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A GENERALIZED TWO-SURFACE MODEL
FOR STRUCTURAL STEELS UNDER

CYCLIC LOADING

Chi SHEN"®, Eiji MIZUNO™
and Tsutomu USAMI***

A generalized two-surface model is proposed which can be used in multi-
dimensional stress state even within the yield plateau. The description
of the cyclic behavior observed in the uniaxial cyclic experiments is also
included in the present model. Moreover, the proposed model has been
implemented by the finite element method numerically. A good agreement
between the experimental results and prediction by the proposed model has

been obtained.
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1. INTRODUCTION

The advanced life prediction needs nonlinear anal-
ysis of structures, especially under cyclic loading.
Accordingly, with the increase of accuracy in compu-
tation methods, better constitutive equations have
to be used to describe the inelastic behavior of ma-
terial in the case of cyclic loading. For the ductile
material, such as steel, it is favorite to adopt plastic-
ity theory and the cyclic behavior may be evaluated
to a certain extent by the classical kinematic hard-
ening rule or mixed kinematic hardening rule. How-
ever, there are many cases in which the kinematic
or mixed kinematic hardening rule in conventional
plasticity theory may not give the satisfactory pre-
diction for the cyclic behavior because some param-
eters related to the cyclic behavior are not properly
included.

The multi-surface model is a typical exam-
ple of the plasticity models for steels under
cyclic loading?3)4), An alternative model
is a two-surface model originally proposed by
Dafalias-Popov®) and Kreig® independently. One
of the two surfaces is the yield surface as in con-
ventional plasticity theory. Another is called the
bounding surface which encompasses the yield sur-
face during the plastic deformation. Recently, vari-
ous modified versions of the two-surface model have
been proposed by some authors”®2419 and were
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successful in predicting the cyclic plasticity behav-
ior of some materials under uniaxial or biaxial cyclic
loadings. However, the yield plateau, that is one of
the important characteristics of structural steel, was
rarely mentioned in those two-surface models. This
problem was discussed in detail and the satisfactory
prediction has been obtained for the steels SS400,
SM490 and SM570 under uniaxial cyclic loading in
Refs. 4), 11), and 12).

In the present paper, a generalized two-surface
model is proposed as an extension of the authors’
previous model with the consideration of the yield
plateau. Also a comparison between the experiment
and prediction by the proposed model is given. The
developed model could be applied to analyse the
elasto-plastic cyclic behavior of locally buckled steel
plate elements and thin-walled steel structures under
cyclic loading.

2. REVIEW OF THE UNIAX-
JIAL TWO-SURFACE MODEL
PROPOSED BY AUTHORS

In order to obtain an accurate prediction for the
cyclic behavior of structural steel even within the
yield plateau(for example, path OABCDE in Fig.1),
the authors proposed a uniaxial two-surface model in
Refs. 11), 12) and 13), which included the following .
features:

1) In the calculation of the plastic modulus E¥, the
same equation as in the Dafalias-Popov® model
was used. 5

Ef = EL + hm ................... (1)
where Ef, = the sTope of the bounding line(say,
X —-XY -Y" and Z — Z' in Fig.1) for the
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Fig. 1 Uniaxial cyclic stress o versus plastic strain &

curve
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Fig. 2 Virtual bounding line and memory line

3)

ith loading path which will be given later; h =
the shape parameter; § = the distance between
the bounding line and loading point(point Q)5 in
Fig.1) and §;,, = the value of § at the initiation
of a yielding process(point @y in Fig.1).

The shape parameter A is assumed to be a linear
function of 6, i.e.,

where ¢ and f are constants.

The following expression of the elastic range,
2k, is obtained from the experimental data.

KKy = a— d - exp(—be? x 100)
~(a — a — 1) - exp(—c&® x 100)

where ko is equal to the yield stress oy; @, a, b
and c¢ are constants; &7 is called accumulated ef-
fective plastic strain(A.E.P.S.), which is defined
as the amplitude of the plastic strain that the
material has ever experienced before and can be
expressed as follows:

&= Sfmbz -
When the absolute value of stress reaches the
initial yield stress oy, it is judged whether the
loading point moves on the yield plateau or en-
ters the hardening range with E¥ by the follow-
ing rule; If:

—1)<M-(%—1) .............. (5)

[

(

83

™
=N

then yield plateau still continues, otherwise,
yield plateau disappears, where W% and €%, rep-
resent the plastic work and plastic strain at the
end of the yield plateau under monotonic load-
ing respectively; M is a constant.

The size of the bounding surface, & is a function

of AEP.S.

k= Foo + (Ro — Foo) - exp (—( - p?)

where %, is the limit size of the bounding sur-
face and assumed to be the ultimate tensile
stress oy; p = 3&7; Ko indicates the height of
the initial bounding line and ( is a constant.

The virtual bounding line and memory line are
used to predict the stress-strain curve BCD from
point B, where the reversed loading occurs be-
fore the unloading path AB reaches the memory
line Y, Y, as shown in Fig.2.

The initial memory line is set to pass the initial
yield stress o, and have the smae slope as that
of the bounding line. As the stress increases
up to point A(as shown in Fig.2), the memory
line also moves together with the loading point.
Supposing that line 0,0 is the center line of
the bounding lines XX’ and YY’, the memory
lines X,, X!, and Y,, Y., in tension and compres-
sion sides are assumed to be parallel to the real
bounding line and be symmetry with respect to
the center line 0,0,. The loading point A on
the memory line X,,,X’,, represents the point of
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the maximum stress that the material has ever
experienced before.

When the reversed loading point, such as point
B in Fig.2, does not reach the memory line,
the virtual bounding line X, X!, will be used in
the prediction of path BC. The virtual bounding
line X, X! is assumed to shift from the bound-
ing line XX’ by a distance §, which is mea-
sured from the reversed loading point B to the
memory line Y,,Y! . The radius of the virtual
bounding lines is assumed to be:

In the prediction of path BC, the plastic mod-
ulus EF is calculated as follows:

&+ 6,

L 7 G S . A
E mE01+h(6in+61,)"(6+6v) (8)

However, once the loading point reaches the

memory line, such as point C in Fig.2, the plas-

tic modulus in the continuous path CD instead
- of CD’ is calculated by Eq.(1).

7) The slope of the bounding line is found to de-
crease with the plastic work in the cyclic exper-
iments. In this model, the bounding line slope
of the ith loading path has the following expres-
sion.

1

BW) = yawr

.................. (9)
where w is a constant; EX is the slope of the
initial bounding line and determined from the
monotonic loading experiment; W[ is the plas-
tic. work accumulated from the origin point O
to the ith reversed loading point(as shown in
Fig.1, i=1 for point C and ¢=2 for point D).

3. PROPOSAL OF THE TWO-
SURFACE MODEL FOR MUL-
TIAXIAL STRESS STATE

In the present paper, the uniaxial two-surface
model proposed by the authors is extended to the
multi-dimensional stress state. All the parameters
mentioned in section 2 are introduced by giving a
proper generalized definition. Moreover, to describe
the stress state in the multiaxial case, the yield sur-
face, bounding surface and the corresponding hard-
ening rule have to be considered.

(1) Extension of A.E.P.S. to Multiaxial

Stress State

updated surface ¢

A E.P.S. surface ¢

Fig. 3 Definition of A.E.P.S. surface

As explained in section 2, the calculations of the
parameters &, & and the yield plateau are all related
to A.E.P.S. concept. To extend this concept to the
multiaxial stress state, a surface defined in the plas-
tic strain space'®'5) is introduced and expressed as
follows:

He5) = 2e = ma)(eh — m) — 47 =0 oo (10)

where €¥; is the component of plastic strain; 7;; and
p represent the center and radius of the surface re-
spectively. Here the surface ¢ is called the A.E.P.S.
surface for convenient. During the plastic deforma-
tion, A.E.P.S. surface moves and changes in size con-
ditionally, as shown in Fig.3.

According to the definition of A.E.P.S. in the uni-
axial case, the multi-dimensional motion of A.E.P.S.
surface may be defined as follows:

1det, i (el +deb) > 0
dnij = e (11)
0 otherwise
From the condition d¢ = 0, there exists:
2
3 (&5 —mi)(dely — dnij) = pdp =0 -ooooeee (12)

Then substituting Eq.(11) into Eq.(12) yields:

(el —mij)del;/p i Blel; + deby) > 0
dp = :
0 otherwise

It should be noted that the initial increment of p, dp,
is calculated as follows after the material is initially

yielded.

dp = %d@p =

[V )

% da?jd&?j ................. ( 14)
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vield surface

(Y.S.) f

Oy

Ou(B;;) : center of B.S.;
A(S;;) : conjugate point on B.S.
A(S;;) : loading point on Y.S.

Il AA] =&

0,A is parallel to OyA;  de; is parallel to AA

Fig. 4 Yield and bounding surfaces

In the uniaxial case, it can be seen that p is
one half of A.E.P.S.,, i.e., p = 1&7. Therefore, all
the equations mentioned in the Section 2 related to
A.E.P.S. can also be used in the multiaxial stress
state by substituting 2p for &».

(2) Definition of Yield and Bounding Sur-

faces . .

For steel, the von Mises yield criterion is usually
used in the plasticity analysis. Here the Mises yield
function is adopted to describe the yield and bound-
ing surfaces(see Fig.4).

Yield surface:

oy qijy v) = 5(Si = i) (Sij = 04) — =0

Bounding surface:
3 _
F(oij, iy 5) = 5(Si5 = Bs)(Sis — Biy) =R =0
............................... (16)

where o;; and S;; are the stress and deviatoric stress
components; & and & represent the radii of the load-
ing and bounding surfaces which are calculated by
Eqgs.(3) and (6) respectively by substituting 2p for &
; aij and fi; indicate the centers of the two surfaces.
These two surfaces move and change in size with the
plastic deformation.

(3) Definition of §

The definition of § is one of the most important
problems in the two-surface model since it is related

Oy(aij) : center of Y.S."

to the calculation of plastic modulus, as in Eq.(1).
In fact, the definition of § in the multi-dimensional
stress state corresponds to a proper mapping rule
between the two surfaces. In the Dafalias- Popov®
model, the mapping rule associates ¢;; and &;; with
the same normal on the two surfaces and § is mea-
sured by the Euclidean norm. On the other hand,
Tseng-Lee”) assumed that the center of bounding
surface does not move and only expands isotrop-
ically. Moreover, § is measured by the Euclidean
norm in the deviatoric stress space from the loading
point to the bounding surface along the direction
of the stress increment. In the present paper, the
Dafalias-Popov mapping rule is adopted(see Fig.4),
le.,

Sij = Bij _ Sy —

and
3
& = \/—2:”5“ — S”“ ........................ (18)

where 3;; represents the deviatoric stress compo-
nents of point A on the bounding surface.

(4) Hardening Rule of the Yield Surface

In the two-surface model, the hardening rule usu-
ally depends on the definition of § to ensure that
they will be tangential to each other when the two
surfaces contact. In the Dafalias- Popov model, it
was assumed that the center of the loading surface
moves along the direction connecting the two con-
jugate points AA in Fig.4. The hardening rule in
the Dafalias-Popov model is adopted in the present
paper:

dorij = Clo+ Vgj wovvmmreeeee e (19)

where C, is a scalar; v;; is a unit vector along AA
and can be expressed as follows:

354 — 8y .
e RITITITUTIRRIIE (20)

Then substituting Eq.(19) into the following consis-
tency equation, df = 0,

df = 3(51'3* - aij)dSi- (
“3(5@ — O,'ij)da,‘]' — 2K - de =0 -veerrr (21)

Vi =

C, is obtained as follows:

o (SsaudSy—deds )
(84 — )i

It should be noted that when the two surfaces con-
tact, i.e., § = 0, Eq.(20) can not be used. Therefore,
we determine «;; from the condition that the two
surfaces are tangential to each other:

Sij —aij _ Sij = By

K - K
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Then
K
ag = S — ;_{-(S{j = Bi) e (24)

(5) Motion of the Bounding Surface
In the uniaxial case, the center of the two bound-
ing lines, 3, can be calculated as follows:

dﬂZEOP'dEP—dR"i ................ (25)

Following the definition of the effective stress, we
assume the relationship between df and dg;; to have
the similar expression:

dB = /;dﬂijdﬂij .......................... (26)

As an extension of Eq.(25), the motion of the bound-
ing surface is here assumed as:

By = Cy - del + Cyrmyj wovmveeeeenennns (27

where C and C; are scalars; n;; represents the unit
normal of the loading surface at the current stress
point; def; indicates the increment of the plastic
strain. According to the associated flow rule of plas-
ticity theory, we have

defj = ”dg%”nij ........................... (28)
By substituting Eq.(28) into Eq.(27) and compar-
ing the resulting equation with Eq.(25), it can be
obtained that '

2
01:'3"

where Eq.(26) and the following definition of the ef-
fective plastic strain increment have been used

/2
deP = gdgfjdez .......................... (30)

Therefore; the motion of the bounding surface can
be expressed as follows:

EFY and

2 b 2
dB; = §E(J;' . defj - \/;dg Mg e (31)

It can be known that the bounding surface is also
hardened in a combined form.
(6) Introduction of Virtual Bounding

Surface and Memory Surface
The virtual bounding line and memory line in the

uniaxial case are here extended to a virtual bound-
ing surface and memory surface, respectively. It is
assumed that the virtual bounding surface and the
memory surface have the same center as the real
bounding surface(see Fig.5). The size of the mem-
ory surface is updated with the distance between the
stress point S;; and the center of the bounding sur-
face, i.e.,

R = {\/gllgi]. = BiilFmag ceereeeee (32)

virtual
bounding surface

* memory surface

£ bounding
surface(B.S.) F

Fig. 5 Virtual bounding surface and memory surface

Supposing that the distance between the loading
point A and the memory surface is denoted by &,
as shown in Fig.5, §,, is taken as 6, when the load-
ing is reversed.

(7) Constitutive Equation

By combining the hardening rule and the plas-
tic modulus with the plasticity theory, the consti-
tutive equation can be established easily. With the
assumption of small deformation, the elasto-plastic
stress and strain relation in-an incremental form can
be written as follows:

oy = Dyjradegy v verereeneeneeienes (33)

where
Dijrr = (061 + 6:;001) + A0k

1 9’
—3 m(&j — i) (Su—aw) oo (34)
in which X and u are the Lame’s coefficients; EF is
calculated by Eq.(1) or Eq.(8). In this constitutive
equation, the nonlinear hardening is included.

4. APPLICATION OF THE
PRESENT MODEL

(1) Outline of the Experiment

To examine the applicability and the accuracy of
the proposed model, some tests have been carried
out under cyclic tension-compression loading. The
cyclic experiment was done for two kinds of speci-
mens as shown in Fig.6.

The sections of the specimens are in circular form,
but not uniform in longitudinal direction. All the

]
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Fig. 6 Test specimens

specimens are made of the same steel 55400. Num-
bers of specimens are 7 for each type. A cyclic ten-
sion and compression loads act on the specimens in
the longitudinal direction uniaxially.

The testing machine used in the experiments is
the MTS810 with 25tonf loading capacity, where
the stretch of specimen in longitudinal direction was
measured with an extensometer in 50mm length
and the experimental data were recorded by a
computer simultaneously. In addition, the load-
displacement curve was drawn in X-Y plotter. Dur-
ing the experiment, the loading process was con-
trolled by displacement with a very lower speed of
10~4(mm/mm)/min. Based on the uniaxial cyclic
experimental results’)?) the parameters of the pro-
posed model for steel S5400 have been obtained as
shown in Table 1.

(2) Experimental Results and Predic-

tions with the Proposed Model
In order to predict the experimental results, the

proposed model has been numerically implemented
by finite element method. The computer program
was completed based on FEAP81'9), in which only
the element stiffness matrix and the constitutive re-
lation are required to be written by the users. In
the computation, the Newton-Raphson method is
adopted to solve the nonlinear stiffness equations
and 2 x 2 Gauss points are used in the numerical
integral.

Since the sections of all the specimens are in the
circular form and the specimens are subjected to the
uniaxial cyclic loading, they can be treated as an

Table 1 The Model Parameters of Steel S5400

Parameter | Value Parameter | Value
E(GPa) | 206.7 o,(MPa) | 274.4
EL/E 0.025 e, 0.0153
a -0.505 b 2.17
c 144 o 0.191
e 500.0 f/E 0.30
Ei/E 8.96x10~° w- oy 3.08
o/ oy 1.15 oufoy 1.81
C-e2 |989x10™*| M |-037

Note:
E: Young’s Modulus; a,: initial yield stress;
EE: plastic modulus of the initial hardening

at point B in Fig.1; ¢, = E/o,

axisymmetrical problem. The stress components in
the specimens are o, (axial stress), o, (radial stress),
T,»(shear stress acting in 1-z plane, see Fig.7) and
op(circumferential stress).

The meshes of 4-node isoparametric element'®), as
shown in Fig.7 are employed in the numerical analy-
sis, where only the half of the specimen is considered
with respect to section A-A.

The distribution of the stress components such as
0,, 0, and oy on the section A-A of the specimen
type B is shown in Fig.8. It can be found that the
stress distribution changes with the increase in load
P. However, the stress o, near the outside on section
A-A almost remais zero.

The loads at the initial yielding point are 45.08KN
and 52.9KN in the specimens of type A and B, re-
spectively. Apparently, the initial yielding load in
the specimen of type A is smaller than that of type
B because of the stress concentration. However, with
the plastic deformation and strain hardening, the
loading capacity of specimen of the type A is higher
than that of specimen of type B. When the all of
the Gaussian points near section A-A are yielded,
the plastic flow, i.e., the yield plateau can be ob-
served from the load-displacement curve(as shown
in Fig.11). In this case, the loads of the two types
specimens are P=77.4KN in type A and P=60.TKN
in type B, respectively.

The propagation of the yield zone with the in-
crease in loading are shown in Figs.9 and 10 for
each type of the specimens.

In Figs.11 and 12, the load-displacement curves
predicted by the present model are compared with
the experimental results for the different loading his-
tories. The effect of the yield plateau and the ex-
pansion of the bounding surface can be found in the
examples.

L
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Fig. 12 Comparison between experiment and prediction of type B specimens
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Fig. 13 Strain history in experiment (loading type IT)17)

(3) Prediction of Nonproportional Load-
ing Case

For the wide use of the present model, the pre-

diction of the nonproportional loading case is also

done and compared with the experimental results

obtained by Chang!”®). The test specimens were

thin-walled circular tubes and made of annealed steel

ASTM A-36.

The experiment started first with the uniaxial
cyclic loading under a constant amplitude of 0.8%
axial strain in tension and compression sides until
the material reached a stabilized state (loading type
I). Then, the axial strain-shear strain path in 90°-
out-of-phase were adopted in the experiment (loading
type II), as shown in Fig.13. Although the strains
changed cyclically during loading type II, the ma-
terial was always in loading state. The compar-
isons between the experimental data(dots) and pre-
dictions(solid lines) of loading type I and II by Chang
are shown in Figs.14(a) through 16(a). Besides,
the predictions by the present model are shown in
Figs.14(b) through 16(b).

The material parameters shown in Refs. 17) and
18) are Young’s modulus £ = 28,500ksi(196.5GPa),
initial yield stress ko = o, = 30ksi(206.9MPa),
length of yield plateau(plastic strain) ef, =
1.6%, yield stress in the cyclic loading = o x
ko =20ksi(137.9MPa) and Ef = 500ksi(3.45GPa).
The other model parameters needed in the predic-
tion by the present model can be obtained from Ta-
ble 1 using F and o, given above. The present
model is accurate enough to predict the axial stress-
axial strain relation(Fig. 14(b)) and shear stress-
shear strain relation(Fig.16 (b)). However, the ax-
ial stress predicted during loading type II, as shown
in Fig.15(b), is lower than that of experiment. Con-
sidering the fact that the material used in the exper-

iment is an annealed steel, the present model seems
to predict well the experimental results.

In the present model, the effect of the additional
hardening'® under onoproportional cyclic loading is
not considered. However, the additional hardening
in the above nonproportional experiment is not so
serious and can be neglected.

5. SUMMARY AND
CONCLUSIONS

From the comparison between the prediction and
the experimental data, it can be concluded that the
proposed model can be used to predict the cyclic be-
havior of structural steels in multi-dimensional stress
state, even for cyclic behavior within yield plateau.
Moreover, the present model can also be used in
the case of nonproporticnal loading under biaxial
stress state. With the extension of the A.E.P.S.
concept into the multi-dimensional state, the cal-
culation of the parameters in the uniaxial case can
be introduced in the present model easily, such as
the the yield plateau, the elastic range and the size
of the bounding surface. All the parameters used
in the present model are obtained from the uniax-
ial cyclic loading experiments. By combining the
present model with the plasticity theory, the incre-
mental constitutive relationship is obtained. In ad-
dition, the equations in this model are consistent
with those in uniaxial two-surface model. With the
help of program FEAP81'®), the prediction of the
steel structures under cyclic loading can be done by
introducing the proper element in this model.

In summary, the applicability and accuracy of the
proposed model can be demonstrated by the above
numerical examples. Moreover, it is expected that

|
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Fig. 15 Axial stress o-axial strain ¢ curves(loading type IT)
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the model could be used for the local buckling analy-
sis of thin steel plates under cyclic loading, with the
consideration of geometric nonlinearity.
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