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DYNAMIC RESPONSE ANALYSIS OF
STRUCTURE-WATER-GROUND SYSTEMS IN

THE TIME DOMAIN USING

SEMI-INFINITE ELEMENTS

Fusanori MIURA* and Jun WANG**

The purpose of this study is to propose a simple and accurate numerical method to
_ analyze the dynamic response of structure-water-ground interaction systems in the

time domain.

For this purpose, a frequency independent semi-infinite element is newly proposed to
model the part of the water system away from the structure. This method is not only
suitable for describing the behavior of unt >unded water systems, but also for signifi-
cantly decreasing the number of finite elements. Examples given in this study indicate
that the method has excellent computational accuracy and feasibility for analyzing the
effects of hydrodynamic pressure on the response of structure-ground interaction sys-

tems.
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1. INTRODUCTION

In the linear or nonlinear analysis of structure-
water-ground systems, such as dams and off-shore
structures, which are subjected to seismic excita-
tions, the effect of hydrodynamic pressure has to be
taken into account. One of the most powerful tools
for analyzing this effect is the finite element
method. As the finite element method can only
treat finite regions when using it, artificial bound-
aries must be introduced into the water and ground
systems because they extend semi-infinitely. To
perform the analyses accurately, we need to take
into account the energy absorption at the bound-
aries due to wave propagation through the
boundaries. In time domain analyses hybrid
methods with the finite difference method"? or the
boundary element method”” have previously been
applied. These methods are rigorous, however,
they need very complicated and elaborate schemes.

In this study, therefore, a simple semi-infinite
element method is newly proposed. In this method,
a uniform body of water with constant depth
extending to infinity is modeled by semi-infinite
elements and the viscous boundaries proposed by
one of the authors are employed to model the
semi-infinitely extending ground”. The traditional
semi-infinite element method is used to model the
water system in the frequency domain because the
distribution of the hydrodynamic pressure depends
on the frequency®. The semi-infinite element
method proposed in this study, however, is used in
the time domain. This means that the proposed
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method is applicable to nonlinear analyses. A
non-linear structure-water-ground interaction
analysis method was proposed by one of the
authors before, but the semi-infinite extension of
the water system was not included”.

In chapter 2, we first derive the equation of
motion for the analysis of structure-water-ground
interaction systems based on a hydrodynamic °
pressure-acceleration relationship in the ftime
domain. Then, in chapter 3, the semi-infinite
element is explained and finally, in chapter 4, the
accuracy of the method is examined by using
dam-water-foundation models.

2. THE EQUATION OF MOTION

The equation of motion for the analysis of a
structure-water-ground system with viscous boun-
daries is given as follows.

(1) For the structure-ground system :

From previous work by one of the authors
(Ref. (5)), the equation of motion for a
structure-ground-water-ice interation system is
given by : .

(IM1+IM*D o+ ([C1+[CH

+[CAI+I[CA+ICED (O +[K1{5}
=—([M1+[M*D {2} — ([CA+ [CFD {2}
+ ([CEI+ [CED {2k} + (LCE1+ [CFD {25

L LGH (B + [GEI LR} erveereeeeemeenienes (1)
where, [M1, [C], [K] are mass, damping, and
stiffness matrices, respectively. [M*] is the virtual
mass matrix, {J } is the nodal displacement vector
and {z)] is the input ground displacement at the
basal layer. The matrices [ CF1, [CF1, [CE], [CE],
[CEl, [CEl are viscous boundary matrices and
[GEl and [GE] are boundary stiffness matrices.
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The superscripts L and R denote the “Left” and
“Right” boundaries of the model, respectively. The
subscripts 7, R and F denote “Ice”, “gRound”, and
“Free field”, respectively. They are derived by
virtue of the principle of virtual work and given in
Ref. (5). For the reader’s convenience, they are
given in the Appendix at the end of this paper. The
vectors {xf} and {zf} are displacement vectors of
the free field.

In this study, water-structure and water-ground
interaction in terms of hydrodynamic pressure, {p}
are considered instead of assuming the virtual
mass, [M*]. Further, we have not included the
contribution of ice, therefor, Eq. (1) is written as :

[MI{SY+ (U CI+HICE+ICED {6+ K15}
=—[Ml{a}+[L1{p}+ ({CE+[CED) {15

+([CRI+[CED {28 + [GEl {zf} + [GE {xF)
........................................... (2)

where the input ground acceleration, {#,} is
replaced by {a,} and the term [L1{p} represents
the effect of water, i.e., hydrodynamic pressure.
[ L] is the transfer matrix from the nodal
hydrodynamic pressure of the water system to the
nodal forces on the interface between the water
system and structure-ground system.

(2) For the water system:

The equation of motion for hydrodynamic
pressure is given by”

QI +ISIH+IHIp}

=—p , IL1T({a+{8) o oooeinnns (3)
where, [ @1, [S] and [H] are the coefficient
matrices of second, first and zero order derivatives
with time. The matrices [@] and [S] are related
to the compressibility and viscosity. We assumed
that the compressibility and viscosity can be
neglected, i.e., [@ ]=0and [ S]=0. Based on this
assumption, Eq.(3) becomes :

[H1{p}=—0,[L17 ({a}+{8}) --eereeev (4)

Equations (2) and (4) are solved by means of
Newmark’s A-method (8=1/4). Vectors {3},
and {p } 41 at the (n+1) th time step are computed
by the following recursion formulas :

(LM V55 ATC o+ APTE ()
= {F}~[C1*{A)s—[K1(B), - (5)
LH1p bein= =00 [ L1 ({a}yint {8 00)
in which
[M1*=[M1+[L1[H] 0, [L17
[CI*=[C1+[CH+[CH]

v t
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Fig.l1 The semi-infinite element
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Fig.2 The x-s relation curve

(A),= (8t A118),

(B},=1{5 },,+At{5}n+%m2{5}n

It should be noted that the semi-infinite elements

which are explained in the following chapter are
employed in the water system. Accordingly, the
purpose of the next chapter is to derive the
matrices [£]¢ from which [H] is assembled.

3. THE SEMI-INFINITE ELEMENT

In order to deal with the hydrodynamic pressure
in an infinite domain, semi-infinite elements in the
time domain are introduced to simulate the effect
of the part of the water system away from the
structure. Considering the semi-infinite element
shown in Fig.l, transformations between the
global coordinate system (x, y) and the local
coordinate system (s, #) of the element are :

x=l;x1+lzx4, y=m1y1+mZyz .............. ( 8 )
where,
__2s _1+s 1
It Ty Iy 1—s m1“2(1+5)7
1
mz“g(l'“t) ..................................... (9)

in which nodes 5 and 6 correspond to x=0o° and
s=1. The xz—s relation curve is shown in Fig.2.
This curve approaches 1 asymptotically as x— o0,

The shape functions of the hydrodynamic
pressure are employed as follows :

p: é wipi ......................................... (10)

where,

L
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w1=—%(1+z‘)s(1—s),
wz="%(1—t)s(1—-s)

w3:§(1—t> (A+s)(1—s),

w4=%(1+t) (1+s)1—s)

The corresponding s—p curve is shown in Fig.3.
For the constant ¢, this curve varies quadratically
- and is determined by the three points, (—1, (1+1)
D12+ (1—1) p2/2), (0, (1 —Hps/2+(1+1)ps/2) and
(1, 0). When s=1 (z—o0), p=0.
The x—p relation curve is shown in Fig.4.In this
curve, p asymptotically approaches 0 as x—o0.
Using the same steps as in the common
isoparametric finite element, the semi-infinite
element matrix [/ ]° can be obtained as follows ;
hll h'IZ h13 hl4
[h]e: h21 h22 h23 h24
h31 h32 hSS h34
h4l h42 h’43 h44

where,
6w, ow;

h’f'fﬂ%ﬁ’ Gx Oy ay}dxdy

f f [ (1 '“S)Z(Zh yz) awz aw;
4(x,~x) Bs os

4(z— 1’1) QM& w;

(1 *S) (?ln yz) ot ot

In the above formula, the 2nd term has the factor

of (1—s)%in the denominator, but the factor (1—3s)
is included in 0w,/0¢ (k=1~4), therefore, formula

] dsdt ................... (13)
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Fig.sb Model of the dam-reservoir-ground system
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Fig.6 The discretization of the model by finite and
semi-infinite elements

(13) has no singular integration and is carried out
numerically using Gaussian quadrature without any
difficulty.

4. ANALYSIS RESULTS

(1) Models for the analyses

The model of dam-reservoir-ground shown in
Fig.5 is selected as an example to examine the
validity of this analysis method. The discretization
of the model by the finite elements (FEM) and the
semi-infinite elements (SIFEM) is shown in Fig.6.

The dam and the near field parts of the ground
and reservoir are discretized by rectangular finite
elements. The far field region of the reservoir is
modeled by the semi-infinite elements. The effect
of semi-infinite regions on both sides of the ground
is simulated by the viscous boundaries while the
basal layer beneath the ground is regarded as rigid.
The relevant physical parameters are given in
Table 1. For the examination of the applicability of
the semi-infinite element, the four cases, A, B, C
and D, in Table 2 are studied. In cases A, B and C,
the semi-infinite elements in Fig.6 are not used
and the corresponding boundaries are free. The
natural frequencies of the four cases were obtained
from the resonant curves and were all 1.80 Hz
approximately, as shown in the following section.

]
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Table 1 The physical parameters of the model Table 2 The analyzing cases
Unit weight | Shear wave velocity |Poisson’s |Damping c (e ) ¢ (") Case L Semi-infinite
{ ton. f/n* ) ( n/sec ) ratio ratio | (tont/m* )| (°) element
1. Dam 2. 4 2046 0.17 (0.1 A H without
ST::’::C 1.9 158 0. 4 0.05 8 10 B 2H without
3. Rock 2. 8 3300 0.3 0.1 c 3H Wi thout
4. Water 1.0 incompressibility b H with
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Fig.7 The distribution of the maximum hydrodynamic
pressure along the upstream face of the dam and
the bottom of the reservoir for harmonic
excitation

The natural frequency of the dam-foundation
system without water is about 2.34 Hz.

(2) Response to harmonic excitations

Sinusoidal acceleration with the amplitude of 100
gal and with frequencies from 0.5Hz to 8.0 Hz
were chosen as the input at the base of the ground.

Figs.7a, 7b and 7c compare the distributions of
the maximum hydrodynamic pressure along the
upstream face of the dam and the bottom of the
reservoir in all four cases at 0.5 Hz, 1.80 Hz and 5.0
Hz, respectively. In these figures, results from the
corresponding Westergaard’s equation (100 gal)
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Fig.9 The relative errors of the maximum acceleration

are also shown. The figures clearly show that at the
same frequency, the magnitude of the hydrodyna-
mic pressure in Cases B, C and D, is very much
alike, especially along the upstream face of the
dam, and the magnitude of Case A is obviously
smaller than those of the other three cases.

In more detail, Fiig.8 shows the relative errors of
the hydrodynamic pressure from Cases A, B and
D, to that from Case C. The relative errors R} are
determined by the following equation.

RgzpCasepc(;”chasel X 100%
ase

where I=A, B, or D. pcsse ¢ means, for example,
the maximum hydrodynamic pressure at the 3/4
height point of the upstream face of the dam for
Case C.

The relative error for Case A is more than 10%
and is very large compared with the other cases,
especially for the frequencies higher than 4.0 Hz.
The relative error for Case D, which has the same
L as Case A, is at most 1%. This indicates the
efficiency of the semi-infinite elements.

The same behavior can be obtained for the
acceleration responses. Fig.8 describes the corres-
ponding results, in which, the relative errors Rl are

given by :

a —a )
Ralz Case C Caselxloo%
Qcase ¢
where, @cqse ¢ means, for example, the maximum

acceleration at the 3/4 height point of the upstream

face of the dam for Case C.

As shown in the previous chapter, the shape
function of the semi-infinite element does not
include the frequency. It means that the accuracy
of the responses from the model with the
semi-infinite elements may be independent of the
excitation frequency. :

Fig.8 and Fig.9 indicate that the keen peak at
frequency about 4 Hz, which is predominant in
Case A, disappears in Case D. Therefore, we
recognize that the frequency-independent semi-
infinite element provides a high level of accuracy
irrespective of the excitation frequency.

(3) Responses to the seismic accelerogram

excitations

The NS component of El Centro accelerogram
(max. is 342 gal) and the Pasadena record from the
1952 Kern County earthquake (max. is 57 gal) are
used as input motions. The distribution of the
maximum hydrodynamic pressure for Cases A, B,

C, D and from Westergaard’s equation, are shown

in Fig.10a and Fig.10b. The distribution of the.

maximum acceleration for Cases A, B, C and D,

are shown in Fig.1la and Fig.11b. The figures

show once again that the responses of Cases B, C

and D, are nearly the same, and the responses of

Case A are smaller than those of the other three

cases as discussed in the above section.

For the El Centro input motion, the relative
error of the hydrodynamic pressure for Case C at

the foot of the dam is 8.4% for L=H (FEM), 1.7%

]
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Fig.10 The distribution of the maximum hydrodynamic
pressure along the upstream face of the dam for
the accelerogram excitation

for L=1.5 H (FEM), and less than 0.7% for L=H
(SIFEM) and L=2H (FEM), while the relative
error of the acceleration response for Case C at the
top of the dam is 2.6% for L=H (FEM), 1.0% for
L=1.5H (FEM), and less than 0.1% for L=H
(SIFEM) and L=2H (FEM).
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- Fig.11 The distribution of the maximum acceleration at

the upstream face of the dam subjected to
accelerogram excitations

For the Pasadena input motion, the above
relative error for the hydrodynamic pressure is
8.1% for L=H (FEM), 1.6% for L=1.5H (FEM),
and less than 0.7% for L=H (SIFEM) and L=2H
(FEM), while that of the acceleration response, is
2.8% for L=H (FEM), 0.7% for L=1.5H (FEM),
and less than 0.1% for L=H (SIFEM) and L=2H
(FEM). And, the cpu time by EWS (SUN S-4/2)
for the model with L= H (SIFEM) is 55.1 sec. and
this is much less than that with L=2H (FEM) of
73.9 sec..

Thus, it may be expected that the same precision
can be achieved by means of the model with L=H
(SIFEM) and with L=2H (FEM). Therefore, the
number of elements can be decreased significantly
if the semi-infinite elements are used.

5. CONCLUSIONS

A rather simple and practical method which is
effective in time domain analysis, is developed for
structure-water-ground interaction analysis.

A generalized semi-infinite element method is
suggested to evaluate the hydrodynamic effect of

L
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far field water on a structure. The advantage of
the method is that it reduces the computational
effort to a great extent, while it ensures the
required accuracy.

APPENDIX

(1) Viscous Boundary Matrix [Cgl
The viscous boundary matrix for the (i) th
element of which nodes are 7 and {+1 as shown in
Fig. A.1 is given by
2V, 0V, O

Celi=8=y =~ 7 7l A-1
LGl Vs 0 2V, 0 (A1)

o Ve 0 2V
where, 0, H, V, and V; are the mass denisity, the
element height, the P wave velocity and the S wave
velocity of the (7) th element, respectively. [ Cg] is
assembled from the materices [Cgl; in standard
fashion. Here, we have the relation as follows :

[CEI=[CE] cevveeerermimerneennineeenenn (A-2)
(2) The boundary stiffness matrix [ Gr] and
the boundary viscous matrix [ Cyl
[Grl; for the (4) th element at the boundary is
given by

0 —210 A

1j—# 0 0
Geli==| 7 77 Tl A-3
=310 —1 0 2 (A3)

—u 0 p 0

where, A, ¢ are the Lame’s constants. [ Gr] is also
assembled from [Grl; as above. And,

[GEl=—[GE] - veeemerereiininnnnn - (A-4)
Rayleigh damping is assumed for the matrices
[Crl; and therefore,

[CH=2IGH, [CH =L GE] - (A-5)

in which, 7 is the damping coefficient of frequency,

£
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