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MULTI-MODE FLUTTER ANALYSIS AND
TWO & THREE DIMENSIONAL MODEL
TESTS ON BRIDGES WITH NON-ANALO-

GOUS MODAL SHAPES

Hiroshi TANAKA* Nobumichi YAMAMURA**
and Naruhito SHIRAISHI***

Coupled flutter of non-analogous vertical and torsional modes, which may typically occur
in mono-cable suspension or single plane cable-stayed bridges, for example, and multi-
mode flutter including higher modes are studied both analytically and experimentally. In
such cases, the lateral locations of rotational center of girder vary along the span, so that a
two-dimensional or spring mounted model test loses its validity. The proposed multi-mode
flutter analysis using the flutter derivatives is expected to be useful to predict the coupled
non-analogous and/or multi-mode flutter along with the three-dimensional model tests.
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1. INTRODUCTION

Evaluation of aerodynamic stability is one of the
most important aspects in the design of long span
suspended bridges (e.g., suspension and cable-stayed
bridge etc.). Recently these bridges have become more
susceptible to a variety of wind-induced instabilities
due to the construction trend to build them large,
slender and flexible. Above all, flutter phenomena are
disastrous as shown by the well known collapse of the
original Tacoma Narrows Bridge in 1940. After the
accident, wind tunnel tests have become indispensable
procedure to ensure the safety for the design of long
span suspension bridges!). The first choice for this
purpose is the section model test wherein a rigid scaled
model of a typical bridge section is spring-mounted and
is tested under laminar or turbulent flows. The method
has prevailed for its simplicity and economy. However,
the section model tests can be a possible choice to
represent the prototype bridge action only when all of
the following conditions are fulfilled for the prototype
- bridges:

(1) Aerodynamic characteristics of girder do not vary
along the span.
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(2) Modal shapes of vertical bending and torsional
oscillations are analogous in the coupled flutter.

(3) Higher modes do not virtually participate in the
coupled flutter. )

(4) Aerodynamic damping due to the lateral motion of
girder, the motions of cables and towers is
insignificant, ‘

Three-dimensional (i.e., full-bridge) models are
used when these conditions are not realized. However,
even the full-bridge models, which are expensive both
in models and wind tunnel facilities, are not necessarily
capable of satisfying simultaneously all the similarity
requirements of prototype bridges.

The third approach is the analytical methods which
have been advanced by Bleich?), Scanlan® etc. and
recently by Miyata & Yamada®) incorporating the self-
excited forces (under laminar flows) in equation of
motion. Bleich who also discussed the coupling of non-
analogous modes and Scanlan applied the self-excited
forces only on girder, thus they disregarded the
additional damping effects by the motion of cables and
towers. Miyata & Yamada included them, but the
analysis is based on the Theodorsen’s aerodynamic
forces on flat plates and is not generalized for bluff
body structures.

The present paper intends to extend the analytical
approach. First, it provides a complex eigenvalue and
vector solutions for multi-mode flutter of space-frame
structures using the flutter derivatives3):3), To formulate
possible coupling between lateral and other (vertical or
torsional) motions of girder, newly defined flutter
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derivatives P*q - H*g - A*g are introduced. The flutter
derivatives are applied to all members including girder,
cables and towers as the variable for each member. The
present method may be useful in such cases as; (1) the
eigenmodes of bending and torsional oscillations are
not analogous; (2) higher modes participate in the
coupled flutter (i.e., multi-mode flutter); (3) the lateral
motion of girder, the motions of cables and towers
provide significant aerodynamic effects; (4)
aerodynamic characteristics of girder including the
flutter derivatives vary along the span.

The paper proceeds to an example of mono-cable
suspension bridge with center-span of 450™, where the
flutter behavior is examined by the present analysis as
well as by two- and three-dimensional model tests.

2. SELF-EXCITED FORCES AND
DYNAMIC EQUATIONS

Extension of Scanlan’s formulation3):5) leads to
dynamic equations in matrix form by the displacement
method6),7):8), First, the equations of motion are
expressed as (see Fig.1 for notation),

M- {U; (0} +[C1- {Us (0} + [K]- {Us(0)} = {F3 (1))

where [M] is the mass matrix, [C] is the structural
damping matrix, [K] is the stiffness matrix, {Uj(t)} =
{xi(0), yi(t), zi(V), o(t), Bi(D), 8;(t)} is the displacement
vector of a member (i), and {Fi(t)} is the wind load
vector (= self-excited force). The displacement vector,
{Ui(t)} is expressed by eigenmode functions {¢jm} and
generalized coordinates Xyy(t), where m=1,2,.-, M and
M is the number of modes, as follows:

M
{Ui )} = §§¢zm} Xm(t)

ms=
Oim = (Gym + O1m) / 2 (Mode shape at the center
of i - th member)

Pre-multiplying Eq.(1) by {¢im}7, it becomes

Xm(t) +2h°m - O - Xm(t) + 0)m2 “Xm(t)
= {0m)T B}/ M*y b e 3)
M5 = (0} - [M]- (Gim)

where hSy, and oy, are, respectively, the structural
damping ratio in still air and circular frequency [rad/s]
of the m-th mode. Under the assumption that the girder
is regarded as horizontal and the wind acts on bridge
laterally at right angle, the components of wind vector

B(2) 7
L,(I)T
B i
® ®
/ (] C ®
o(t) P ‘%

D 2o, M)

Fig.1 Member ® in global coordinate

{Fi(t)} in Eq.(3) can be expressed as
Fi(®) = { O,Lit),Pi(t), My(t), 0, 0 } weereerrersreracenns @

Pi(t) = (p-Vi*/2)- A -K; [Py, Py,
Py, Po]-{1:(0)/ Vi, 2i(0)/ V5,
Bi-Gi(t)/ Vi, Ko (0)- Ly

Li(t) = (p-V{®/2)-B;-K; - [H#g;, H¥y,
H*g, H¥gi]- {2;(t)/ Vi, 3:(0) / Vi, ¢ (5)
By -6;(t)/ Vi, K- ()} Ly

Mi(t) = (p- Vi* /2)- B K; - [A %, A%y,
A%y, A {2 (1) Vi, 3310/ V4,
B - 6i(t)/ Vi, Kj-oy(0)) - Ly

Ki=Bi- o/V; = B;- g /V; : the reduced flutter
frequency [see Eq. (14)]

P¥g = - (dCp/do) /K =—C'p;i /K
P¥y; =~ 2Cp; /Ki, P¥gy = 07

P*y; = (dCpi / dow) /Ki* = O /K2
H*g = - 2C1i /K, A% =-2Cwmi /K

where P; (1), Lj (1), Mj (1) are, respectively, the drag
force, lift force and moment. p is the air density [t - s%/
m#], Vj is the wind velocity [m/s], A; is the area (per
unit span) subjected to wind [m%/m), B; is the lateral
girder width [m], L; is the member length [m], Cp; is the
drag coefficient defined for A;, w is the flutter circular
frequency [rad/s], P*;i(Kj) - H¥ji(K;j) - A*ji(Kj) are
dimensionless flutter derivatives of i-th member. All
derivatives are double of those given by Scanlan®) and
H*9;(Kj) - H*33(Kj) - A*1;(K;) have opposite sign due to
upward y-axis adopted here.

Note that the flutter derivatives of Eq. (6) are
derived with the quasi-steady theory, of which P*j
(7=1,2,3) advanced by Scanlan-5) have found some
applications®).711) and their validity seems to be
confirmed. However, P*q; - H*g; - A*; are tentatively
introduced by the authors to include possible coupling
between lateral and other (vertical or torsional) motions
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in the flutter analysis, so their effects and validity are
yet to be proved.

The eigenmode function {¢in} is defined as
follows:

{Oim =10 s @ i O i O s q)ﬁim’ q)eim} ..... %)

The self-excitation terms for girder are derived by
inserting Egs. (2), (4), (5) and (7) into Eq. (3) :

i) " - (Fi(0}/ M'm = [{0%m) T (P50} + (¢im) " -
Li®}+(0%m)" - MO/ M = (8)
®*m)"- P10} =(p/2) 0 TA; B;-
O%m - [P *g;, Py, P¥*yy, P¥y]
{Z Xn(t) . ¢yinv an(t) . ¢zin, B;-
3 X0 (1) 6%, By ’ﬂ)*ZXn(t)~¢“in}~Li
@%im)T - (L} =(p/2)-0- LB
§Yim - [H*0;, H*yg, H¥yy, H¥3]
{an(t)'¢zin, ¥ X (1) ¢Vin, B;- ®

T Xn(0)-6%n, By 'm'zxn(t)"bui“}‘l‘i
0%m)"- M0} =(p/2)-@-IB-

0%im - [A *0i, A%y, A%y, A¥y]-

{an(t)"?zim an(t)'q)yin, B;-

T Xa (1) 9%n, By G)'an(t)‘q)ain}‘Li
n n

For main cable of suspension bridges, only the
P*5(K;) and H*y;(K;) terms in Eq. (9) are necessary, and
for H*j(K;) the quasi-steady formula may be applied,
yielding:

H*;(Ki) =-Cpi /K =-(1/721) - Cpi - Vi /(f- By)

where f is the flutter frequency [Hz] and Bj is the
diameter of the cable [m]. For the tower members, only
the P*y; term in Eq. (9) is necessary and L; in Eq. (9)
should refer to the vertical length of the members. The
hanger member area subjected to the wind pressure
should be included in the main cable and the girder area,
weighted by the ratio of the drag coefficient of hanger to
main cable or girder, respectively.

Then, a set of coupled flutter equations is obtained
by inserting Eq. (9) into Eq. (3).
Kin(®) + 2b8 - (@/®) - @ - Xn() + O - Xn(1)
=§Emn c®- Xn(t)+§.an' o? - Xa(®)

Emn = (0/2M*1) By (§"im, 0%im, 0%m) " - [H]:
070, 9"n, 0%} Ly
(12)

P¥o; (Kj)-A; P*i(Kj)-A; P¥(Ki)Ai-B;

H*; (K;)-B;y H*; (K;)-B; H¥*y(K;)-B{?
[H]=
A%y (Ki) B A% (Ki)-Bi? A%y (K) B

Fun = (p/2M*5)- B2 - {0%im, 0%im, ¢%m) " -
i
{H*3 (Kj)-Bi, P*3; (Ki)- Ay,
A5 (K;) B2} 0% -L;

3. COMPLEX EIGENVALUE
EQUATIONS

The complexk generalized coordinates Xpy(t),
associated with the complex flutter circular frequency
®, are introduced as follows:

X)) = Xpmo - ei¢t, Xrn()"=XRm()"‘i ’ XImO (14)
o=op+i-=(1+i-h)- o

1/2
[(XRmO 2 +(X'mo )2] ! :the amplitude of the
m-th mode (=| Xyo | )

0, = tan" (X mo / XRmo) :the phase - shift of the
m -th mode (rad)

where g is the flutter circular frequency [rad/s]and h="
wj/or ( = 8/2x ) is the sum of structural and
aerodynamic damping.

The complex eigenvalue equations, derived from
inserting Xm(t) of Eq.(14) into Eq.(11), are as follows.

([Gmn] - U\']) : {Xmo}

Gii—=A G2+ Gim X10
Gy Gp;p—~A Gy Xa0

= . . . <o b=0 - 16)
Gml Grn2 o Gmm -2 XmO
Gpm = [Fum +1+1+ {(Epym — 2h%m -
(0 / @)/ ©n?
] ST A an
Gumn = (Fpp +1-Epg) / 0" (m #0)
[A] = Diag [1/ »?] (Diag. matrix)
]
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~For a set of eigenvectors {Xmo) to have solution:

det ([Gmn] — [AD)=det ([Gmn] - Diag [1 /@*])=0

Eq. (18) contains the complex unknown ®, then
arbitrary initial values (e.g., ©m/® = 1) may be given
(the choice of wy, is briefed below) and @ and {Xy0)
can be determined with iterative calculations of
~ Eqgs.(17) and (18). The following convergence criteria is
appropriate with € - value of 10-3~10-4 (k: number of
iterations).

iﬁ)k—(x)k_l ,/I(Ok I<€

, Once o is determined, logarithmic damping § =27 -

wy/or may be plotted against wind velocity V =B - wr/
Ko for a typical member, where Ko is an arbitrarily
given reduced frequency.

When the rank of the matrix in Eq.(16) is M, M-set
of flutter frequencies wy, and a matrix of eigenvectors
{X0pn}( n = 1,2,..., M) will be obtained. It should be
noted, however, that the calculations of Eqgs.(18) and
(19) need not necessarily be carried out for all modes.
One can easily find the flutter frequency o, and
amplitude | XCpy, | in which the m-th (e.g., torsional)
mode is dominant with the following Eq. (20):

| X max = MAX [| X0um, | XOum2}--, | X0

However, if the choice of the critical modal
combination is difficult, the comparison of V-3 curve
for @y and {X0pn) (1=1,2,..,M) may be convenient.

k Through the above procedure for a series of
arbitrarily chosen values of Koj= Bo-@m/Voj for a
typical member, the most critical V-8 curve can be
found, then the flutter velocity V¢ is given as its zero-
crossing point. )

4. SINGLE DEGREE OF FREEDOM
FLUTTER

Galloping and stall flutter are the typical single
mode flutter. For these cases, flutter frequency and
critical velocity can be derived from Eq. (16) using its
simplified form:

x-T-Gn ={Fu+1+i-{E11—2h81'(m1/(o)}]/m12

The further simplified cases of single degree of
freedom (SDOF) flutter, which correspond to section
model behavior, are summarily discussed here.

(1) Galloping
The component of eigenmode function {¢*im, OYim,
¥%im, §%m, $Bim, §®im,} is reduced o {0, 1,0, 0, 0, 0}.

Then Fy1 = 0 (v 0%y, = 0) and Eqy is rewritten as
follows (W= w):

Ej; =p-B?-L-H* /2QM¥*)
=p-B*-H* /(2m)

where m is mass per unit length [t-s2 / m2].

Substitution of Eq.(22) into Eq.(21) yields

A=Gy =[1+i-{p-B*-H* /(2m)-2h*1}]/ 02

The imaginary part of Eq.(21a) must be zero when
galloping occurs. Then, the galloping criterion is

b’ —p-B-H* /(4m) =0
where h$q is the structural damping for vertical
oscillation. When the quasi-steady theory is valid for
girder, H*{ may be given as

H#* =~ [(dCL/ dot) + (A/B) - Cp] /K erereeeree (24)

Inserting Eq.(24) into Eq.(23), the galloping
criterion by the quasi-steady theory is 9, 10)

by + p-B2[(dCL/ do) +(A/B) - Cp] / (4mK) =0

(2) SDOF Torsional Flutter

SDOF torsional flutter is often called stall flutter.
Applying the same procedure as the galloping:

Ejp=p- S ) | R 26)

Fu=p- S LN ) | R @n

where I is the polar moment of inertia per unit length
[t-s?]. Inserting Eqs.(26) and (27) into Eq.(21) then
setting the imaginary part to be zero, the criteria of
SDOF torsional flutter is obtained as follows:

L
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hsl-%—p-B4~A*2/(41)=o
o? =} /[1+p-B*-A*; /(2D)]

Successive iteration of Eq. (28) for w and V = B-wgr/
K gives flutter frequency and velocity, as corresponding
to Egs. (13) — (15) of Ref. 3).

5. 2-DOF COUPLED FLUTTER

2-DOF coupled flutter of spring-mounted section
model usually consists of vertical bending and torsional
modes. The present theory gives complex eigenvalue
equations as follows. ‘

Gy —-A G X
[ 1 12 }{ 1}-_-() ....................... (32)
Gy Gp-4i] X
G -4 Gp2 ]
= {) cereirecrersesurensorecionsocasas (33)
Gy Gp-4

Then the following complex quadratic equations
should be solved to get A (cf. suffix 1: torsion and suffix
2: vertical bending).

A’ (G1 +Gx) A+ Gy - Gy -Gy - Gyy =0
where

Gy =(Fyy +1)/ o2 +i-(Eyy —2h% 01 / 0} /a2 )
Gy =(Fp +1)/ @® +i-{Byp —20%2 -7 / 0}/ @7?
G2 =(Fp2 +i-Epp)/ @

Gyy =(Fa1 +i-EBp)/ oy?

Eyp =p-B* A% /QI)

Exn =p-B2-H*1/(2m)

Epp =p-B’ A% /2D

Ey =p-B®-H* /2m)

Fiu =p-B* A% /(21), F5 =0, F15=0

Fy =p-B® H*; /(2m)

To solve Eq.(34), initial values of ®j/® =1 or w/®
= 1 may be adopted. For the successively assumed
values of reduced frequency K, one will find the flutter
velocity where imaginary part of ® = 1/ VA (ie., o) is
zero. The amplitude ratio | Xo/ X1 1=1 (A~ G11)/ G12|
and phase-shift 8 = tan-! (X3 / X) are also obtained. An
example of this application will be shown in chapter 6.

10 125 (1.28 480 (4.8)
) 1818 21@20=420
@20=109
= O
w
¥ e
180 (1.8) 480 (4.5) 160 {1.8)
Unit : [m)
{ ): 3-dim. modal

Fig.2 Mono-Cable Suspension Bridge

Photo 1 3-Dim. Model

6. ANALYSIS MODEL AND WIND-
TUNNEL TEST

A mono-cable suspension bridge (Fig.2) with a
continuous main girder was selected mainly to examine
the non-analogous coupled mode flutter behavior. The
effects of higher (i.e., 2nd and 3rd) vertical bending
modes are also examined, though they are not so
distinctive as the cases in Ref. 11). However, as the
bridge model possesses only slight lateral motions in
the 1st torsional mode and dCp/do: - Cr, - Cp in Eq. (6)
are also insignificant at angle of attack o = 0° and its
vicinity, the discussions on the effects of lateral
motions®»7)11) and their possible coupling with other
(i.e., vertical or torsional) motions are abandoned. Thus,
in the following analysis, all the flutter derivatives in
Eq. (6) are setas (=0).

(1) Structural Model for Analysis

The mono-cable suspension bridge (Photo 1) is
idealized as a three dimensional frame-work (Fig.3).
The girder is supported only laterally at the tower to
lessen intermediate support moments. As the result, the
frequencies of the first symmetric vertical bending and
torsional oscillations become close and the coupled-
flutter occurs easily. Using the space-frame model,
natural frequencies and mode-shapes were calculated.
The equivalent mass and the moment of inertia were
applied for the section model tests. Static displacements
due to wind loads were also computed to verify the
structural similarity of the three-dimensional model.

_
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(2) Section Model

9 11 14 234 38,

450 125
Unit @ [m]}

Fig.3 Analysis Model of Mono-Cable
Suspension Bridge

|
¢
Uit : {mm]
1 782 'I:%m 3782
hso 7800 2 000 7 800 sl
]
e
g
4 427.8 12 229 4 437.8
B:=2% 084 (210.8) |
B/H%BE '
{ }: 3-diw, svodel
Fig.4 Tapered Box Section
!
& Unit : fmm}
150 7. 780 2 000 7 T80 180
[ RN ]
s L3
g2
-
d
180 17 500 1}
17_800 (178) )Sf.
B/H%4.0
{ )i 3-dim. model

- Fig.5 Rectangular Box Section
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-0.12
~0.16
~0.20

Fig.6 Drag, Lift and Moment Coefficients
of Tapered Box Section
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AN

~30 -06+ -012

—40 ~08 + -0.16

~58 ~10+ ~020

Fig.7 Drag, Lift and Moment Coefficients
of Rectangular Box Section

Table 1 Section Model (Tapered Box)

o=0°

Item Prototype Required Values Model
Scale 1 in 1/50 1/50
Mass 30.08 ym 1 12.03kgm 11.90 kg/m
Mass Moment | 10924 tms%/m | 1m*  00175kgmsZm | 00174 kgmsZim
Vertical Freq. 02424 v 1714 1.650 (1.651%)
Torsional Freq. 02999 Vn 2121 2122 (2.125%
Feq. Ratio 1237 1 1.237 1.286 (1.287%)

N.B.) * denotes o= 3°

Table 2 Section Model (Rectangular Box)

a=0°

Item Prototype Required Values Model
Soale 1 im 1/50 1450
Mass 30.08 t/m 1/? 12.03 kg/m 11.98 kg/m
Mass Moment | 109.24 tms2/m | 1m*  00175kgms*m | 00173 kgmsZm
Vertical Freq 02424 A 1714 1.647 (1.649%)
Torsional Freq. 02999 Y 2121 2111 @.112%
Feq, Ratio 1297 1 1237 1282 (1.281%)

N.B.) * denotes o = 3°

The configuration of the girder was assumed to be
either tapered or rectangular box-section (Figs.4,5) and
1/50 scale section models were used. Experimental
conditions are shown in Table 1,2. Drag, lift and
moment coefficients measured for these models are
shown in Figs.6 and 7.

(3) 3-D Model
Three-dimensional model (1/100 scale) is shown in

Photo 1. The original rectangular box-section was
altered to tapered one by adding fairings. Modal shapes

L
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Mode Shape Analysis Measured Model
- Analysis Prototype| Model | Damping
®  Measured on . i '
Model i [Hz] /100 [Hz] o
TOWER &
18t Anti-Sym.
v, Bavgding
iy / 0.2219 | 0.225 0.079
§.Span C.?Span
Mode No. 3
188 Syni\.
V. Bending
.m\
\/ 0.2424 | 0.253 0.014
Mode No. 4
[
1st Sym.
Torsion
et 0.2999 | 0.313 0.012
h\-—l—.—-—
Mode No. 5‘
2nd Sym. 3
V. Bending
/\\/ 0.3745 | 0.371 0.014
Mode No.8

Fig8 Frequencies and modes of 3-D model

Table 3 Three-dimensional Model

n=100

Item Prototype Required Values Model
Scale 1 1 1100 1100
Mass
Cable 34ym e 34 glem 34 glem
Girder 26.5ym 12 26.5 glom 26.5 glem
Tower 145 ym 12 14.5 glom 4.8 glem
Mass Moment
Girder 1060 tmZ/m 1m? 1060 gem2/em | 1060 gemZ/em
Stiffness
Girder
Venical (Bly) | 4.14x107dm2mr | 147 414 kgbm? 4.14kgfm?*
Lateral Bly) | 55.1x107um?Br | 1 55.1 kgfm® 859 kgfm?>
Torsion (GI) 167x107dm2/Br | 1m° 1.67 kgfm? 1.67 kgfm?
Cable (EA) 0.82x1071f 13 82x10%kgfBr | 5.7x10%kgfBr
Erequency
Vertical 0.2424 Hz Y 242 253
Torsion 0.2999 Hz Vo 2.999 313
Freq. Ratio 1237 1 1.237 1237

of the model agreed well with the analytical values
(Fig.8). The dimensions and properties of both
prototype and model are listed in Table 3.

(4) Flutter Derivatives

Flutter derivatives H¥*j(K)-A*i(K) (i=1,2,3) were
measured by the forced vibration method using the
section models. Basically the flutter derivatives are
dependent on the amplitudes of oscillating body!2).13)
so that they were measured for sinusoidal vertical
motions of yg = 5mm.10m™ (7Hz) and torsional motions
of 0 = 1° 2° (3Hz)14). As the amplitude-dependency
(i.e., non-linearity) of the flutter derivatives were
confirmed to be insignificant for the girder sections
under review, H*;(K)-A*j(K)(i=1,2,3) measured at the
amplitudes of yp=10Mm and op=1° have been applied
for the following flutter analysis (Figs.9 and 10).

7. DISCUSSION OF RESULTS

As the bridge model has no vertical shoes at the
towers, the lowest vertical bending (No.4) and torsional
(No.5) modes (Fig.11) have evidently non-analogous
shape along the span. The non-analogous component
defined in Fig.12 tends to increase aerodynamic
damping?), Also the non-analogous component of the
second and third vertical bending modes (No.6, 8) will
have the same effect when their coupling with torsional
oscillation (No.5) occurs.

In the present analysis, multi-mode flutter analysis
adopting four modes (No.4, S, 6, 8 in Fig.11, ie., the
lowest torsional mode and the lowest three vertical
modes), two-mode flutter analysis (No.4, 5) and 2-DOF
analysis (see chapter 5) are performed. The first and
second analyses are comparable with 3-D model test,
while the third analysis corresponds to section model
test. V-8 curves by analysis and wind tunnel tests are
shown in Figs.13 and 14. Corresponding modal
amplitude ratios (tapered box section) by multi-mode
analysis are plotted in Fig.15. The modal coupling is
distinctive only in the case of tapered box section
(0=0°), and in other cases (i.e., tapered box section:
o=3° and rectangular box section), almost pure
torsional (or stall) flutter is observed (Fig.15).

In Fig.13(a), multi-mode analysis and 3-D model
test foretell virtually identical flutter velocity of Vg =
61-62 (m/s), while two-mode analysis gives slightly
lower critical velocity of V¢ = 60 (m/s). The difference
is provided by the effect of higher vertical modes (No.6
and 8). 2-DOF analysis and section model test are also
in good agreement, but they considerably underestimate

- the flutter velocity giving V¢ = 47-48 (m/s). The

disparity is attributable to the aerodynamic damping
produced by coupling of non-analogous vertical and
torsional modes which is inevitably excluded from 2-
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Fig.10 Flutter Derivatives for Rectangular Box Section

DOF analysis and section model test. The details of 2-
DOF analysis are shown in Tables 4 and 5.

In other cases (Figs.13(b), 14, 15(b)), where nearly
pure torsional (or stall) flutter is evoked, better
agreement can be observed among multi-mode
analysis, 3-D model test and section model test.
Referring to Eq.(28), it is apparent that the pure

torsional (or stall) flutter velocity is almost exclusively
dependent on the flutter derivative A*), and , as is
usually the case with, Vr is found to be a little higher
than the wind speed where A*; turns positive.
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Table 4 Flutter Derivatives for Tapered Box Section

(o =0°)

VB H*y H*y H*3 A%y Ay A¥y
2.0 -1.234 0.355 0.367 -0.388 -0.053 0.129
3.0 -1.575 0323 0.773 -0.517 -0.070 0.241
4.0 -2.018 0.309 1.442 -0.627 -0.091 0416
50 -2.662 0.318 2127 -0.730 -0.111 0.592
6.0 -3.533 0322 3.060 -0.837 ~0.137 0.837
7.0 ~4.599 0238 4473 ~0.953 -0.175 1.24
8.0 ~5.788 0.077 5.504 -1.082 -0.230 1.519
2.0 -6.996 - 0458 7.480 ~1.226 -0.293 2.095

10.0 ~8.110 -1.124 9.298 -1.385 ~0.352 2.588

11.0 -9.019 - 1.790 11.116 -1.556 ~0.401 3.081

12.0 — 9.§_31 - 2.800 15.015 -1.738 - 0.437 3.8_L

Table 5 Complex Frequencies of Tapered Box

Section (o = 0°- 2-DOF Analysis)
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3.5 18814 0.0049 0.0164

70 1.8784 0.0060 0.0202
105 1.8755 0.0071 0.0238
14.0 1.8726 0.0081 0.0273
17.5 1.8664 0.0090 0.0303
21.0 1.8571 0.0095 0.0323
243 1.8460 0.0099 0.0336
280 1.8334 0.0099 0.0340
315 1.8192 0.0096 0.0333
350 1.8029 0.0090 00312
385 1.7849 0.0077 0.0273
420 1.7645 0.0058 0.0207
45.5 17421 0.0031 0.0112
49.0 1.717% -0.0052 -0.0161
52.5 1.6934 ~0.0063 -0.0233
56.0 1.6702 ~0.0139 ~-0.0523
59.5 1.6516 -0.0222 ~0.0843
630 1.6353 -0.0310 -0.1190
66.5 1.6191 ~0.0396 ~0.1538
70.0 1.6028 - 0.0481 —0.1885

(b) Tapered Box Section (¢ = 3°)

Fig.17 Frequency Ratio f/ fy of 3-D Model and
Multi-mode Analysis

In the following discussions, the cases are narrowed
down to tapered box section with multi-mode coupling
motions. First, the ratios of flutter frequencies to
torsional frequency fp in still air are plotted in Figs.16
and 17. It decreases rather swiftly with the increase of
wind speed and is appropriately predicted by the present
analysis for both section model and 3-D model. The
decrease is attributable to the effect of aerodynamic
terms P*3-H*3.A%*3, and naturally, the flutter frequency
of 3-D model (Fig.17) decreases more rapidly in the
case of o = 0° as against oo = 3° because of larger
coupling motions.
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Fig.20 Flutter Mode of Tapered Box Section
(a=0°, V = 62 my/s) by Multi-mode
Analysis

As for the shift (i.e., lateral locations) of rotational
center, analytical results are almost identical with the
experimental ones (Figs.18, 19). Note that if a coupled
flutter involves only analogous modes (e.g., in the case
of a simple beam%:7)®), then Xy-¢Y(x)/Xo-$*(x) (y:
vertical and o torsional) is exclusively dependent on
the wind velocity and the lateral locations of rotational
center do not vary along the span. However, in this case,
it is shown that the lateral locations of rotational center
of 3-D model vary evidently along the span (Figs.19,
20) mainly due to the coupling of non-analogous
vertical and torsional modes (No.4 and No.5). If the
amplitude ratios of higher modes are large, they also
contribute to the shift of rotational center. Then, it is
concluded that section model can not represent the
prototype bridge behavior so far as the coupled non-
analogous and/or multi-mode flutter is discussed.

8. CONCLUSIONS

If a coupled flutter is associated with non-analogous
and/or the higher modes, the present analysis using the
flutter derivatives seems to be useful along with the
three-dimensional model tests. The analysis can reflect
the change of aerodynamic properties of the girder
(including the flutter derivatives) along the span, and
additional damping effects provided by the lateral
motions of girder and by the motions of cables and
towers. The authors also proposed a quasi-steady
formulation of P*p-H*g-A*0, though tentatively defined
(i.e., yet to be proved), to include possible coupling
between lateral and other (vertical or torsional) motions
of girder. In the cases discussed in this paper, the
section model tests can not be regarded as
representative of the prototype bridge action and they
may instead serve as the source of aerodynamic data
such as the flutter derivatives.
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