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2-D ELASTODYNAMIC FUNDAMENTAL
SOLUTION FOR DISTRIBUTED LOADS AND
BEM TRANSIENT RESPONSE ANALYSES OF

HALFPLANE PROBLEMS

Hirokazu TAKEMIYA*, Canyun WANG**
and Akihiro FUJIWARA™*

A closed form solution for the 2-dimensional problem to evaluate the displacement
and stress of an elastic fullspace subject to sudden distributed forces is developed. The
force is expressed in a form of multinormal function of space and time variables over
strips and time increments. The solution procedure is to utilize the Fourier-Laplace do-
main transform with the Cagniard-de Hoop method for the inversion. The application
to the boundary-initial value problems is demonstrated for the Lamb's problem and for
the seismic wave scattering propagation problem. The former makes the validation of
the present solution and the latter provides the useful information on ground motions

at irregular sites.
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1. INTRODUCTION

Currently, various boundary element methods
(BEM) are extensively used for the analysis of
elastodynamic problems of infinite boundary. In
the earthquake engineering field, the irregular site
response analysis and the soil structure interaction
problems which precludes the analytical solution,
are the most successfully applied area among
others.

Since the pioneering work by Cruse and Rizzo"
(1968) which utilized the Laplace transform to
solve a halfplane wave propagation due to a surface
loading (Lamb’s problem®, 1904), a modified
version was developed by Manolis and Beskos”
(1981), and the Fourier synthesis approach was
taken for the steady state harmonic solution by
Niwa et al® (1976). A direct time domain
procedure, on the other hand, was shown by Cole
et al® (1978) for the analysis of transient antiplane
motions with explicit time stepping scheme. The
similar technique is used by Niwa et al® (1980) who
employed the simpler three dimensional fun-
damental solution for the two-dimensional plane
stree/plane strain cases. Manolis” (1983) per-
formed a comparative study on the frequency and
time domain BEMs for the wave scattering and
propagation around a cylindrical cavity in the
medium under a specified wave incidence. Karaba-
lis and Beskos” (1984) computed an impulse
response of a surface rigid body. Mansur and
Brebbia” (1985) formulated the time domain
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boundary element method in the same scheme for a
scalar wave problem.

Compared to the frequency domain approach,
the direct time domain method is more suited to
the boundary-initial value problems in elastodyna-
mics. The fundamental solution for a point load to
a full space constitutes displacement and traction
kernels in the boundary integral equation. The
time domain BEM formulation, after discretization
by introducing polynomial interpolation functions,
involves the elementwise double convolution
integral both in time and space variables on such
kernels. The conventional procedures have taken
the numerical quadrature for the space integration
and the analytical time stepping algorithm for the
time convolution integral. Besides the singularity in
the fundamental solution, special care should be
taken in the integration process for the causality
condition. Israil and Banerjee' (1982) derived an
explicit form for this. Mansur™ (1985) took a
complicated manipulation of the Heaviside func-
tion for the traction kernel, which is still implicit
since it is based on the prior assumption on
temporal displacement variation. Wang and
Takemiya” (1992) have developed an analytical
solution method for the 2-dimensional scalar wave
problem through the integral transform procedure
with use of the Cagniard de-Hoop technique®
(1959/1960). We can note that the above integral is
tantamount to evaluating the Green function for a
distributed force whose description is given by
multinormal functions.

The Navier equation for the in-plane motion of
an elastic medium is governed by a coupled shear
(S-wave) and pressure wave (P-wave) field.
Introducing the displacement potential function
separates the wave field is split into the indepen-
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(a) Uniform load

(b) Linear load

Fig.1 Strip loading to an elastic fullspace

dent Helmholtz equations concerning these. For
the plane wave problem, these result in the scalar
wave equations. The characteristic feature of the
inplane motion, in contrast to the out-of-plane
motion, is that the wave potentials are differenti-
ated for displacement and then for the stress
computation. Using the Knopoff-de Hoop repre-
sentation for the displacement response, the triple
convolution integrals appear with respect to time
and space. These operations are conducted in the
Fourier and Laplace transformed domain, so that
the result is inverted back into the space and time.
The coordinate transformation is also needed from
the local to the global coordinates on these vector
quanities. The time-stepping scheme 1is im-
plemented for the transient response analysis for
arbitrary time functions. The substructure method
simplifies the response computation for coupled
different domains.

For the validation of the present method, an
illustrative example of a Lamb problem is first
solved, and then the transient wave scattering/
propagation due to the irregular site configuration
is investigated for a presumed incident wave.

2. MULTINORMALLY DISTRIBU-
TED FORCE

Suppose an isotropic, homogeneous, linear
infinite elastic solid subjected to a strip force,
without losing generality, which spans over a width
2a, on the z-axis, placed on z=0 and is distributed
identical all along the third axis as illustrated in
Fig.1. We can give a mathematical expression to it
by introducing the Dirac’s delta function 6( ), the
distribution function f{x, ¢) and the vector intensity
a as

f(.r,z,t)=af(.r,l)o"(z) .............. seasens (1)
In the modern numerical method for continuum
analysis, we approximate the original continuous
displacement and traction distribution in space and
time by piecewise continuous simple algebraic
expressions. For instance, for the spatial configura-
tion, by introducing the Heaviside step function H

() and the sgn function such that
H(xa)=H(E+a) —H(E—ap) --eeveeee e

l].u:='1—,,, (Exa,)"sgn(Exa,), m=0,1,2.
a

€

we define the following interpolation functions
For a constant disribution with width 2a.

¢1=H(iac)=% (Q0+_QU-—) .................. (4)

for a linear distribution over the 2a.

B=gy- (e~ H(Ea)

:% (q|+—q;_)+%qo+ .................... (5-a)
#=5 (a+E)H(xa)

1 1
:?(q“ﬁq“)—ﬁq‘” .................... (5-b)

and etc. as indicated in the authors’ previous worl
(Wand and Takemiya'™, 1992). Quite similarly, the
discretization for the time variation is described by
changing the width 2a, by the time increment Afir
the respective expression.

The above expressions suggest that the forcing
function may be described by a liner combinatior
of multinormal functions over a finite space
variable and time segment of (dy, da, ; £, [2) in &
generalized form, i.e.,

M N
f(.r, t)=mz=lo n‘gu bmnxmtn
{H(I'—dl)_H(I_dz)} {H([—it)‘_‘H(f—fz)}

This is arranged into a set of functions defined in
(—eo, +c0 ; 0, +c2) for convenience of the later

use.
M

M 2 2
fen=Z 533 ar o a—dii-1))

m=0n=0 Li=1 j=
in which

=5 3 (— 1) [p ] Iq ]d,f’-"*:g-"
m n

p=mq=n

and
f"m(I,f)=Xm(I)T”(f)
with X" (x)=sgn(x)x™ and T"(t)=1"H(t)

The terms

m n

b ] and % ] stand for the binomial

coefficients ; M and N are the total numbers of
superposition of the functions involved.

—
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3. RESPONSE EVALUATION

In order to formulate the two-dimensional wave
field due to line source, fist consider the constituent
wave potential equation.

Kl -
(r-Z) v =—s@8@s ),

Q=1 OF 2eveeressacsssesisstsssusossninnininssnnns (10
in which ts=caf, ®=1,2 indicates the P and S
wave respectively and ¢ and c; denote the
associated wave velocities, r= yx?+2? is the
distance from source to a field point and V2=
0%/9x® + 3%/02* defines the Laplacian operator.
The potential function V(r,1,) is the solution of the
Helmholtz equation, Eq.(10), so that

— H (tn_r)

Vit = (e =
The associated displacement (fundamental solu-
tion) takes the expression of

1 131
pUag=;l;j; Vias(r.hi—) Tidmy

with tg=cal+ - (11)

1

c

!
o : saf (f, t,— Z'z) Tszz"'a_:zE V(”,tz)
2

=LV ) x =LV, ) %1,
a (%]

+Qﬁ V(8,8) eoevereemeenmonceiniioinniinnn, 12)

2

in which the symbol * designates the convolution
integral in time {¢;;a,B8 = 1,2 designate the
coordinates. These subscripts behind the comma
means taking derivative with respect to these
variables. Following the Knopoff-De-Hoop repre-
sentation theorem, the displacements due to the
force f(x, f) ag are given in the convolution integral
form with the aid of the fundamental solution Uy,
as

uas(:c,z,t)=f_: _[;,Uaa(x—s,z,t-r)

f (&, t)drdt
=Uas(x'z’t)*f(x't) ...................... (13)
The associated stresses are calculated from the
knowledge of elasticity.

Oagy=p(c}—2¢2) Uy, xOas+0c% (Uay, st Usr, o)

where 7 indicates the plane of force application,
whose direction cosine is given by n,. The traction
on the surface of normal direction n, is found from
the stress components by the formula.

taﬂ=nraaﬂr ........................................ (15)

The convolution expression for response due to the
strip loads of Ed.(9) is now formulated, by

substituting Eq.(12) for the Green function into
Eq.(13) as

L X" (z) % V(rt) % 1 T (1)
(41

pugy' = [

L ym ()% Virt) ¥ % T(t)

ciH'Z

+08 xm () k V)% T 0]

co+?

........................................... (16)
Now we define the following convenient fun-
damental double convolution integral pair among
wave potential and force distribution in space and
time ; and also the the derivative with respect to the
variable z, i.e.,

Rer= (0 = {1, 2] (o)
K V(L2 80) % T (£y) -ververreesveses amn

The explicit expressions for displacements and
stresses in terms of this definition appear in
Appendix A.

In view of the symmetric nature of the problem
for Fig.1, we state that

R™={P™(z,2,t), Q™" (x,2,ta)}
=sgn(z™") (P (|, |2, Ita]),
sng(2) Q™ (|, |2], [tal)} +eeeevreenees (18)

The solution procedure for this is to apply the
Cagniardde-de Hoop method and was detailed in
the authors’ publication'” and is omitted here. The
singularity at the wave front is treated completely
analytically in the formulation. The results are
expressed as follows :

Prn=sgn (z) LA"H (ta— ) += (AP,

+ AP+ AP+ AT H (ta—1) -+---(19)
Q™"=sgn(x™*') [BF"H (t.—|2])

+1 (Benfi+ By gt By,

+B4”mf‘)]H(ta—r) .................... (20)
in which
2 _ 2 —y2

f3=cosh"-tf,j;=tan“a/ t2—r?,

and r?=x%+2?
The coefficients A and B are multinormal functions
of z,z and t. Hence, displacements are obtained
from Eq.(13) by viewing Eq.(18) and stresses are
obtained after substituting these into Eq.(14). Note
that the causality is fully taken into account for the
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nodal point S
Xi(x,z)

e-element

I

<
Fig.2 Discretization by straight line elements and global
and local coordinate systems.

P and S wave propagation.

4. BOUNDARY ELEMENT EQUA-
TION

The boundary integral equation for elastodyna-
mic problems is described by

€as (X ) U (:r,t)=j;Uaa(y,t;:c)*ta(y.l)db(y)

—p.u.beaa(y.t;.r)*uu(y.f)db(y)'(ﬂ)

in which U,z and T,; denote, respectively, the
displacement fundamental solution (Green func-
tion) for an impulsive point force application and
the associated traction, and the integral with the
notion of p.v. means the integral in the sense of
Cauchy’s principal value. The term g4 (), due to
the singularity of the traction Green function Ths,
concerns the geometry of the boundary. The
discretization of the boundary is performed into E
numbers of straight line elements, as illustrated in
Fig.2, each of which has M+1(M=0, 1, 2) nodal
points within it. The total numbers of nodal points
is counted by L=FE when M=0; when M=1, L=
M x E+1 for a closed boundary and L=M X E-+1
for an open boundary problem.

The displacement and traction in the e-th
element is approximated by an introduced inter-
polation function ¢ for space variable and the
concerned nodal values. When the isoparametric
elements are used, these are expressed as

(W (§,0), £(6,0) = 2 H(E)

Lt (8) 85 (F)) oemmmmeemeen (22
in which & is the local coordinate attached to the
e-th element. The interpolation function is mostly
specified by a constant, linear or quadratic
variation. Substituting Eq.(22) into Eq.(21) yields

E M+l pra
a(;x:)ua,q(;:r,t)=cl§1l MZ_Ilf_ Udss (y,t;x)

dm (§) e (§)dE* ta™ (t)

E M+l de
_231 ’ElP-”-f_arTaa(y,t;m)qﬁ,’,‘,{(E)
Jo(E)AER UG (£)dE(y ) --evvereenes (23)

in which /. (&) defines the Jacobian that resul
from the coordinate transformation from local 1
global system. In a matrix form Eq.(23) becom:

CUD)=G(t) * T(t)—H(t) % U(t) - (24)
with

U(t) = (e () ez (1) -2ty () 162 (JL‘L)}T“(?_S)

T()={t(x)bt(x) i (x) bt ()} T oo (26)
and C being the diagonal matrix of Cuy_gz-5°
Cas(xy) for the position vector x; of the nod:
number / due to the singularity of the tractio
Green function. & and H are 2L X 2L matrice
whose description is obvious from Eq.(23). Alsc
the time discretization is conducted, by introducin
the interpolation function ¢“(f) and ¢'(f) fc
displacenement and traction respectively, as

{u(t), T(t))=§ {ot () U*, 0k ()T}

therefore, Eq.(24) becomes
L
k— _ ' k
CcU —%{[L G (1 f)@k(f)dt]T

_[L"H(tk—t)tpi‘:(t)dt]U*] ~~~~~ (28)

In order to utilize the translation property of th
convolution integral and to decouple the precedin
solution from the future ones, we can assume tha

(t—t) for t,i— ALt L+ AL
pi(py={ ¢ forhimAISIShEAL o
0 otherwise

Only a constant or a linear function whos
description is given by
O =H(E) = H{tmAL) wveeerecreceen. (30-a)

qo’(!)=$ {t+AH)—2tH(t)

F=ADH(E=AL)) e (30-b)
satisfies the above condition. With this interpola
tion function, we get a time stepping algorithm fo
the governing equation.

E=
HU*—G'T* = — kg: (HK-J« % Uk_ Gl(—k % Tﬁ)
R i T (31)

in which G* and H* are defined as

At
{H*G*’}=[ékC+f_mH(t,,—t)<p'£(t)dt

fi:fG(h_f)ﬁo‘"(”di] .................. (32)

L.
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with 8;=1 for k=0, and 8,=0 otherwise. Evaluat-
ing the involved matrices G* and H* needs the
following integral operation.

Vi elmio)= [ [ (Uas(y(e),
tg‘_t;l'[) H T,,g(y(f ), tk"t;l'[)}
GH (&) N (1) ] (E)dbdE -+ wererenennes (33)

in which “I” specifies the forcing element while “¢”
the field element. Attention should be paid to that
the singularity term once excluded in the above is
brought back inside the integral and it is executed
analytically by the integral transform procedure.
This elementwise and time stepwise integral is
closely related to the fundamental convolution
integral as described in the succeeding section.

5. FUNDAMENTAL CONVOLUTION
INTEGRAL

Under the straight line discretization, the
elementwise double integral VA¥(&,tle,m )in
Eq.(33) is evaluated on the local coordinates §=

(ehEZ)y b)’
V:T””(&:‘kleom )

=L Lo e n o)
Tir (81— x, &2 tk—s)) oM (x ) ol (s )dxds

which is viewed as the response for the forcing
function to be given by the product of space and
time interpolation functions. We can use the
following expression for this by recalling Eq.(7).

¢“(x)¢p"(s)- Z Z Z Zb n fmn

=0 n=0 (w] ja=l
[(x—(—D'a,), (s—jat)]
(M=0,1;N=0,1,2) --veeerereereerenses (35)

in which the coefficient 4" is properly determined.
The Eq.(34) now needs the computation of

Ri"r"'=f_:f; (U (61— x,625t—5),
T, (&= .8 t—5))1f™ (x,s )dsdy

which is conducted analytically. Since the wave
potential solution in Eq.(11) is related to Ui, and
Ty, through Eq.(12) and, Eqs.(13) and (14) in the
local coordinates, the expression of Eq.(36) is
provided with terms of P™" and @™” in Egs.(19)
and (20). Hence, we get from the superposition
principle that

‘”’-2 ) Zb:','"R

Mmm0 nul i=l j=
The explicit expressions are given in Appendix B

by introducing a new matrix Rf%" matrix such that
1

a. Aty
[ o (&t a.,Eah) R.";~"(s.+a,.sz,t.>]

A" (St aenbaty) RE" (§ita.bety)
........................................... (38)
For the concise expression, we define that

—_— [ VHME tlem)  VEX (8 ble,m) ]

MEN
172‘1",'(&,'1:'3-7”) Vz’-{'”(&,lgle,m)

R =

The coordinates transformation of this from the
local to the general coordinates results in

VN = [Vu"Vu] [cosﬂ sinG]T

—sinf cos @

VYN, cos@ sinf
. - (40)
M, —sinf cos 8
in which & is the angle of the rotation of the local
coordinates from the general coordinates system.

6. SUBSTRUCTURE FORMULATION
FOR COUPLED DOMAINS

Suppose an incidence of the in-plane wave,
whose displacement is provided with u’, to a site of
irregular configuration. The topography like a
canyon generates the diffracted waves. The stress
freecondition at the surface of the field also gives a
wave reflection. The superimposition of these
waves on the incident wave yields the total wave
field, leading to the governing equation as

eaa(z)ua(x.t)=£U,((y,t;x)*t.,(y,t)db(y)

—p.v.j;Tag(y,t;x)*ua(y,t)db(y)+u¢', (z,t)

The discretized form is then expressed by

HU—GTE=—FE4+ K coaenenaennneee (42)
or introducing this the incident wave field results in
HY(U*—-U™—-G*(T*—T'™)=—F%...(43)
in which U* and T* are the displacements and
tractions associated with nodes on the irregular
boundary as well as those placed on the free
surface, and H® and G° are determined accordingly
; U™ and T'% denote respectively the discretized
displacement and traction values at the above

nodes for a specified incident wave field.

For the wave field analysis of two different
domains coupled like an alluvium on a uniform
halfspace, the substructure procedure is used.
Referring to the illustration in Fig.3, the separated
alluvium portion (Domain D) is characterized by

—J
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- D:Domain
S :Boundary
D U : Displacement
T Traction
Suffix : 1 - Free Surface
2 - Interface

Fig.3 Substructuring for coupled domains.

the boundary equation Eq.(31). After differentiat-
ing nodes at the free surface (indicated by subscript
1) from those on the interface (by subscript 2), we

get
i, HH@]_[@ Gl
mom ) LG G

a~ls)
I it B T TT e (44)

The exterior halfspace (Domain D) should be
treated only for the scattering wave, not including
incident wave, so that it is governed by

[Hﬂ H&Hw— #’}_[ f, szl
Hznl Hzoz Uzﬁ_ 2”‘ th Gzoz

ol ol
== —{  lecscesssssssscssenn (45)
[sz_ T/% Ff

Condensing out other variables than those related
to their interface, the governing equations for the
individual domains are expressed by the interface
variables as unknown quantities.
AUF+BTf=P~, AUf+ B Tf=P*
.................................... (46), (47)
in which A, B,P;A,B, P arc properly deter-
mined. The continuity condition must be satisfied
to make an original coupled domain such that

UE=[K TE+TE=0 cooeerrneennnn. (49), (50)

The solution is therefore obtained first for the
interface nodes and then for the surface nodes
along the free surface through the recovery process
by use of Eqgs.(44) and (45).

7. NUMERICAL EXAMPLES

Two example studies are demonstrated as the
application of the present formulation to the
boundary-initial value problems ; one is a Lamb’s
problem for a sudden surface strip loading and the
other is a seismic wave propagation problem at
irregular sites. The BEM computation is based on
the 0-th order straight line elements. The discre-
tization rule claims that the elements length should

2@76.2[m]
e
HL! [RAN
TR O ¥ X
L

p =\30.89| ym3 £ 762

E = N24x107[kN/m?] | = | @762

v=0.2

zZy
Fig.4 Halfspace under a sudden uniform strip surfac

load.

be less than 1/6 of the concerned wave length. Th
constant time variation is taken for the steppin
algorithm for both example studies. Then, th
coefficients A and B in Eqs.(19) and (20) are give
as follows :

=2

An:i'_‘, A|_= ‘"t,A;::Z, A3=I,A.‘=O

BD:%, B,=0, B;=—1, B;=0, A:=0

Example 1 . Halfspace under sudden uniform stri
surface loads

First, an attention is addressed to givin
information about the accuracy of the presen
BEM solution when applied to halfspace elastody
namic problems. Consider a sudden loading of .
vertical/horizontal uniform strip traction to act as :
Heaviside step function H(f) with intensity of 6.8'
x 10 KN/m* over a width 2¢=76.2m on th
surface, as illustrated in Fig.4. The medium ha
properties of the Young’s modulus E=1.724 X 10
KN/m’, the mass density p=30.89 t/m’, and th
Poisson’s ratio v=0.25. We are interested in th
interior response as well as the surface response

Fig.5.a and b give those at surface location
indicated in Fig.4. The numerical results ar
compared with those obtained by Mansur (1983
(only for U.. component), and Takemiya and Guar
(1993). The former BEM which utilizes the
Stokes’solution paid due attention to the causalit
of the wave propagation, although the numerica
procedure was taken for the involed spacc
integration. In the latter integral transform me
thod, besides the causality, the singularity of the
Rayleigh wave front is treated analytically througt
the contour integration procedure. The details are
referred to in the respective work. Therefore the
discrepancies between the present BEM solutior
and the integral transform method may be
interpreted due to the discretization on the free
surface since the BEM solutions shown are based
on the fullspace Green’s function. It is noted that
the BEM solution when sufficient numbers of free

L
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(b) Ux : Horizontal displacement due to horizontal load

Fig.5 Surface displacement responses.
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-0,00

1

-0.40
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-0.80
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0.40 us)u.eo 0.80 1.00

(a) Uz : Vertical displacement due to vertical load

L} L] T T Ll ¥
0.40 t(s) 0-60 0.80 1.00

(b) Ux : Horizontal displacement due to horizontal load

Fig.6 Interrior displacement responses.

surface nodes are placed over substantial side
ranges, as depicted in the inlet figure, compares
well with the solution from the integral transform
method. In the figures we notice cleary the arrival
time for the P-wave (as marked by the letter P) but
not for the S-wave and the Rayleigh wave.
However, we can give these waves arrival time as
marked by the letter S and R according to the
velocity ratios Vp/Vs=1.732, Vi/Vs=0.919 for the
model under consideration. The Rayleigh wave
propagation is very obscure for distributed loads in
the vicinity of loaded area, for instance at location
C at which x/a=4, in contrast to line loads.
Fig.6.a and b correspond to the responses at
locations below the the center of the loaded area.
The arrival times of the P and SV waves are clearly
noted, satisfying the causality correctly but obscure
for the Rayleigh wave. In Fig.6.a for the vertical

displacement U, due to vertical load, no diplace-
ment can be observed until the P wave reaches the
observation point. The increasing displacement
after the P wave arrival indicates that the focus
displacement is dominated by the that wave. The
ever increasing nature of response with time does
happen only for the 2-dimensional problem but not
for the 3-dimensional problem in which the
asymptote exists. In Fig.6.b the horizontal dis-
placement U, due to the horizontal loading at the
same locations shows that a small opposite
displacement appears first when the P wave arrives
at the focus location and reaches the peak value
when the SV wave arrives and then follows the
same directional response with the loading and
increases gradually with time. This substantiates
the fact that the focus points are domated by the
shear wave.

—
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Wave scattering and propagation due to a
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canyon.

Example 2 . Seismic wave scattering and propaga-
tion at irregular site topography
The second numerical computation was con-
ducted to show the wave scattering and propaga-
tion at various site irregularities ; a canyon and an
alluvium deposit of semi-circular cross section. A
Ricker wavelet is employed as an incident wave to
such irregular sites to investigate the wave
scattering and propagation at transient state. A
vertical SV wave incidence is assumed.The normal-
ized wave length A.=1 is assumed which means
that the incident wave length equals the surface
width of the irregular site. Other dimensionless
input data used are indicated in the concerned
figures.
Canyon : In Figs.7.a and b the scattering waves
due to the wave reflection and refraction at the
semi-circular canyon surface are clearly shown.
The general response features are depicted in
Fig.7.a at each progressive time step in the
2-dimensional way, and the time histories at
focused surface locations, as marked by letters A, B
and C, are shown in Fig.7.b to give an easy
comparison among them. We note that the first
wave arrival time is determined by the distance
from the incident wave front to the free surface.
Then the wave scattering takes place. The smooth
semi-circular stress free boundary reflects incident
wave back into the soil medium within a certain
range of direction, besides those downward from
the horizontal free side surface. As the result of
these superimpositions, the late wave arrivals
appear, like originating from the edges of the
canyon, and they propagate both outward along
the horizontal surface and inward along the canyon
surface as well. The outward-going waves remain
along a longer distance while the inward-going

waves diminish and die off after they meet at the
canyon bottom from both sides. The biggest peak
appears at the edge, followed by the nearby surface
outside the canyon, and the smallest peak at the
bottom inside of it. The similar responce character-
istis are observed for the SH wave incidence®.
Alluvium : Figs.8.a and b give the scattering
propagation wave field for a semi-cirular alluvium.
We obscrve that the response features are quite
different from those at the canyon above men-
tioned. Due to the successive wave reflections both
at the free surface and at the bottom of the
alluvium, the more complicated wave superimposi-
tion takes place within it, generating local surface
waves and resulting in a longer total wave duration.
Fig.8.b indicates that significantly amplified peak
response is attained at the alluvium surface center.
As is clearly observed from Fig.8.a most of the
waves are trapped inside the alluvium and the
outward going waves are less noticeable in contrast
to the significance for the canyon case. This will be
better interpreted in the harmonic response
analysis as indicated in the work by Takemiya,
Tomono, Ono and Suda' (1992).

8. CONCLUSION

In the present paper, the authors extended the
previous work on scalar wave problems™ to
clastodynamic problems, developing the closed-
form 2-dimensional fullspace Green functtion for
specifically distributed forces, as expressed by the
multinormal functions. The scalar wave potentials
for the P and SV (a component associated with the
plane wave) waves are introduced for expressing
the concerned fundamental solution. The proce-
dure is to utilize the Fourier-Laplace domain
transform and then the inversion from the
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Fig.8 Wave scattering and propagation due to an alluvium.

Cagniard-de Hoop method. The singularity in-
volved in the time-space domain solutions due to
the body wave front are eliminated analytically and
the causality is fully taken into account. The
present analytical solution can be directly used to
the time domain boundary element method as the
kernal function for the 2-dimensional halfspace
clastodynamic problems, and guarantees the
accuracy and requires less computation time when
compared with the conventional procedure.
Numerical computation is performed for the
transient response of the Lamb’s problem due to
surface strip loading of Heaviside time variation.
Also conducted is the wave scattering and propaga-
tion for a Ricker wavelet incidence at canyon and
alluvium of semi-circular cross-section. The simi-
lar responce characteristics are observed as for the

SH wave incidence'.

Appendix A : Displacements and Stresses

For the displacement computation from Eq.(16),
we need to evaluate Eq.(17) and its derivative. In
general, we define

a—i;g—tz R"™=FE(m,i)E(n,j)

{1, aﬁ] X" (2) % V(z,2,ta) % T" (L)

ARG R L (—— (A.1)

2
_ga_,_ P""": _E(}n‘g) Pm72.n+E(n,2)Pm.n—z
22

and the convolution integral

1

R L B (A3)

in which

n! .
(n—k)! ynk
E(nk)= n! f0<n<k
1 ifns1
By introducing the following notations,
m=in+j — E(H‘l,i) l m—intJ
Pa I = E(”-'—]'j) Cg+2 P (I,Z,fa)
......................................... (A.4)
o E(mi) 1 I
m—intj — ? m—=inty
Qx )—E(ﬂ'i'j,j-) Cg+2Q (z,2,ta)
......................................... (A.5)

we obtain the explicit expressions for displace-
ments and stress components at field point as
follows :

QUi = [Py=2m#2 — Pyt Pt (AL6.a)
PUBA = Py s sisissss i (A.6.b)
punt =— [Pp-2n+i— pp-2ni2] . pmi.(A 6.c)
ot =p(cf—2c3) (B +ul) +2pciurs:

=2¢f [ Pprmdntt — ppioseiz]

+ (F—263) PP 4203 PP M e (AL T.2)
ol =pci (4 ulih) =i ([2Q) 22

— QPR QU e (A.7.b)
027 =pck (ur +ulys

— _(.'22 {— [21)m—3,n+2_P4n-3.n+2]

+ [2Pp-tntz — pm-lni2]} L (A.7.¢)
OGP = GIE e (A.7.(.I)
OBB=gMP et (A.7.¢)

ot =p(ci—2c3) (ul +ulh) +2pcium’

=2c} [Pp-3#+3 — pp-sn+2] — 23 pp-tn

]
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F PPV e (AT.6)
o2t =p(ci—2c3) (uZ +ul?) +2pculs
2¢3 (Qp-3n+2—Qp—3n?)
F (=22 Qr 1" et (A7.g)
2¢8) (uzsh +uir?) +2pckurys

Q;n-3.n+2]

o =p(c}—
=—2c2 [Qr-31+2—

G
Appendix B: V" (€,tile,m) and REy"

=’— {(R(hn + _Ro.o )— (R¥.- -—Ri’:‘l)
................(B’l.a)
2R +R%Un.4)

Vo =1 (R —
- (R(hn -—2R{L+RU-y.-)) -+ (B.1.b)
Vid= ‘_ {((Ri1.+ — RIY)— (Rifn- — RI2)}

+% (RS 1.s —RI%) oeeevvenns (B.1.c)
—111- {((Rl& v+ —RES) — (Rifn.- —Ri2))
_% (RIS —RIOY woeeereennne (B.1.d)

Vllkl= "'ji‘ { (RHU + ZRx +1 +R('L'-n.+)

- (R('I:l-n _ZR}' +RiL -1, )
= (Rl&v.- —REV)} +‘2‘ {R¥%.n.-
—2R2:1. +R&l_”'+) ................. (B.l_e)

V=" (Rli\v.. —2RE} +Rb.)

- (R(lzﬂ) —2R§ ' +REL-)— (R(li?m.-

"'RIEZ‘1 )} _E (R?lln).- - 2R22’_ +RYL.- }
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