

There are many special methods for solving the
shape design problems, for example, optimality
criterion methods, intuitive method (pattern trans-
formation method)®™, experimental techniques
employing photoelastic models and so on. Optimal-
ity criterion methods for shape optimization consist
of the following two steps : 1) the derivation of a set
of necessary conditions that must be satisfied at the
optimum design ; and 2) the development of an
iterative redesign procedure that drives the initial
trial design toward a design which satisfies the
previously established set of necessary conditions
(see, for example, 57), 92), 93)). Pattern trans-
formation method is a technique of scaling up or
down the shape of the boundary based on their
stress ratio or strain energy ratio. The detail and
other methods are explained well in®*.

Most of the work, however, is based on
employing mathematical programming methods
coupled with finite element method or boundary
element method. Most methods in nonlinear
programming require gradient information at each
iteration. .

Design sensitivity analysis, that is, the calcula-
tion of quantitative information on how the
response of a structure is affected with respect to
changes in the variables that define its shape, plays
a key role in shape optimization. The first partial
derivative of structural response quantities with
respect to shape design variables provides the
essential information required to couple mathema-
tical optimization and structural analysis proce-
dures. This problem of shape design sensitivity
analysis has been addressed over about the past 20
years. There are two popular baseds : variational
formulation and boundary integral equation (BIE)
formulation.

(1) SDSA based on Variational Formula-

tion

The dominantly used analysis method based on
variational formulation is the Finite Element
Method (FEM). There are two main approaches to
calculate the shape design sensitivities in this
context ; the discretized approach and the con-
tinuum approach.

a) Discretized Approach

The discretized method uses a discretized model

to carry out the sensitivity analysis, which includes
three methods : Finite Differentiation Method
(FDM), analytical method and semi-analytical
method.

The simplest method for obtaining the partial
derivatives is actually calculating the increments
using FDM™®, The FDM is to disturb the design
variables one by one, and using finite difference
formula to approximate the derivatives. FDM has
the advantage of being simple in concept, and easy
in implementation, but it has two disadvantages.
First, changes in shape can lead to a distortion of
the finite elements™®, and so the accuracy often
depends upon the size of perturbation step.
Second, the computation cost is comparatively high
especially when the number of design variables is
larger than that of constraints.

An analytical method is to differentiate the
system equation directly with respect to the design
variables™""" ™™, Analytical shape sensitivity may
be obtained through the implicit differentiation
approach"”, which is quite straightforward in terms
of mathematical derivation and programming.
From the initial efforts of Zienkiewicz and
Campbell’ and Ramakrishnan and Francavilla® to
the more recent work of Braibant and Fleury*”, and
Wang ef al.”, the theory of the implicit differentia-
tion approach has been established. But, unfortu-
nately the stiffness matrix is usually nonlinear with
the shape design variables, therefore it is difficult
to obtain the derivative of the stiffness matrix
analytically.

The semi-analytical method differentiates the
system equation first as in the analytical method,
then employs the finite difference method to
calculate the derivative of the stiffness matrix""*".
This is one of the attractive method in practical
problems because of its generality and easy
implementation. However many researchers indi-
cated that semi-analytical method could have
serious accuracy problem for beam. plate and solid
problemm),SS),HS)*'lU)‘

b) Continuum Approach

In the continuum approach, the sensitivity
formulas are derived for the system before
discretization, so there is no approximation
involved in the formulation. There are two
standard methods for describing the variation of a
functional over a varying domain Material
Derivative Method (MDM) and Domain Para-
meterization Method (DPM).

The first approach, MDM involves the introduc-
tion of time-like parameters to describe the
evolution of the undeformed geometry into
neighboring shapes. The material derivative
approach is based on the calculus of variation"®"",

]
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The variation is obtained by determining the first
order changes in the functional on the moving
domain as the time-like parameters are varied™.
Such an approach forms the basis of the MDM for
shape sensitivity analysis"®".

The material derivative approach of structural
design sensitivity analysis has been developed over
the last ten years from several different points of
viewSIONOULIDE1) - Thig approach was first
proposed by Cea, Zolesio and Rousselet™*?>2)
and further developed by Haug and Choi et
al.">"®. The general formulation for elasticity
problems was very well summarized in Haug er
al.™,

An efficient approach, referred as the Direct
Differentiation Method (DDM), involves implicit
differentiation of the elasticity equation to obtain
the partial derivatives™”. It is expensive for
problems with a large number of design variables.
Some recent articles on the DDM discusse a
rigorous treatment of shape variations"?"*. On the
other hand, the so called Adjoint Variable Method
(AVM) has been derived by direct application of
the weak governing equations, often in the form of
virtual work, without introducing mutual energy
principles. Haug, Choi and their co-workers"”
1REDE9) considered both discrete and continuous
systems. Dems and Mroz™® presented a similar
approach based on the variational method, which
included more general boundary conditions. They
also identified the physical interpretation of the
adjoint field variables as extended set of design
variable to include shape, loading and support
parameters. Belegundu and Arora™ showed that
the adjoint variables represent the sensitivity of the
cost function and constraint functions with respect
to the loading or forcing functions in the design
problem. Comparisons of the variational and
implicit differentiation approaches have been
investigated™ ¥ - Other researchers®™”®"%:
HOEDTEHENTEY have presented formulations for
SDSA of linear structures by introducing adjoint
structures from a physical consideration.

Yang and Botkin"? demonstrated equivalence of
variational and implicit differentiation method for
linear problems. This equivalence can also be
shown for nonlinear problems when finite element
formulations are used”. Several authors have
proposed formulations based on boundary integrals
and the adjoint method®""*#»52 Byt there are
considerable numerical difficulties with the evalua-
tion of boundary integrals"®"®. These problems
were avoided by using domain integrals instead of
boundary ones®”"”, but it becomes expensive to
calculate the full domain integration, so a boundary
layer approach was suggested”. Hou et al.'™®

pointed out some discontinuity problems that can
rise at the interface between finite elements in the
domain method. A problem of accuracy occurs
when the adjoint system under a singular load must
be solved, especially for a stress sensitivity. Even
though a local averaging may be used to smooth the
singularity"”, the problem still exists and remains
as an open problem.

The second approach, DPM uses a variable
mapping to transform the problem to one with a
nonvarying domain™ ™', The geometric coordin-
ates and the usual set of dependent variables are
written as functions of parametric coordinates
defined on a fixed domain. Functionals are
rewritten on the fixed domain using the parametric
coordinates as the independent variables, and
functional variations are then determined in the
usual way. This method forms the basis of the
approach for shape sensitivity analysis found in the
reference™, in which the shape variations are
described in terms of a mapping from an indepen-
dent, fixed reference geometry.

The DPM can be considered as an extension of
the isoparametric concept of finite element analysis
to the design and optimization problems. Compari-
son between MDM and DPM is done by Tortorelli
et al.™, and Arora and Cardoso. Recently, the
two approaches have been shown to be theoretical-
ly equivalent"”'. However, their numerical
implementation can be quite different.

(2) SDSA based on BIE

In the past decade the Boundary Element
Method (BEM) has been recognized as an
alternative numerical method for engineering
problems, especially in the area of shape optimiza-
tion. The BEM can reduce the two major
drawbacks of the FEM : the remeshing problems
during iterations and inaccuracy of boundary value
evaluation. The principal advantage is that there is
no need to discretize the interior of the body.
There is also a large reduction in the number of
unknowns. These can be seen from the researches
in early 1980’s such as Futagami®>*, Barone and
Caulk™, Meric® ™, Mota Soares et al.'*~* and
Zochowski and Mizukami®.

As in the variational formulation, there are two
approaches to perform the SDSA  based on
boundary integral equations. One is a discretized
approach, and the other a continuum approach.

a) Discretized Approach

This approach uses a discretized model to obtain
the shape design sensitivity, and could be divided
by three categories: Finite Difference Method
(FDM), analytical method, semi-analytical
method.

The FDM s straightforward and easy to

L
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implement, and many authors™*>*>"” have used it
as a reference for comparison or a tool for
sensitivity calculation. However, the FDM have a
few shortcomings. It can not be exact unless the
system is linear in the design variables. Thus, the
result is highly dependent upon the size of
perturbation. Also the computational cost can be
high. Zhao and Adey"” presented a different
SDSA scheme, which is based on FDM but
independent of the perturbation step.

As an analytical approach, Kane and Saigal™™
proposed an implicit direct differentiation method,
in which the system matrix discretized from the
boundary integral equation is differentiated analy-
tically. Their formulation involves the products of
shape functions, fundamental solutions and their
derivatives. They introduced a rigid body motion
technique of Barone and Yang™ to treat the
singularity that exists in the derivative of fun-
damental solutions. While those approachs provide
an easy and straightforward process, they have
shown some problems such as the computational
burden of performing singular integration of new
kernels. They and their coworkers have extended
the implicit differentiation method to various
problems'?*®*7) - Similar method is used in**
95),102).

In the semianalytical method, the discretized
system matrix is differentiated analytically, but the
derivative of the stiffness matrix is calculated by
employing the finite difference method. This
method has economical and practical advantages
but also the disadvantages of the FDM, and
reliability problems™*"9,

b) Continuum Approach

The continuum approach uses the material
derivative concept of continuum mechanics to
represent the variation of responses with respect to
a shape change. The first step of this approach is to
differentiate the boundary integral equation. No
approximation is involved in the expression of the
sensitivity, until the derived equations are discre-
tized by boundary elements.

There are basically two methods to perform the
SDSA. One is the direct differentiation method
and the other the adjoint variable method. In the
first method the state boundary integral is directly
differentiated with respct to design variables and
then a boundary integral equation similar to the
original BIE is obtained in terms of derivatives of
state variables. In the adjoint variable method, the
constraint functional is first differentiated and the
state variable dervatives are then replaced by terms
calculable from adjoint systems.

Kwak and Choi”™**'"™ and their followers™”"
have developed a general method for SDSA using

the formal boundary integral equation. They used
the material derivative concept and adjoint vari-
able method utilizing a boundary integral identity
to obtain an explicit expression for the variation of
the performance functional in terms of boundary
shape change, and the formulations were applied to
thermal and elastostatic problems. Although this
approach had aleady proven successful through
numerical examples, there are some difficulties to
determine the approximate adjoint tractions un-
iquely. An improved formulation of Kwak and
Choi was developed by Zhao and Adey™”, in which
a singularity subtraction technique was employed
to model the adjoint problem. Park and Yoo™"'*
proposed a method employing the material deriva-
tive idea and an adjoint variable method in
variational form for heat transfer system and
axisymmetric elastic problem. They transformed
the variational adjoint equation into an equivalent
partial differential equation, and solved it by
boundary integral equation method. Meric™*"#01%
used the material derivative and adjoint variable
method by means of an augmented functional
method using the Lagrange multiplier. While his
work throughout their derivation was independent
of the boundary element formulation, he proposed
the BEM for the solution of the original and the
adjoint system. The same procedure is investigated
by Aithal ef al.™ and Kobelev™.

Barone and Yang"?'"? and Yang® developed a
direct differentiation method, that is based on a
direct application of the material derivative
concept to the conventional boundary integral
equations for displacements and stresses in an
elastic solid. They employed a rigid body motion
to remove high-order singularities that arise
when taking derivatives of the basic Kelvin
kernels in the displacement sensitivity. Zhang and
Mukherjee'™ " and Mukherjee and Chandra”™""™
used the same concept of Barone and Yang but
they used another boundary integral equation,
derivative boundary integral equation, in which the
basic unknowns are the tractions and the tangential
derivatives of the displacements. Chandra and
Chan"" utilized these for a steady state
conduction-convection problem. Choi and Choi'™
obtained the design derivatives directly by solving a
new BIE, which is obtained by taking the material
derivative of the boundary integral identity. The
Authors””™ presented formulas that consider
changes in boundary conditions.

In the direct differentiation method we need one
SDSA for each design variable, whereas we need
one for each active constraint in the adjoint
method. Therefore one can be computationally
more efficient that the other depending on the
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number of design variables versus the number of
active constraints. Ignoring the computational
burden of complexities of singular kernels, the
direct method may be more advantageous than the
adjoint method, since the concentrated adjoint
loads occurring in some cases are not suitable for
the usual boundary element anlysis. Neither the

adjoint variable nor direct method, however, can
provide the most efficient computation if used
alone. There may be some efficient hybrid
methods. Choi and Kwak™ proposed a unified
approach for SDSA in the BIE formulation, which
covers both the adjoint variable and direct method.

Table 1 Sensitivity Application Fields

Application Fields

References

Linear elastic

Nonlinear elastic

Unilateral plane elasticity

Plate/Shell
Nonsmooth boundary
Thermal
Thermoelasticity
Thermoviscoelasticity
Elastodynamic
Frequency/Eigenvalue
Dynamic

Acoustics
Magnetostatics
Stochastic structure

9, 11, 13, 14, 15, 32, 50, 55, 75, 76, 86, 92, 94, 95, 118, 122, 130, 132, 139, 152~157, 163,

167~170, 176~178, 180, 183, 186, 187
8, 140, 144, 145, 171~173, 188~191
191

88, 71~73, 108, 188, 190, 192~197
18, 71~18, 76

30, 47, 48, 56, 85, 8790, 96, 141, 159, 161, 162, 165, 174, 175, 179, 182, 188, 198~200

79, 97, 98, 143, 158, 181, 201~204
205

142

105, 135, 189, 195, 197, 206, 207
84, 123, 137, 206, 207

160

51, 99, 208

102~104

Table 2 Optimization literature by specific problem

Application Problems

References

Elastic bar/Beam
Disks

Plate/Shell with a hole
Plane arch/Arch dam
Fillet/Weld surface
Torque arm

Control arm

Engine connecting rod
Engine bearing cap
Steering knuckle

Chain link

Cable crimping device
Culvert

Bracket

Pressure vessel
Penstock stiffener plate
Tire

Hook

Helical spring
Piezoelectric structure
Magnetic pole/electrode
MHD channel section
Cryosurgical probe tip
Die/mold

Photo cell

Speciman for shear test
Furnace hearth

28, 33, 44, 45, 49, 52, 70, 91, 93, 106, 124, 138, 201, 209, 210
32, 84, 38, 40, 41, 52, 72

8, 11, 24, 50, 53, 54, 58, 64, 97, 119, 192~194, 211~214
17~21

5~16, 46, 50, 54, 97, 215, 216

7, 53, 58, 107, 217

23, 43, 209, 216

12, 92, 27, 28, 85, 42, 79, 94, 209
5, 98, 79

23

26, 119

107

26, 217

53, 214

218

219

25

55

57

220

99, 100, 208, 221

51

47

30, 56, 222

223

9224

48

Obstacle in an Eulerian flow 225
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5. APPLICATIONS OF SDSA AND
OPTIMIZATION

Test probelms and application cases appearing in
the literature may be grouped in terms of SDSA
formulation and optimization. It is seen that this
area of shape optimal design is still in the growing
stage, studying various formulations and testing
rather simple problems. Although some of the
applications are implemented on commerical
softwares in conjunction with the FEM, it may take
some more years to see any routine practical
applications.

(1) SDSA Formulation

The information on areas of SDSA formulation
is summarized in Table 1. Refer to Adelman and
Hafka™ for more detailed information about
sensitivity analysis application fields.

(2) Specific Problem Applications

References are listed in Table 2 by area of
applications. Refer to Ding” and Haftka® for more
structural shape optimization literature.

6. DISCUSSIONS AND CONCLUSION

An approach for the rapid creation of design and
analysis model which is based on the integration of
parameterized surface models, called 3-D shape
design primitives and fully automatic mesh genera-
tion is now under developments. An integrated
system for shape optimal design consists of
geometric modeling, mesh generation, analysis,
and design sensisivity analysis modules. Current
trends in structural shape parameterization and
optimization use the concept of generating the
velocity field for the material derivative method.
Many commerical packages have SDSA modules,
but their approaches are based on finite difference,
or semi-analytic method. The semi-anlytical
approach is attractive for its generality and
numerical efficiency. However, severe error in
sensitivity may cause numerical difficulty and bring
in divergence in optimization. In general, analytical
sensitivities such as the material derivative
approach give relatively good results and better
convergence in shape optimal design problems.
This suggests that anlytical sensivities should be
used whenever available.

It is recognized that the essential and most
influential content of a design is the shape, but its
determination most difficult. Theories and algor-
ithms for shape optimal design are found available
in the literature, although their reliability, efficien-
cy and accuracy remain to be studied more. It is,
however, the reviewer’s wish to see more realistic
and practical application cases. Otherwise the
many researchers in this area may spend too much

time on trivial improvements in the methods with
no attention from potential industry users.
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