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IMPEDANCE FOR RIGID SQUARE
FOUNDATION ON LAYERED MEDIUM

Gin-Show LIOU*

Presented are inpedance matrices for rigid square foundation on layered media and
some numerical aspects for generating these impedance matrices. The analysis method
employed is analytically solving wave equations in cylindrical coordinates, and then
coordinate transformation, variational principle and reciprocal theorem are used to
generate the impedance matrix for structural foundation. Since the interaction stresses
between foundation and surrounding soil are assumed to be piecewise constant, the
element size for the piecewise constant stress distribution is investigated. In order to
demonstrate the reasonability of the assumed element size, some typical distributions
of interaction stresses are presented. An example of a rigid square foundation rigidly
attached to a two-layer medium and subjected to torsional, vertical, rocking and hori-
zontal excitations is used to show the influence of layered stratum to the impedances.
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1. INTRODUCTION

Due to the construction of heavy and stiff
structures in the seismic areas in past few decades,
the influence of seismic wave scattering on the
structures attracts much attention. To deal with this
soil-structure interaction problem, substructuring
technique is normally employed. In the application
of substructuring technique, the surrounding soil of
structural foundation is represented by an impe-
dance matrix, which can then be combined into
total stiffness matrix of finite element model of
structure for soil-structure interaction analysis.
Therefore, to effectively and efficiently generate
impedance matrix is an important step for the
soil-structure interaction analysis.

There are procedures available for generating
the impedance matrix; for examples : hybrid
modelling””, boundary element method”™® and
analytical approach”™?'%_ In the hybrid modell-
ing, the semi-infinite soil medium is divided into a
far-field and a near-field. The far-field is modelled
by either analytic or semi-analytic methods, and
the near-field is modelled by standard finite
element method. The conditions of stress and
displacement continuities are then invoked at the
interface of near-field and far-field. In the
boundary element method, Green’s function is
employed as fundamental solution and reciprocal
theorem is then used to minimize the error caused
by the discrepancy between Green’s function and
finite element solution of structural foundation. In
the analytical approach, the general solution of the
differential wave equations for soil medium is used,
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and some numerical techniques are employed to
obtain impedance matrix for soil-structure interac-
tion analysis.

To obtain impedance matrix, no matter what
procedure is employed, some discretization at the
interface of foundation and soil is necessary. The
accuracy of the impedance matrix and efficiency of
computation are largely dependent upon discretiza-
tion scheme of the interaction stresses. Therefore,
the discretization scheme should be, as possible, in
accordance with the distribution shape of the
interaction stresses between foundation and sur-
rounding soil. In other words, the element size at
the contact region with sharp variation of interac-
tion stresses should be small.

In the paper, a rigid square foundation rigidly
attached to a two-layer medium and subjected to
torsional, vertical, rocking and horizontal excita-
tions is used as an example to study the impedance
matrices, distribution of contact stresses, and their
numerical scheme.

The analytical approach reported in References
1), 2), 3) is employed in the study. In the method,
the general solution of three dimensional wave
equations in cylindrical coordinates is employed for
soil medium, and the contact stresses (interaction
stresses) is assumed to be piecewise constant in
rectangular coordinates. This assumed contact
stresses are transformed into cylindrical coordin-
ates. A special technique is then developed to
decompose the transformed contact stresses in
order to automatically match with the general
solution of wave equations. After this, variational
principle and reciprocal theorem are used to
generate impedance matrix and interaction stres-
ses. B

Therefore, how to discretize the contact stresses
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Fig.1 Dynamic Loading on Layered Medium

is an important factor for accurate and efficient
computation in generating impedance matrix and
distributions of the contact stresses. A discretiza-
tion scheme by changing the size of constant
contact stress elements is designed to investigate
the accuracy of impedance matrix. Also, some
typical contact stress distributions for torsional,
vertical, rocking and horizontal motions of the
square foundation are presented in order to show
the reasonability of the discretization scheme.
Some numerical results of the impedance matrices
for different combinations of soil properties of the
two-layer system are presented in order to show
the effect of the layered stratum on impedance
matrix.

2. STATEMENT OF ANALYSIS
METHOD

The general solution of wave equations in
cylindrical coordinates can be found by separating
dilatational waves from rotational waves and using
the technique of separation of variables'. To
satisfy the boundary conditions due to existence of
foundation, References 1), 2), 3) proposed a
technique to decompose the boundary conditions
in order to automatically match with the general
solution. Then, by employing variational principle
and reciprocal theorem and combining with finite

element model of foundation structure, the dis-
tributions of interaction stresses between founda-
tion and soil and the impedance matrix for the
foundation are obtained.

A layered medium with precribed tractions
having harmonic time history (¢*') at surface z=0
is shown in Fig. 1. The contact area can be divided
into several subregions. In each subregion, the
prescribed tractions are assumed to be constant.

Toe (2,9) |y
t;iwtz a:zz (37,?!) eiwt: Zl hf (x)y )pl eiwt
Zo(2,y) hi(x,y)s;
h'q
= th ei“)f:HPei‘”t ................... ( 1)
T
where h's
1, i point (x,y) in subregion j
B (zy)= P Y glon gy

0, otherwise

m is the total number of the subregions, 3 X 3m
matrix H=diag (h", h", A7), vector PT= (g7,
p7,sT), and g;, p; and s; are the stress intensities in
the subregion j for 7., 6., and 7,. respectively.
(The time harmonic variation ¢'** will be omitted
thereafter.) ‘

Since the general solution of wave equations can
be found in cylindrical coordinates, the prescribed
tractions in Eq. (1) are transformed into cylindrical
coordinates and then expressed in terms of Fourier
components with respect to ¢ as follows :

T (7,0) T
te=16.:(r,0) (=T G, {=THP

’2:03(7,6) fyz
=§)(Tnst;f+Tn"fn"), 0y yererenree (2)

where T is the coordinate transformation matrix
and can be expressed as
cosf O sinf
T= 0O 1 0
—sinf 0 cosf
a, is the distance from the origin to the farthest
point on the contact area, matrix 73,°=diag (cosn0,
cosnf, —sinnf ), matrix T,*=diag (sinnd, sinnf,
cosnf), and superscripts s and a denote the
symmetric and anti-symmetric components with
respect to =0 axis respectively. Applying the
orthogonal property of Fourier series to Eq. (2)
gives
fsrz,n(r)
2n 1
Goren(r) 1= [ T THAOP -
: 0 ay

fsaz,n (7' )
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To solve three dimensional wave equations
satisfying the boundary conditions of Eq. (2),
principle of superposition can be applied. There-
fore, one only needs to consider the boundary
condition having one component Tyt, (either T,,°%°
or T,f,°)of Eq. (2) in the solving process.
Furthermore, the #** Fourier component #, of Eq.
(2) can be decomposed as follows :

frz,n(r) 1 _ B
t'nz Ezz,n(f) — 0 Trz,n(?’)gfﬁz,n(r)
‘ fﬁz,n(") _l
0 1y ~
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: 0 1
1
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—1
0
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0
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where
Conll) = [ EealT)Tun )y iy yar,
L eeesecssecscccscscsocacavesercacacstotsaans (4a)
Cn(k):L“O’,&zz’n(r)]—n(k;,)dr ............. (4b)
and -
Coms )= [y TeaD P Ta ) ) 1y ay
........................................... (4c)

The integrals on the right hand sides of Egs. (4)
and (4a)-(4c) are Hankel transform pairs.

The vectors (1,0, —D7, (0,1,0Tand (1,0, DT
are the orthogonal eigenvectors corresponding to
the eigenvalues —kJus1 (k7v), kJ, (kr) and kJ,-
(k) of matrix J, defined in the following equa-
tion.

Jllr)y 0 Ckr)
= 0 kL) 0 | (5)
Ther) 0 Ttk
where ]’n(kr)=£]ig,gi. Eq. (4) can then be
rewritten as
1
b= [T=0] 0 1) ak
—1
0
+f0 T4 1 LG (k) dke
0
1
+J; Jud 0 FCouoi (k) ke vverenernnnnnions (6)
1

or

b=— [ 1Cudk

Analytical solution for wave equations in certain
layer of Fig. 1 can be obtained using the technique
developed by Sezawa'. Using Sezawa’s solution,
Ref. 2) reported a procedure to obtain the solution
for the layered medium shown in Fig. 1 with the
prescribed boundary tractionof Eq. (6). By noting
the outward normal of the surface of the layered
medium is in negative z-direction, the solution of
n'* Fourier component satisfying the boundary
condition of Eq. (6) can be written as

un=f:JnQCndk ................................ (7)

In the equation, one should notice that #, is the
displacement vector, at surface z=0 in Fig. 1, due
to the #** Fourier component £, in Eq. (6), and the
transfer matrix @ can be found in Ref. 2).
Also, after some mathermatical manipulations of
making use of Egs. (4a)-(4c), the identities of

d]n (I) = ]n—l (x ) _Jrn+1 (JC)
dx 2

Jnt1 (z) —Jna (z)
2

and %]"(‘r) =

, and Eqgs. (3), the vector C, can

be written as

T,THA0drP —=D,P ——vvveeve (8)

The complete solution for the prescribed trac-
tions of Eq. (2) can be deduced by simply
superposing all the solutions for #=0, 1, ..., oo of
both symmetric and anti-symmetric components.
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u=3 (Tou + T =5 ((T [ r.aep;ax

+T,,”_I;wJ,,QD,,“dk>P El,:) ............... (9)

In the equation, u,’ and u,” are the corresponding
solutions for #° and % respectively.

To form impedance matrix using Eq. (9),
substructuring concept is employed. Consider the
layered medium with the prescribed tractions of
Eq. (2), the variational principle gives the virtual
work of the system :

a0 2 _
5W:_/; j; Ot TurdOdy ---vvveveenenenennns (10)

where u is shown by Eq. (9). Making use of Egs.
(2) and (3), the orthogonal property of Fourier
components and the definition of D, in Eq. (8),
Eq. (10) becomes
~x 1
— T i
ow=op™ [" 3

n=00n

<,/;ao j;zﬂH "TTT, d0J,rdrQD,*
+ [ [T H T T 0d00,rdrQD,) kP

=—oP7 [“ 5L (DD,
0 n=00y .
+D,*" QD) kdkP=0PTKP------- (11)
Matrix @ of Eq. (7), as reported in Ref. 2), is
symmetric, as is the matrix K in Eq. (11).

For the foundation itself, finite elment method in
rectangular coordinates is used. After assembling
all the elements, the displacement field of the
foundation can be written in the form as follows :

(L, Y Y=IN(Z, Y YU weeeeromrrrrnrensraennnnas (12)

where matrix /V is the assembly of the shape
functions assumed in finite elment method, and vis
the nodal displacement vector of the foundation
finite elment model. Applying the variational
principle and making use of Eqgs. (1) and (12), the
virtual work done is

ow=[ f 6t wdA=6P" | f H™NdAv=6P"Bo
........................................... (13)

where § denotes the area of the arbitary shape of
the foundation, and traction vector ¢ and matrix H
are defined in Eq. (1).

By observing ¢ of Eq. (1) and £ of Eq. (2), one
concludes that f and £ are the same tractions except
described in different coordinate systems. Equating
Eq. (13) to Eq. (11) and cancelling out 6P7, the
following equations are obtained.

KP =BU 0r V=BU - irrrerrneemns (14)

where vector V is the generalized displacement at

the subregions of the assumed piecewise constant
traction model. Eq. (14) gives the relationship
between the generalized displacement of the
traction model of Eq. (1) and the nodal displace-
ment of the finite element model of the foundation.
The reciprocal theorem can be employed to obtain
the corresponding force-stress relationship for
both model : i.e.

where vector F'is the generalized nodal force of the
foundation finite element model. Substituting P =
K~'Bv from Eq. (14) into Eq. (15) yields

F=BTEK T TBU=Jp-eerereereoeraenenennens (16)

The matrix 1 is the impedance matrix for the finite
element model of the foundation. Matrix K of Eq.
(11) is symmetric, as is the impedance matrix 7.
The interaction stresses can also be calculated using
Eq. (14); i.e. P=K'Buv.

By examining the numerical scheme of the
presented procedure, one will find that most
computation effort is devoted to generating
matrices I},s in Eq. (11) or Eq. (8), which can be
obtained using closed form formula with respect to
variable 6 and Guassian quadrature with respect to
variable 7. However, the integration of generating
D’,s., in which the wave number k% is the
integration point for the semi-infinite integral in
Eq. (11), is independent of excitation frequency w.
In other words, one can generate several impe-
dance matrices for different several frequency
components at the same time, if one reserves the
storage space in computer for the corresponding
matrices K’s in Eq. (11). This feature of the
presented procedure will slash the computational
cost of generating the impedance matrix for
soil-structure interaction analysis.

3. NUMERICAL ANALYSIS

The accuracy of impedance matrix using the
presented procedure is dependent upon the
following factors :

(1) The numerical integration schemes of using
Guassian quadrature,

(2) The truncation of semi-infinite integration
limit for the integral in Eq. (11),

(3) The truncation of higher Fourier compo-
nents in the integrand of Eq. (11),

(4) The subregion size of piecewise constant

stress distribution model in Eq. (1).
Among these factors, (1) and (2) have been
discussed in details in Reference 2. Therefore, a
numerical scheme is designed to investigate the
effects of factors (3) and (4).

A soil profile with rigid square foundation is
shown in Fig. 2, in which different combinations of

L
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Table 1 Nondimensionalized Torsional Impedance

Mass Density o =1
Poisson Ratio o3 = : 4=10
Complex Shear Modulus Gy =1+ 26
Damping Ratio ¢ = 0.05

Mass Density ;=1
Poisson Ratio a2 = H

Complex Shear Modulus £ =0.1,05,1,2.,5,10, 00

Half-Space Medium

Fig.2 Two-Layer System

soil properties for the two-layer medium are used.
The dimensions of the square foundation are
assumed to be 2 X2 (width X length). Since all
numerical results discussed in the paper will be
nondimensionalized, the properties and dimen-
sions in Fig. 2 are given without units. Employing
the symmetric and anti-symmetric properties of the
two-layer system, only a quarter model is needed
in the studies.

In the study of the effects of neglecting the
higher Fourier components and changing the size
of subregions (Factors (3) and (4)), the combina-
tion of soil properties of the two-layer medium is

selected to be %f=2. Tables 1415 show some
results of the study. The numerical results in the
tables are for the nondimensional frequency
??%T)z 5.0, in which ¢, is the complex shear wave
velocity for the top layer and b is the half-width of
the rigid square foundation. Although only the

results for %25 are presented, the following

discussion regarding this study is pertinent for the
. wb

frequency range with Re(c) =0-—10. Also, the

results of the impedances have been non-
dimensionalized with respect to b and G; as shown
in the tables.

First, the quarter contact area is divided into #m,
X 1, subregions with identical size (see Eq. (1)) in
order to check the convergence performance of
using identical subregions. The results of m=4, 7,

(—ISLT;) by Identical Subregions
Gib
4X4 XY 10X 10
nf=50 5.51+11.2¢ 5.88+11.4¢ 6.05411.6¢
nf=70 5.51+11.1¢ 5.88+11.47 8.05+11.6¢
nf=80 5.51+11.11% 8.87+11. 47 6.04+11.87
Table 2 Nondimensionalized Vertical Impedance
(IG{—;’;;) by Identical Subregions
4x4 XY 10X 10
nf=50 5.50+40.5¢ 8.99+41.017 8.16+41.0%
af=70 5.81+40.5¢ B.99+41.0% 6.18+41.0¢
nf=g0 5.851+40.5¢ 5.099+40.9¢ 6.18+41.0¢
Table 3 Nondimensionalized Rocking Impedance
( Krx ) by Identical Subregions
Glbs
4X4 X 10X 10
nf=50 3.23+13.0¢ 5.80+18.4% 4.01+13.8¢
nf=70 3.23+13.0¢ 3.80+13.41 4.01+13.6¢
nf=80 3.28+13.0¢ 3.80+13.41 4.00+13.6¢
Table 4 Nondimensionalized coupling Impedance
(Ke2) by tdens .
y Identical Subregions
G b*
ax4 XY 10X 10
nf=850 0. 050—0. 880 ¢ 0.313—0.915¢ 0.375—0.917 ¢
nf=vo 0.049—0.880¢ 0.309—0.915% 0,371—0.917¢
nf=90 0.048—0.880 ¢ 0.308—0.915 ¢ 0.370—0.917 ¢
Table 5 Nondimensionalized Horizontal Impedance
Kug b . Lo
( Gib ) y Identical Subregions
4X 4 X7 10X 10
nf=50 4.82+17.8¢ 4,97+18.0% 5.06+18.1¢
nf=70 4.82+17.8¢ 4.97+18.01 8.08+18.1¢
nf=90 4.82+17.8¢ 4.97+18.0¢ 8.08+18.11¢

10 for torsional, vertical, rocking, coupling and
horizontal impedances for the rigid square founda-
tion are shown in Tables 1~5 respectively. In the
tables, #f is the highest Fourier component
included in the calculation. From these tables, one
can conclude that the impedances are converging as
the number of identical subregions increases. Also,
one can observe that the numbers for impedances
would not change for #f=50. This means that, up
to my=10 with identical subregion, nf=150 is
enough in terms of accuracy. However, using

]
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Fig.3 Meshing Scheme with Sequential Enlargement of
Subregions

identical subregions the convergence performance
seems not good enough in terms of computational
cost. The reason for this situation is the interaction
stresses vary sharply at the edges of the contact
area. This will be confirmed by the distributions of
the interaction stresses shown later. Therefore,
using smaller subregions at the edges of contact
area is advised.

A meshing scheme is devised to address the
problem of rapid change of interaction stresses at
edges of contact area. Fig. 3 shows the scheme of
varied size of subregions. In the scheme, the
subregion at the corner of the quarter contact area
is smallest, and the spacing of dividing lines for
subregions is enlarged in sequence by a factor f for
both edges of the quarter contact area as shown in
Fig. 3. Now, the quarter contact area is divided
into 10X 10 subregions (100 in total), and f=1.15
and 1.23 are selected, which are equivalent to 20 X
20 and 30 X 30 identical subregions respectively for
the subregion at the corner of the quarter contact
area. The results together with that of using 10X 10
identical subregions (f=1.00) are shown in Tables
6~10. By examining these 5 tables, the following
three conclusions can be drawn :

(1) The difference between the numerical
results for f/=1.15 and f=1.23 in the tables is small.
Therefore, if the meshing scheme is equivalent to
20 20 identical subregions or more, good results
can be obtained.

(2) Using varied subregions gives better results
than wusing identical subregions in terms of
computational cost.

(3) By observing the numerical results for f=
1.00 and f=1.15 in the tables, one can find that nf
=50 is enough for f=1.00 and #nf=70 is needed for
f=1.15 if good accuracy is wanted for both meshing
schemes. Therefore, the smaller the subregion at
the corner is, the more the Fourier components
with respect to 6 in Eq. (11) is needed in order to
obtain good accuracy.

Table 6 Nondimensionalized Torsional Impedance

( Krr ) by Varied Subregions
G.b®

10X 10, £=1.0 10X 10,£=1.18 10X 10, £=1. 23
nf=50 6.05+11.6¢ 8.25+12.119 8.33412.21
af=70 6.08+11.614 6.21+12.01 6.26+12.11¢
nf=g0 6.04+11.8¢ 6.20+12.017 6.24+12.11
nf=110 8.20+12.0¢ 6.23+12.0¢

Table 7 Nondimensionalized Vertical Tmpedance

( IG{IE) by Varied Subregions
10X 10, £=1. 00 10X 10, £=1. 18 10X 10, £=1. 25
nf=50 6.18+41.0% 8.33+42.0¢ 6.34+42.1¢
nf=70 6.18+41.07 8.32+41.97 6.33+42.01
nf=90 6.18+41.0¢% 6.32+41.9¢ 6.32+41.9¢
nf=110 8.32+41.9¢ 8.32+41.917

Table 8 Nondimensionalized Rocking Impedance

(*gjﬁ) by Varied Subregions
10X 10,=1. 00 10X 10, £=1. 15 10X 10, £=1. 23
n£=50 4.01+13.6¢ 4.25+14.2¢ 4.35+14.317
nf=70 4.01+13.8¢ 4.23+14.2¢ 4.28+14.21
nf=90 4.00+13.81¢ 4.22+14.21 4.27+14.27
nf=110 4.22+14.2¢ 4.26+14.27

Table 9 Nondimensionalized coupling Impedance

< K ) by Varied Subregions
G,b?

10X 10, £=1. 00 10X 10, £=1. 18 10X 10, £=1. 23
nf=g0 0.375—0.917 ¢ -0.033-0.878 ¢ ~0.028—0.877 ¢
nf=70 0.371—0.917 ¢ -0.034—0.879 ¢ -0.033—0. 880 ¢
nf=p0 0.370—0.817 ¢ -0.035—0.879 ¢ -0.033—0.880 ¢
nf=110 -0.035—0.879 ¢ -0.054—0.880 %

Table 10 Nondimensionalized Horizontal Impedance

( Ié’z g ) by Varied Subregions
10X 10, £=1. 00 10X 10, £=1. 15 10X 10, £=1.23
nf=50 5.06+18.1% 5.14+18.8¢ 5.18+18.8¢
nt=70 8.08+18.1¢ 8.13+18.51¢ 8.13+18.81
nf=00 8.06+18.1¢ 8.13+18.8¢ 5.13+18.8¢
nf=110 5.13+18.5¢ B.12+18.517

Therefore, the scheme of sequentially varied
subregions is suggested in the investigation that
follows.

In order to save some computational cost,
smaller number of subregions for contact area is
desired. Comparisons of the results with different

L

52 (88s)



Structural Eng. /Earthquake Eng. Vol.10, No.2, 833—935; July 1993
Japan Society of Civil Engineers (J. Struct. Mech. Earthquake Eng. No.471/ —24)

Table 11 Nondimensionalized Torsional Impedance

KT T . .
( ~) by Varied Subregions
Gib
4X 4, 1=2.57 TX7,£=1.48 10X 10, £=1. 25
af=50 6.58+12.1¢ 8.54+12.1¢ 6.33+12.2¢
nf=70 6.83+12.0¢ 8.28+12.01¢ 6.26+12.117
nf=g0 6.51+12.0¢ 8.25+13.0¢ 6.24+12.1¢
nf=110 8.24+12.0% 6.23+12.01
Table 12 Nondimensionalized Vertical Impedance
Kyy . .
( Cib by Varied Subregions
1
4X 4, £=2. 57 TXY, £=1. 48 10X 10, £=1. 23
nf£=50 8.48+41.8¢ 8.27+42.0¢ 6.34+42.1¢
nf=70 6.47+41.61¢ 8.25+41.9% 8.33+42.0%
nf=90 6.46+41.81 6.25+41.8¢ 8.32+41.9¢
nf=110 6.24+41.8¢ 6.32+41.9¢

Table 13 Nondimensionalized Rocking Impedance

<&R—> by Varied Subregions
Gib®

4x 4, £72. 57 TX 7, £=1. 48 10X 10, £=1. 23
nf=50 8.03+14.47 4.36+14.3¢ 4.33+14.5¢
nf=70 4.99+14.5¢ 4.32+14.2¢ - 4.28+14.2¢
nf=90 4.98+14.3¢ 4.50+14.2¢ 4.87+14.2¢
nf=110 4.20+14.214 4.28+14.217

Table 14 Nondimensionalized coupling Impedance

( L ) by Varied Subregions
Gb*

4% 4,1=2.57 X7, £=1.48 10X 10, £=1. 23
f=50 -0.074—0.820 ¢ -0.029—0.871 ¢ -0.028—0.877 ¢
nf=70 -0.077—-0.820¢ -0.032—0.872 ¢ -0.033—0.8801
nf=p0 -0.078—0.830 ¢ -0.033—0.872 ¢ -0.033—0. 880 ¢
af=110 -0.033—0.872 ¢ -0.034—0.880¢

Table 15 Nondimensionalized Horizontal Impedance
(Iéljg ) by Varied Subregions
4x 4, £=2.57 7X7,£=1. 48 10X 10, £=1.23
nf=50 5.14+18.6% 8.11+18.8¢ 5.15+18.6¢
nf=v0 5.13+18.617 8.09+18.51 8.13+18.81
nf=90 5.12+18.61 5.08+18.5¢ 5.13+18.5¢
nf=110 5.12+18.681¢ 5.08+18.51% 5.12+18.8¢

numbers of subregions and amplification factors
are made in Tables 11~15. In the tables, all the
meshing schemes (4X4 and f=2.67, 7X7 and f=
1.48, 10X 10 and f=1.23) are equivalent to 30X 30
identical subregion meshing scheme for the subre-
gion at the corner of the quarter contact area. From
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these tables and Tables 1~5, one can observe that
the impedances do converge as the number of
subregions and the number of included Fourier
components increase. Also, as compared with the
corresponding table of Tables 1~5, one can
conclude that using varied meshing scheme for the
contact area can result in higher accuracy and lower
computational cost. Therefore, the varied meshing
scheme is suggested for contact area of rigid
foundation and surrounding soil.

For demonstrating the effectiveness of the
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presented procedure, a comparison with previous
work (Ref. 7) is made in Figs. 4 for the vertical
vibration of a rigid square foundation on a
two-layer medium. The meshing scheme of quarter
contact area is 4 X4 with amplification factor f=
2.50, and the highest Fourier component included
in the calculation is 50 (nf=50) for the presented
method. From the figure, one can observe that
both results match each other pretty well.

An example of the two-layer system shown in
Fig. 2 is employed to investigate the effect of
layered stratum on impedance matrices. In the
example, the meshing scheme of the quarter area is
also 4 X 4 with amplification factor f/=2.50, and the
highest Fourier component included in the calcula-
tion is also 50 (nf=50). According to Tables 11~
15 and some other investigation, the impedances
for torsional, vertical, rocking and horizontal
vibrations of the foundation is believed to be less
than 2% inaccurate and the inaccuracy for coupling
impedance is somewhat higher (about 6% in Table
14). Figs.5 ~ 9 show the torsional, vertical,
rocking, coupling and horizontal impedance func-
tions respectively. One also should notice that all
the impedances and frequency in the figures are
nondimensionalized.

From Figs. 5a, 6a, 7a and 9a, one can observe
that the real parts of the impedances for the layered
system fluctuate along the curves of the real parts
of the corresponding impedances for the half-space

medium (%=1.0>, and the fluctuations become
more dramatic as the lower half-space layer goes
stiffer or softer with respect to the top layer. This
phenomenon can be explained as the influence of
the reflection waves from the horizontal interface
of the two-layer system. For softer half-space
medium (G,<Gy), the real parts of the impe-
dances (except the coupling impedance) is smaller
at lower frequency range. Whereas, the real parts
of the impedances is larger for the stiffer half-space
medium. This comfirms that the static stiffness for
the foundation becomes greater as the lower
half-space medium goes stiffer.

The imaginary parts of impedances for torsional,
vertical, rocking, and horizontal motions of the
square foundation are shown in Figs. 5b, 6b, 7b,
9b respectively. From these figures, one can
conclude that the radiation damping for stiffer
lower half-space medium is smaller in the lower
frequency range. This is opposite to the nature of
the real parts of the impedances as stated above.
Figs. 8a and 8b show the coupling impedance for
rocking and horizontal motions of the square
foundation. These two figures indicate that the
coupling impedance in soil-structure interaction
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Fig.10 7z; Component of Interaction Stresses by
Torsional Vibration

analysis can not be neglected especially for the case
with layered stratum. !

According to Eq. (1), the assumed distribution
of interaction stresses is piecewise constant on the
contact area. Curve fitting with least square
method is employed in order to obtain continueous
distribution of interaction stresses on X-Y plane
(contact area). The curve fitting function is
assumed as follows :

C(2, y) =F(Z)g(y) cerrvrrrremermreravennns 17)
where functions f(x) and g(y) are polynominal
functions. After some extensive study, the polyno-
minal functions with order 5 is enough for all the
components of interaction stresses : i.e.

fr)=asx®+axt+ax®+ax+axta,,

& (y) =bsy®+bay* +bsy*+ boy*+ by + bo,
The coefficients a’s and ’s are determined by least
square method. '

Figs 10~13 show the typical distributions of

interaction stresses for the case of %=2.0 and
1

b
7‘%:0.05 . The stress magnitudes in the figures

are obtained by assuming the complex shear
modulus G;=1+0.17 (§=0.05) and the vibration
amplitude of the rigid square foundation v=1. in
Eq. (12). For each vibration, only major compo-
nent of interaction stresses is shown in the figure,
since the other two components are either much
smaller by one order or similar to the major
component. Also, the interaction stresses are
plotted only for a quarter of the contact area due to

]
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Fig.12 0., Component of Interaction Stresses by
Rocking Vibration

the nature of symmetry or anti-symmetry with
respect to x-axis and y-axis.

From these figures, one can observe that the
maximums of the major components of interaction
stresses always occur at the corners of contact area,
and the major components of interaction stresses
rise or drop sharply near the edges of contact area.
These phenomenons confirm that the singularity of
interaction stresses could occurs at the corner of
contact area, and prove that the meshing scheme,
as discussed previously with Fig. 3, is reasonable.
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