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THE CALCULATION OF THE FREE FIELD

RESPONSE OF A CANYON

Boyan ZHANG*

In this paper, the analysis procedures of determining the free field response of a ca-
nyon are described, and the basic equation of motion of a canyon free field response is
established, in which the coupling method of finite element and infinite element is
adopted. The infinite element aspects are presented in detail, including the element
classification, the convergence of the stiffness matrices, the numerical integration
scheme. A test example is given to demonstrate the accuracy of the method, and an
engineering application of the use of the elements for solving free field seismic motions

at-arch dam canyon is given.
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1. INTRODUCTION

The earthquake input mechanism is an important
topic in the dynamic analysis of large arch dams,
where the key point is to determine the canyon free
field seismic motion. But, spatial variations in
earthquake motion around the canyon have rarely
been considered in practice. At present, the
standard earthquake input mechanism” is still used
in engineering, in which a free field earthquake
accelerogram recorded at ground surface is applied
identically to the deformable dam foundation
interface. It will result in the same motion acts at all
points along the interface, and the deformable
foundation is assumed to be massless to avoid both
the artificial amplification of earthquake waves
inputted to the dam structure and the pseudo
foundation vibration modes which may dominate
the dynamic response of the dam. In fact, the
massless dam foundation is not substantial and the
earthquake motion along the canyon at the dam
site should not be uniform. A small amount of
earthquake records measured on the canyon both
banks indicate that earthquake motions around the
canyon habe considerable spatial variations. And
yet, for an arch dam, a slight change of the distance
between its abutments has a great influence on its
stress distribution. Therefore the free field re-
sponse of a cayon must be investigated.

The calculation of the canyon free field seismic
motion has been receiving attention in recent
years. Analysis solutions to the semi-circular and
semi-clliptical canyons in a homogeneous half
space for the out-of-plane motion (SH waves)
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have been given””. For more general cases, various
numerical techniques have been developed, includ-
ing the finite element method?, generalized inverse
method”, wave function expansion method?,
boundary element method”®. And the key prob-
lem of determining canyon free field motion is the
numerical simulation of the unbounded domain.
Conceptually, infinite element method seems to be
simple and easy for solutions of infinite continuum
problems.

The conception of the infinite elements is first
suggested by Bettess and Zienkiewicz”®. The
method has now been applied successfully to a wide
range of fields. For example, in the study of fluid-
structure  interaction’”  and  underground
excavation' problems, as well as in the analysis of
strip foundation wave problems” and effects of
canyon topography and geological conditions on
strong ground motion'. But the numerical integra-
tion method is not perfect in Ref 12) and Ref 13),
and the application of this method in practical dam
engineering is seldom seen. This paper will give an
improving result on the numerical integration
scheme, and a modified coupling model of finite
and infinite elements is used to determine the free
field response of a canyon. In order to reduce
computational cost, it is assumed that the canyon
has a uniform cross-section to infinity and that the
incident waves propagate normal to the axis of the
canyon, so the two-dimensional models for the
out-of-plane response to SH waves and the
in-plane response to P and SV waves can be
adopted to replace the three dimensional prototype
valley. Besides, assuming the canyon foundation is
subjected to a harmonic load and the medium
possesses a linear property. Hence, the law of
superposition is valid, and the analysis is performed
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(a) f subsystem

(b) w subsystem

{c) s subsystem

Fig.1 The calculation model of the free field response of a canyon

in frequency domain, the FFT technique is also
used in the calculation for the transient motion.

2. ANALYSIS PROCEDURES AND
FORMULATIONS

Determining the free field response of a canyon
can be illustrated in Fig.1, in which the signs f, w
and s are adopted to distinguish the different
subsystems. Because it is assumed that the medium
has a linear property, the law of superposition is
available and so the equation of motion for the
nodes on canyon boundary is formulated as

{uld = {udd — {ug) ooevemeeeniennnnn, cresens (1)

where the subscript b represents the nodes on both
the canyon boundaries for f and s subsystems and
the fictitious canyon boundary for w subsystem
(without canyon), so the analysis procedures can be
divided into three parts as follows : First, the
displacement amplitude vector {u¥} for w subsys-
tem is computed, and the node force vector {p¥} is
also formed. Second, the motion for s subsystem
subjected to node load vector — {p¥} is determined
by the coupling model of finite element and infinite
element that will simulate the effect of the
unbounded soil region. Finally, the canyon free
field motions under the earthquake excitation are
obtained by the superposition as shown in Eq. (1).

(1) the response of w subsystem

The types of seismic waves considered are
vertically propagating P and S waves in a layered
half space. The displacement amplitude vector
{u¥} and the amplitude vector of the fictitious
canyon boundary traction {#} are computed by the
method presented in Ref 19). for both vertically
propagating P and S waves. The known three
components of recorded accelerogram obtained at
a horizontally layered half space can be separately
calculated as three one-dimentional problems, in
which the following one-dimensional wave motion
equation with corresponding boundary conditions
applies to every layer soil.

’u_ 0%u %u

0o ”ayz Mo P TR (2)
where o, 7, are mass density and viscous damping
factor respectively, for horizontal component and
vertical component, y represents shear modulus
and Young’s modulus respectively.

Let u(y, t)=U(y)e™", then Eq.(2) becomes an
ordinary differential equation, solving the ordinary
differential equation yields {#}} and {¢}. The node
load vector {p{} is formulated as :

{pg’}:j;[N_]T{t}ds ........................... (3)

in which I'" represents the fictitious canyon
boundary, [ V] is the shape function matrix of the
finite elements.

(2) the response of S subsystem

S subsystem is subjected to the node load vector
— {p¥} as shown in Fig.1(c), in which the near field
is meshed by the standard finite elements and the
far field is discretized by the infinite elements, so
the subsystem’s motion equation is :

[?Z ?} [Z»}:_[ﬁg] .................. (4)

where {#3} and {45} represnt the displacement
amplitude vectors related to the canyon boundary
nodes and remaining ones respectively. By using
the condensation technique, Eq.(4) can be rewrit-
ten as :

[S5] {ui}:—{p?’} ........................ SO (5)
in which
[S51=[Sss] = [Sp] [S, 172 [S,0] coevevenee (6)

in Eq.(4) the dynamic-stiffness matrices [S] are
assembled from finite element and infinite element
submatrices that have the expression as Eq.(7).
[S1=[K] (+in,) — @ [M]-eeoneveernnne (7)
in which 74 is the hysteretic damping coefficient of
the medium,  is the exciting frequency, [K],
[M] represent the static-stiffness and mass matrix
respectively. Because the finite element is well
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Fig.2 The 2-D dynamic infinite element

known', only the necessary statements about the

infinite elements are given here.
(3) the canyon free field seismic motion
From Eqs.(1), (3) and (5), the basic equation of
a canyon free field motion can be obtained :

{afd =l + 1SS PPy oo (8)
3. INFINITE ELEMENTS

(1) convergence

Infinite elements are the radiate narrow bands
that extend to infinite, which are sketched in Fig.2.
Their shape functions have many possible choices
for different problems. In this paper, we adopt the
mapping and shape functions which are employed
in Ref.12) and Ref.13).

Mapping functions for coordinate transform :

Mi=51=0) =), M=0
M= (1+7) A=0), M=% (43¢

M= (1—1)¢
........................................... (9)

Shape functions for displacement transform :
Ni=5P(On (=D
N;=P({) U—n) A+n)

N=5 P(On(g+1D)

where P({)is called the propagation function

P({)=expl—(a+if)(]
where a is an amplitude decay facter due to wave
dispersion, 8=w/c is the wave number describing
the phase delay due to wave propagation. The
infinite elements defined here have the following
characteristic'” : (1) the displacement compatibility
on the interface between finite and infinite
elements ; (2) the displacement continuity along
the common boundary of neighbouring infinite
elements. Hence, they can be used to simulate a
stratified canyon foundation.

Infinite element’s stiffness matrix can be written
as

(K1y= " [ [BIFIDVIB1det () Idndc

A~type element B-type element C=type clement

Fig.3 The classification of infinite elements

_f f [ K] det[]] dnd{-eeeeee (12)

in which [ B]; and [ B]; are the strain
sub-matrices, [D] is an elasticity matrix contain-
ing the appropriate material properties, det [/1 is
the Jacobian determinant. All the elements of
[ Ki;] are polynomial functions relating to { and 7.
The convergence of the stiffness matrices depends
on the forms of the integrands which are decided by
the shapes of the infinite elements, and therefore
the elements are divided into three classifications
as shown in Fig.3.
For A-type infinite elements, det [/] is

det[]]A=—;—AX1AY13(1+m(:) .............. (13)

1 ;
m=y- AX, (EgOLF1g0,) vevvvemsveneennnn (14)

For B and C-type element, we acquire det [/ 15
and det [J]c respectively

det[]]s=1 AV (AX,+AX)
F P (AX;—AX)T-evemmmenrnnene (15)
dEtU]C=%AX14YzC .......................... (16)

According to the above-mentioned analysis, the
calculation of infinite element stiffness matrices
involves the integration in 7 and ( directions. For
A, B, C-type elements, the integration in (
direction is g4 gs and gc respectively.

QAZLwP"(C)f—i—(;fzédC ..................... a7
gB=j;mPn(C)P2(C)dC ....................... (18)
gc=_/;an(C)£ié—C')—dC ...................... (19)

In Egs.(17)~(19), P,({) is a polynomial relat-
ingto . When a>0, it is obvious that g4 and gz are
convergent, while gc can be written as

gc=j;an(C)LCC)dC

=g0+‘];°°PO‘PZé_C)dC ..................... (20)
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in which g, is a convergent generalized integration,
Py is a constant. Thus, the convergence of gc

PO g

depends on the integration j; Py

easily proved, in the case of Po=0, that f; aoPo

P*({) dcis di . .

T { is divergent. For C-type element, P is
the quantity relating to the mid-nodes of infinite
elements and the material properties, and in
general, Py*0. Hence gc is divergent. It indicates
that we must avoid using C-type infinite elements
in practical reckoning if mapping and shape
functions are adopted as Eqs (9) and (10) respec-
tively.

The integration in 7 direction can be expressed
as

1 1
LQM) det T

where @,(7)is a polynomial relating to n. From
Egs.(13)~(16), we have : —1<p<l1—det[]J]1*0.
Hence the integration in n direction can be
calculated by the Gaussian Integration Formula.

(2) numerical integration scheme

For the generalized integration in ( direction,
Ref.16). gives the Newton-Cotes Formula, which
is also adopted in Ref.12) and Ref.13) as follows

Ff:f(c ) e 2@HBEGL = ST (L) +eeeree 1)

The four point integration with {=2, 4, 6, 8, is
chosen and thus the related weighting coefficients
are as follows :

_% (96v—5212+18v%—3v*)

=—§— (— 48+ 3807 — 160°+ 304

) - (22)
3 (32v—2812+141%—3p%)
W4=§14— (—24p+2212—121%4 3%
where
_1/(a—iB
v=7y <W> .................................. (23)

Note that the function f({) in Eq.(21) must be a
polynomial, hence Eq.(21) is only used to calculate
the stiffness matrices of B-type element.

For A-type element, we can acquire another
generalized integration’s numerical calculation
formula :

[P e ac= W e (@ e 08)

where m is a positive real number, and A-type

infinite element stiffness matrices can be computed
by Eq.(24).

The number of integration points in the (
direction is related to the function P,({). Based
on mapping and shape functions of infinite
elements, P,({) is a polynomial with a power not
greater than 2. Thus the four point integration with
(=2, 4, 6, 8 is chosen, and the corresponding
weighted coefficients are :

W1m=4L8 (pr1v*+ 1o+ prsv+puapm)

Wi =T% (pat®+ past? +P23”+P24pm)

: -+ (25)
Wi =16 (ps1V’+ pasv®+ Pzt psapm)
w =218“ (par VP past? +pasVt Pashm)

where 20
° P
pm':_ . 1+’E¢C dC .............................. (26)
pu= ——% ....................................... (27a)
1 1
pm:_r”@-{w”;; .................................. (27b)
104 18, 1

1= ( - _|_._7;l_2_+ m3) ................... (270)

D _1924‘&_{_“ i ................. (27d)

ﬁm"% .......................................... (27 e )

16 . 1
p=— (m +;¢_> ............................ 271)
(76,16 LN
po=(Tr 104 L) 72)
Pra= (96+ + 16 .|_ ) ............... (27 h )
2
D= s (271)
4,1 :
32—-—1% s (27 ] )
56 1
Psa-—“(m - ;};g) ..................... (27k)
56 1
pa= 64+m+ 2+m3 ..................... (271)
p‘u_E .......................................... (27m)
(A2 LY
p42— ( m m2> (27 n )
2,1
43 %Jr_:;; I RASSARII I IR (270)
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DPu=— (48+44+12+ 1)

The generalized integration

o p2 g «2(a+tﬂ
:fﬂ 11D+<m§ = f TFml dC can be trans-

formed into series calculate.

L e 1
Pm=—ez’”j; £ dt"—e

m
‘/'me—"xd‘r:i eZmE (Z ) ............. (28)
Inm m e
Ei(Z,)=—0.5772156649
(=D zZz
—an f; Pt (29)
in which
_2(a+iB)

Zm_——m .................................. (30)

If we stipulate that m equals 1 for B-type
element, it may be easily verified that integration
gs can be calculated by Eq.(24)

o= POPOdt= [P0

A +mo) fi(,fzé ac

- ZVV,mPn (C:) (1 +chi)

=2Wr A +ml) P, (L)

Hence Eq.(24) can be regarded as the popular-
ization of Eq.(21). g4 and gz-type integrations can
be reckoned by the general form’s numerical
formula.

o= HOPOdt=sWp

ML) F(L) =S UPF(L) eweeereene (1)
in which
UP=TW (LA mE) wooveeveeemireriieinnnnes (32)
AO=PET >0

Because infinite element mass matrices have the
forms of the gp-type integration, we can calculate
them with Eq.(31). Thus Eq.(31) is a general
formula for calculation of stiffness and mass
matrices of the two-dimensional dynamic infinite
elements. Because the series in Eq.(29) is fast
convergent, the Eq. (31) is very efficient. It is
worth pointing out that a satisfied result can not be
got by using the numerical methods in Ref. 18) for
ga-type integration.

3. NUMERICAL VERIFICATION

According to the above-mentioned analysis
procedures and formulations, a computer program

T
o

symmetry

Fig.4 A test example about semi-circular canyon

response
|
3 o) I from 5)
s [ + from the present method
£ 2
o
jZ]
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(a) vertically incident P wave
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[
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ER |
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T
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(b) vertically incident SV wave

Fig.5 A comparison of displacement amplitudes at the
surface of a canyon from the present method and
from 5).

was developed to solve the free field response of a
canyon. To verify the accuracy of the program, a
comparison was made with previously obtained
solutions”, in which a semi-circular canyon in a
homogeneous half space under vertically propagat-
ing harmonic P and S waves is employed (Fig.4).
In the analysis, the ratio of canyon’s width to the
shear wavelength 7, takes 1.5, and 64 finite
elements and 16 infinite elements are adopted. The
present results are ploted in Fig.5. It shows a good
agreement to the results obtained by the general-
ized inverse methods”.

]
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Fig.6 The calculation model of the Li Jia Xia Arch Dam Canyon free-field motions

Table1 The Material properties

M aterial Number No.l No.2 No.3 No4 No.5
Elastic M odulus 0.2000 0.1030 0.1725 0.1800 0.1403
E(MPa)
4. ENGINEERING APPLICATION 852
A practical example of the use of above-

mentioned procedures in large dam engineering is
shown in Fig.6.

The Li Jia Xia Arch Dam on the Yellow River
lies Qinghai Province, Northwest China, with a
height of 165 m above the rock foundation. The
Dam Valley is a V-shape canyon as shown in
Fig.6, the two sides of valley lie in the rock of
different material properties (Table 1). But the
material’s difference on the two sides is very small,
the canyon can be approximately simulated by the
model as shown in Fig.1, so the method presented
in this paper can be used to solve the Li Jia Xia
Canyon’s free field motions. In the analysis, we
adopt three practical earthquake records that are
Koyna (1967, India), Song Pan (1976, China) and
Qian An (1976, China) respectively, but with the
maximum peak acceleration 0.2 g according to the
Chinese Seismic Design Regionalization Map, and
it is assumed that the motions of the depth of the
base rock at record station is equal to ones at
canyon site. So the deconvolved analysis should be
performed, i.e, a measured earthquake accelera-
tion is deconvolved to the depth of the base, the
deconvolved waves are obtained, and the input
compoments of the deconvolved waves are used as
the incident waves of free field calculating model of
the Li Jia Xia Canyon (convolved analysis). The

AMPLITUDE(G)

0.0 2.0 4.0 8.0 8.0 10.0 12.0 4.0

FREQUENCY(Hz)

ACCELERATION(G)

0.0 3.0 8.0 8.0 12.8 15.0 18.0 210
TIMEISEC)

Fig.7 The X direction Song Pan earthquake wave and
its Fourier spectrum

deconvolved analysis was also presented in Ref.
20), its basic formulations have been given in
above-mentioned the response of w subsystem.

The X direction component of Song Pan
earthquake accelerograms and Fourier spectrum
are presented in Fig.7, the corresponding decon-
volved wave input component and Fourier spec-
trum are given in Fig.8, and the corresponding
canyon acceleration histories and Fourier spec-
trums are shown in Fig.9, 10 for stations 1 and 7
recpectively. The X direction responses of the

L
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AMPLITUDE(G)

ACCELERATION(G)

2.0 40 6.0 8.0 10.0 12.0 14.0
FREQUENCY(Hz)

Fig.8

AMPLETUDE(G)

30 8.0 9.0 120 15.0 18.0 2.0
TIME(SEC

The X direction input component of Song Pan
deconvolved waves and its Fourier spectrum.

0.00632
3.10740

0.0

ACCELERATION(G)

FREQUENCY(Hz)

Fig.9

AMPLETUDE(G)

3.0 8.0 8.0 12.0 15.0 8.0 21.0
TIME(SEC)

The X direction acceleration history and Fourier
spectrum of station 1 under Song Pan input wave.

0.00807
11.34451

ACCELERATION(G)

X L
2.0 4.0 8.0 8.0 10.0 12.0 14.0
FREQUENCY(Hz)

Fig.10

TIME(SEC)
The X direction acceleration history and Fourier
spectrum of station 7 under Song Pan input
wave.

AMPLITUDE(G)

0.0 2.0 40 8.0 8.0 10.0 12.0 14.0
FREQUENCY(Hz)

Ausda
AL R

ACCELERATION(G)

TED XX )
TIME(SEC)

Fig.11 The X direction acceleration history and Fourier
spectrum of station 1 under Qian An input wave.

0.01203
8.48821

AMPLITUDE(G)

L L

0.0 2.0 &0 6.0 8.0 0.0 12.0 148
FREQUENCY(Hz)

ACCELERATION(G)

L L
12.0 15.0 18.0 21.0
TIME(SEC)

Fig.12 The X direction acceleration history and Fourier
spectrum of station 1 under Koyna input wave.

canyon to Koyna and Qian An earthquake input

waves are also presented in Figs.11, 12 for stations

1.

Under different input waves, the response
maximum peak accelerations at different points are
presented in Table 2. The X, Y and Z in Table 2
represent across, vertical and downstream river
direction respectively.

From the above-mentioned results, we may
draw the following conclusions.

1) From time histories, there are some differ-
ences among the measured earthquake records,
deconvolved waves and response accelerations at
different nodes, and the differences in Fourier
spectra are more obvious. It shows that both the
amplitudes and frequency contents of accelera-
tions are remarkably changed by deconvolution
and canyon free field response analysis.

1]
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Table 2 The peak accelerations at dam canyon

E Koyna Qian An Song Pan

&

g b's Y z b's Y z x Y z

1 —0.18172] 0.20412 |~0.19140| 0.12734 | 0.21130 | 0.13188 | 0.12388 | 0.13048 | 0.13293

2 0.10672 | 0.16321 |—0.14509/—0.08752

0.15746 |—0.09821|-0.06077| 0.10351 | 0.10725

3 —0.09990|-0.13473/-0.12595|-0.06624

0.12269 | 0.13123 | 0.06861 | 0.07894 |—0.08918

4 ~0.10872| 0.13153 |-0.12424|~0.06708

0.13667 | 0.13079 | 0.06901 | 0.08125 |-0.07696

5 ~0.09758|~0.11749| 0.10132 |~0.07929

0.12014 | 0.12020 | 0.08109 | 6.07069 | 0.07864

6 -0.13848| 0.13768 |~0.12734| 0.09076

0.12887 | 0.13607 | 0.09425 | 0.07202 |-0.08576

7 —0.16484|-0.14992/-0.14965) 0.10259

0.15789 | 0.15359 | 0.10261 | 0.06628 | 0.08744

8 ~0.14730| 0.15063 |-0.11639|-0.08197

0.14417 | 0.13497 | 0.09620 | 0.06119 |-0.08124

9 —0.11948) 0.16062 —0.10534|—0.06938

0.14959 | 0.13214 | 0.08650 | 0.06006 |-0.07583

10 |-0.11951,0.13315 |-0.11735-0.07681

0.14281 1 0.12157 | 0.06319 | 0.06518 |~0.07442

11 |~0.09686| 0.15567 |—0.13228—0.07475

0.13869 | 0.10471 | 0.06105 | 0.06858 | 0.08572

12 0.09106 | 0.17874 | 0.13229 |~0.09979

0.16864 | 0.09419 | 0.06312 |~0.07533| 0.10833

13 |[-0.17713)0.20402 |-0.17662|-0.12623

0.21021 |-0.12056| 0.11063 |—0.08414| 0.11385

2) For different earthquake patterns with the
same 0.2 g peak acceleration, the response peak
accelerations at the same node are different. It
shows that the time histories of the earthquake
records have a great influence on canyon free-
field motion.

3) For the same input waves, the response peak
accelerations at the different nodes are different,
and ones at canyon middle level take minimum.
It shows that canyon free-field motion distribu-
tions are not uniform. The ratio of the peak
accelerations at top points to bottom point 7 is
about 1 to 1.5.

5. CONCLUSIONS

The analysis method presented in this paper is
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