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STIFFNESS EVALUATION OF SUBMERGED
FLOATING FOUNDATION MOORED BY

FOUR CABLES
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As an application of cable structures to bridge structures, a submerged floating
foundation moored by four cables is studied. The applied forces considered are
the buoyancy, vertical load and horizontal force partly as a model of the tidal
current. In order to examine the resistance against the overturn moment action, the
governing equations with geometrical nonlinearity are solved by a direct integration
method. As far as the sufficiently large tensile forces are introduced into all four
cables, the system shows stable and almost linear responses, which may lead to a
simplified design code generation based on a simple linear theory.
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1. INTRODUCTION

Cooperative constructions in the developing coun-
tries and development of natural resources near the
polar circles are parts of the most important tasks
recently assigned to civil engineers in our country.
Such cases often require the construction under very
severe conditions. For example in bridge construc-
tion over the deep sea, it is so difficult to secure
rigid foundations that the span length of the bridges
becomes long, and the cost becomes high. At the
same time, such huge structures are likely to destroy
the environment in the aesthetic sense. Considering
such circumstances, introduction of submerged but
stiff floating foundations not only removes such dif-
ficulties but also extends the freedom of designing.

Since the floating bodies are generally moored by
cables, they are sensitive to the dynamic effects of
wave and tidal current and show nonlinear mechani-
cal behavior. Consequently the recent researches are
mainly related to the nonlinear dynamic analysis of
the floating and moored bodies including the effect
of slack cables. However we here restrict our atten-
tion within studies of submerged floating bodies as
a model of the floating foundation, which undergoes
relatively small influence of surface waves. There-
fore in order to carry out the feasibility study of
such structures, the system is modeled by a rigid
submerged body moored by a number of cables an-
chored on the sea bed. Only the static and elastic
analyses are carried out to examine their spatial stiff-
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11€ess.

The major subject of studying such floating struc-
tures subjected to the buoyancy has been the so-
called mooring problem®® 2 and most systems
have not been permanent structures nor foundations
but floating bodies under construction. The compli-
cation caused by the nonlinear behavior of cables or
chains which anchor the floating body in the wa-
ter or the hydraulically dynamic effect like the tidal
current and wave action may be the factors against
development of such structural systems. In the an-
alyses the large displacement analysis® of the cable
must be also taken into account, and the dynamic
contact? problem of cables at anchor may become
important.

The buoyancy acting along the cable has been
sometimes approximated by usage of the under-
water weight, but it has been reported®® that
such an approximation leads to significant discrep-
ancies in the behavior and configuration of a long
cable. Furthermore, in the analyses of complex sys-
tem of structures in the water which usually use the
static and/or dynamic FEM¢&4®) the buoyancy is
often approximated by this under-water weight.

In this study, the system to be analyzed is so
simple that a direct numerical integration of the
boundary-value problem can be employed, where the
effects of the buoyancy and tidal force are taken into
account. The responses against the vertical load-
ing has been extensively studied”, and it was found
to be almost linear. We here examine the static re-
sponses against the overturn moment forces together
with the effects of the vertical and horizontal load-
ings. The dynamic effect of waves is not included
here since the floating body is completely submerged
under the water and the effect is presumably sec-
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Fig. 1 Cable element and coordinate system

ondary. In the same sense, the dynamic nonlinearity
at the anchor point is not considered here, either.

2. CABLE EQUATIONS

Since the governing equations considering the geo-
metrical nonlinearity of cables in finite displacements
have been already rationally formulated, we here
simply enumerate them, and the non-dimensional
parameters used in the present analyses are intro-
duced.

The Cartesian coordinate system is defined as
shown in Fig.1 and s-axis is taken along the ca-
ble. Let ¢ and ¢ denote the angles between the
differential element ds and the z-z and z-y planes
respectively. They are reckoned positive when they
are counterclockwise as seen from the positive end of
a coordinate axis, and are defined within the region
of 0° < (¢, @) < 180°. The cable is elastic with
its Young’s modulus E following one-dimensional
Hooke’s law. Distortion of the cross section is ne-
glected because the cable is relatively long, but the
effect of elongation is taken into account.

(1) Buoyancy

Consider a differential element of a cable ds, and
the hydrostatic pressure is directly acting only on
its cylindrical side surface. No pressure is acting on
the cross sections indicated by A and B in the fig-
ure, although the indirect action by the hydrostatic
pressure on the end sections is naturally transmitted
as a part of the cable tension T'. Since Archimedes’
principle indicates that the buoyancy is determined
as a resultant force of the hydrostatic pressure ac-
tion on the body, the buoyancy of this cable element
ds is not uniform but varies along the cable axis.
An often-used approximation using the under-water

weight cannot take this effect into account and sim-
ply yields an average total buoyancy. Then the z-, y-
and z-components of the buoyancy are simply calcu-
lated by geometrical and mechanical consideration
as

dp, = —A~ cos ¢ sin ¢ cosyp (1+ E%)ds © (1-a)

. . T
dp, = —A~ cos ¢ sin¢ siny (1 + —E-Z)ds -+ (1-b)

dpz=A7C032¢(1+ETA)dS .............. (l—c)

where  is the unit weight of fluid; A is the cross-
sectional area of the cable; T is the cable tension.
These equations express the distribution correctly,
and indicate that the vertical portion (¢ = 7/2) has
no effect from the buoyancy except the component
transmitted from the end sections of the cable.
(2) Tidal Force

Since the hydrodynamic effects are all neglected in
this model, the tidal force is treated as a distributed
force. Let the tidal current with stationary velocity
V flow in the direction of the angle « from the -z
plane. As a simple model, the tidal force is assumed
to be given by the Morison formula®®. The induced
drag forces not only in the direction perpendicular
to the cable axis but also in the tangential direction
due to friction?919) are considered here.
(3) Governing Equations

Geometrical and mechanical consideration leads
to the equilibrium equations, kinematics and hound-
ary conditions of the cable subjected to the force de-
fined in the Sections (1) and (2). Then the governing
equations are non-dimensioned to define appropriate
parameters for case studies. Firstly, the indepen-
dent variable s is normalized by the initial length of
the cable, to introduce a new independent variable
¢ = s/, and all the state quantities are considered
as functions of £. The position vector of the axis is
also non-dimensioned as

1:(8) = 2(s)/, (&) = y(s)/¢,
n:(€) = 2(s)/¢

The tensile stiffness £ A of the cable is used to make
the cable tension non-dimensional;

HEVZTIBA) «ovvereeiiii (3)

Following these manipulation, we can define three
essential parameters relating to its own weight per
unit length, geometry and tidal force as

¢=W/yA, ky=~L/E
ko = ky CDNDV2/(9A)

where ( is a parameter concerning the cable weight
per unit length W. Cpy is the drag coefficient in
the direction perpendicular to the cable axis, and
the ratio of the drag coefficients Cpr to Cpy will be
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expressed by Cry = Cpr/Cpn. A cable-length pa-
rameter ky is given by the ratio of the total buoyancy
of the entire cable and EA. A tidal-force parameter
ks is defined by the fluid force per unit length of the
cable in its perpendicular direction. D and g are the
diameter of the cable and gravitational acceleration
respectively.

Thus the field equations are given by a set of six
simultaneous ordinary differential equations of the
first order as follows:

%:%{kl (= (L41)] cosdt «oommmmne (5-a)
% ko (1 4+ 1) cos(h — &) sin’p |cos(yp — a)[}

d 1 1

E—?:;{?COSQsCTNkZ(I—H)x -------- (5-b)

sin(¢p — a) [sin(yp — a)[}

3—2:@%1 sing — kg (L 1) X coevreeeenns (5-¢)

. cos(ip — a) cos ¢ |[cos(yp — o) cos ¢

T (1 21) COS b COS ~rrvrrrmereeneens .

—CZE—_(l+t) cos ¢ cos (5-d)

d .

% = (141) OSSN errreenennn (5-¢)

dn, .

e (L4 E) SN wvrerenennnaernanens (5-f)

The geometrical boundary conditions may be
specified at the end points;i.e.

Ne =Ty, Ty =Ty Ny =T, ~rererrenes (6)
where, 7,, 7, and 7, are the non-dimensional po-
sition vector components of the end points of the
cable. On the other hand, the force boundary con-
ditions can be given by the equilibrium of the cable
tension and the applied end forces as follows:

fe =Vt COSPCOSTY crrrrrr (7-a)
fy =t COSP BN rrrerrea (7_13)
fz =yt Siné ............................. (7_(:)

where f,, f, and f. are non-dimensional z-, y- and
z-components of the external forces, Fy, F, and F,
divided by E A respectively; v is defined as the inner
product of outer unit normal vector and unit vector
along s-axis at the terminal cross sections, and takes
the values —1 at s = 0 and +1 at s = £. Note that,
at the anchored points, the anchoring force must be
calculated as addition of this end force F' and the
total hydrostatic pressure acting on the section.

3. ANALYSIS OF SUBMERGED

FOUNDATION MOORED BY
MULTIPLE CABLES

(1) Model
A submerged foundation is modeled as a rigid
floating body moored by a certain number of cables

anchored on the sea bed. The floating body itself is
free to move in the three-dimensional space. Funda-
mental states of the problem can be summarized as
follows:

1. The floating body is a rigid sphere and is sub-
merged completely in the water. A constant
buoyancy is modeled as an upward force which
is kept acting vertically and constantly through
the center of the body.

2. The lower ends of the cables are anchored di-
rectly on the sea bed, while the upper ends are
attached through hinges on the equator of the
floating sphere.

The main objective of this study is to examine the re-
sistance characteristics of such a system subjected to
the external action from the superstructure erected
on the floating body. Therefore such actions must
include not only the forces given in Eq.(7) but also
the moment forces or forced rotations.
(2) Boundary Condition

Suppose that a floating body is moored by n ca-
bles. Then the boundary conditions at the anchored
points are simply given from Eq.(6) by specifying
their positions as

Nyi = Tyior Nai =My "0 000 (8)

where, for example, each 7,; denotes 7, of the -th
cable (i = 1, --- n), and 7,,, expresses the corre-
sponding coordinate. :

At the floating body, the boundary conditions of
each cable are coupled. When only the forces in
three directions are specified, Eq.7 must be replaced

by

Nz = ﬁziO?

fx - zn: t; cos qu cos ¢2 .................... (9_ a)
=1

fy = zn: t; cos ¢z sin "/)i .................... (g-b)
7=1

fz = i t; sin ¢z .......................... (9-(1)

where the subscript 7 indicates the cable number.

As mentioned earlier, the body is also subjected
to the external moment action. Considering that
the objective of this study is to get the stiffness of
the total system, we will specify the rotation of the
floating body instead of applying the moment forces.
Namely the displacement control is adopted for sim-
plicity of the numerical calculations. For example,
suppose the connecting point of the first cable at the
floating body as a reference point, and the relative
position of the connecting points of the other cables
are expressed by

_ ]
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Fig. 2 ‘Model and applied loads

Neil = Ne11 + Anm. e e (lg.a)

Nyil = Ty11 + A’?yi ....................... (10,}0)

Nail = Nor1 + A"]zi (2 =2, n) ......... (1()_(;)
where A7,;’s denote the corresponding components
of the relative distance from the reference point at
the rotated configuration. These relative distances
can be easily calculated geometrically, because the
form of the body is sphere.

When the forced rotation is specified, the corre-
sponding moment forces are also easily computed as
reaction forces. Let r,;, ry; and r,; denote the dis-
tances from the center to the action lines of the cable
tensions, and the components of the moment force
of the floating sphere are calculated by

n

Mx = Z(tzi Tyi = i?ﬂ Tzi) ................ (11"&)
i=1

My =3 (tyi Poi = i i) weoverveveneenss (11-b)
i=1

M, =" (byi oy — by ) wvvemrmmmeeeess (11-c)
=1

where {,;’s indicate the components of the tension of
the ¢-th cable at the connection.
(3) Method of Numerical Analysis

Since the field equations (5) hold in every cable,
the set of n x 6 simultaneous ordinary differential
equations are to be solved under the boundary con-
ditions given by Eqgs.(8) through (11). The sim-
plicity of the structure allows us to use the direct
integration method instead of approximations like
FEM. The Milne method is employed for numerical
integration, and the two-point boundary value prob-
lem is solved by an adjoint method of the shooting
methods!). The number of divisions for integration
is determined by a test analysis of a simple catenary,

and the actual length of the segment between two
adjacent integration points is set 1m in the present
numerical examples. The accuracy of seven signifi-
cant digits can be obtained by this choice.

4. NUMERICAL EXAMPLE

(1) Four Point Mooring

As an illustration, the floating body moored by
four cables shown in Fig.2 is analyzed. Six com-
ponents of external force and moment force are also
shown in the figure, and the forced rotations dis-
cussed above are denoted by 6., 6, and 6,. The
buoyancy acting on the body minus its dead load is
denoted by P. The angle § is introduced to con-
sider the position relative to the superstructure. For
example, the z-direction may be the longitudinal di-
rection of the bridge structure. Among many choices
for B, we here consider only the two extreme cases,
one of which is when £ = 7 /4 (Model A) and another
is when f# = 0 (Model B).

a) Floating Body

Design load from the superstructure is set 5,000tf
(49MN), and the design buoyancy of the body P
is calculated from this design load basing on the
safety factor 2 to be 10,000tf (98MN). This amount
of buoyancy can be introduced to the steel spheve if
its diameter (2 x R,,) is set 28m.

b) Cable

The parallel-wire strand cable with uniform cross-
section is employed, because it undergoes relatively
small cross-sectional distortion. Its Young’s modulus
is 2.0x10%kgf/cm? (196GN/m?). The effective cross-
section which resists the tensile force is set 58.88% of
the actual area'?, and is used to calculate the elon-
gation and stresses numerically. Note that the ac-
tual area is used for the non-dimensional expressions
of the results in the following sections. The tensile
strength of the piano wire is 140kgf/mm? (1.37GPa)
and the strength correction factor of the cable for in-
dividual strength of the wire is set 0.95. Finally with
the safety factor 1.5, the maximum 10,000tf of the
cable tension determines the diameter of the cable,
D=0.3m. The cable weight W/A is set 4.62gf/cm®
(45.3kN/m?).

The depth of the continental shelf suggests likely
values of the length of cables to be between 100 and
200m. Moreover the results”) obtained in the two
point mooring problems indicate that, the longer the
cables are, the less becomes the maximum huoyancy
or the maximum capacity of the vertical loading from
the superstructure. On the other hand, the shorter
the cable length becomes, the more effect from the
tidal current the system has on its configuration.
Therefore the distance between the diagonally op-
posite points of anchorage are set equal to the initial

L

32 (230s)



Structural Eng. /Earthquake Eng. Vol.9, No. 4, 227s—236s, January 1993

Japan Society of Civil Engineers (Proc. of JSCE No.459/ T—22)

|

i A
_ =

< (f2)max / \ ’

S 1=200m -

&

=r / I=150m

! / ]
Buoyancy P) |

/J Az

/ /0.29% Offset

I L

0 (smkage)/l 0'01

Fig. 3 Maximum loading capacity

T T T T T T T

f Zz'(fz)max X 0%

[\

My/(EARg) (X107)

| I 1
=20 0g . (deg) 20

Fig. 4 Effect of vertical load on rotating stiffness about
z-axis (Model A)

length of the cable plus the diameter of the floating
body. The cyclic loadings and deterioration by creep
and corrosion are not taken into account.

¢) Fluid Force

The average velocity of the tidal current in the
neighboring seas of Japan is usually less than 2m/s,
but in the special areas like the Naruto Narrows?, it
sometimes exceeds 5m/s. Considering this situation,
we employ 5m/s as the maximum velocity of the
tidal current. The unit volume weight of the sea
water v is 1.02 gf/cm® (9.8kN/m®) and the values
Cpny = 1.2 and Cpr = 0.015 on rough surface are
used.

(2) Load Carrying Capacity

In order to get the maximum load carrying ca-
pacity of the system as a representative parameter
for the strength, the two-dimensional analyses have
been carried out to obtain the relations between the
vertical load and sinkage of the floating body. The
cable length € is set 100m, 150m or 200m, and the
corresponding ky parameter in Eq.(4) takes the val-
wes 5.1 x 1078, 7.56 x 107% and 1.02 x 1075 respec-
tively. The results are plotted in Fig.3 and show
that the linear responses are obtained as long as the
vertical load is approximately less than 80% of the
buoyancy in all cases. Beyond that point the struc-
ture abruptly loses its stability, but the critical loads
are different in each case depending on the length of
the cable. In order to define the maximum capacity,
we use the 0.2% offset method which is often em-
ployed to define a yield stress of materials without
clear yield point. Then the maximum load carrying

capacity (f;)max is determined as follows:

EA(f.)max = 9700tf, (95.0MN) at £ =100m
EA(fz)yna,X = 9550tf, (936MN) at £ =150m
EA(f.)max = 9400tf, (92.1MN) at ¢ = 200m

(3) Application of Moment about x-axis

As a simple application, let z-axis lie along the
longitudinal axis of the bridge structure, and con-
sider the case where the wind force or tidal current
is acting in the transverse (y-) direction. The ac-
tions from the superstructure are modeled by a ver-
tical load f, and a forced rotation 8,. Therefore the
other boundary conditions of the floating body can
be expressed as

M,=0, M,=0

and they are kept all through the deformation.
a) Influence of Vertical Load

Typical resistance characteristics against the over-
turn moment for the Model A are shown in Fig.4,
where the level of applied vertical load is indicated.
The ordinate expresses the overturn moment non-
dimensioned by the tensile rigidity of the cable and
radius of the floating body. The longer the cables
are, the softer the response becomes. The stiff-
ness decreases as the vertical load approaches to the
buoyancy. However, the response is approximately
linear up to rather large rotational angle as 20 de-
grees. The nonlinearity is relatively mild, and the
change of the stiffness is monotonic.

Fig.5 shows responses of the Model B. The behav-
ior is qualitatively similar to that of the Model A,
but the nonlinearity becomes more significant as the

]
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Fig. 8 Horizontal displacement of floating body

length becomes shorter. The stiffness of the system
first becomes larger than the initial one temporarily,
but, for example, the system with cables of 100m
begins to soften as the rotation approaches to 20
degrees. Although this behavior may suggest that
this nonlinearity stems from some kind of bifurca-
tion, no such a complicated nonlinearity appear in
the history of the horizontal displacements. It turns
out that the cause of this behavior is related to re-
distribution of cable tensions in each of the cables,
and it will be discussed later on.

b) Influence of Horizontal Load

The horizontal load considered here includes the
fluid force acting on the floating body by the tidal
current. The total force reaches 1,000tf (9.8MN) for
the sphere of this size when the velocity of the cur-
rent is 5m/s, but it is approximately 10% of the max-
imum load carrying capacity. Therefore at most 30%
of the capacity is applied for the present study.

The influence of the horizontal load on the resis-
tance against the tilting moment is shown in Fig.6

< for two models, and Fig.7 shows the vertical motion

in terms of the height of sphere from the sea bed
non-dimensioned by the cable length.

L
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Tt is clear that the horizontal load increases the ro-
tational angle of the floating body on which no mo-
ment force is applied. The body rotates more than
30 degrees when the horizontal load reaches 30% of
the maximum capacity. However, the vertical dis-
placement remains within a few percent of the cable
length as shown in Fig.7. On the other hand, Fig.8
indicates that the horizontal displacement becomes
about 10%. Unlike other relations, the vertical mo-
tions are more or less the same for both models with
different horizontal loads.

The moment required to make the body horizon-
tal (8, = 0) increases in proportion to the horizontal
load, and, at this horizontal position, the sinkage be-
comes minimum and the stiffnesses of the two models
coincide with each other. At other states of config-
uration the Model B is stiffer than the Model A,
but the sinkage becomes larger. The Model A loses
its stiffness rapidly as the horizontal load increases.
For example, the resisting moment cannot exceeds
a certain level and the slope becomes almost zero.
At this stage the body sinks tremendously but the
horizontal displacements remain very small as seen
in Fig.8.

In order to explain the substantial cause of the
nonlinearity shown above, the cable tensions are ex-
amined at each step of loading and are shown in
Fig.9. Asis clear from the boundary conditions, the
Model A always keeps the cable tensions of No.1(3)
and 2(4) identical. The change of those of the Model
A is monotonic, and the tension of No.l cable be-
comes almost zero when the horizontal load is 30%
of the maximum capacity which is indicated by the
dash-dotted lines. This is the cause of loss of stiff-

ness, and thus the state can be interpreted as an
ultimate state rather than a bifurcated path.

On the other hand, the loading Model B allows
that the three cables have different cable tensions
while No.1 and 3 undergo the same tension. Accord-
ingly they show complicated changes as are depicted
in Fig.9. Although the cables No.1 and 3 lose their
tensions at a certain level of loading, the remaining
cables keep resisting to the tilting moment in the
plane of these two cables, and the system yields ap-
parently high stiffness. It is quite likely that this
state of deformation is unstable, but no further in-
vestigation has been carried out, because our objec-
tive is to examine the stiffness of the system and no
clear criterion for instability can be established yet.

In any case, since the stiffness of the system is
mainly governed by the cable tension, the amount of
the buoyancy P initially given to the floating body
is the most important factor for the resistance char-
acteristics of the system.
¢) Influence of Tidal Current

The tidal current of the velocity up to 5m/s yields
almost no influence on the response of the system,
and the results are not shown here, because the dif-
ference of the results cannot be perceived within the
scale in these figures. The changes in the configura-
tion of the cables in equilibrium are also very small.
Therefore we can conclude that, as long as the cable
tensions are large enough as expected in the system
considered, the effect of the tidal current on the ca-
bles is very small in comparison with that on the
floating body. Note that the latter plays an impor-
tant role on the stiffness and stability of the structure
as discussed in the previous section.

(4) Moment Loading about y-axis

The stiffness against the rotational moment about
the y-axis of the same system is examined next.
For simplicity, the boundary conditions are given in
terms of forced rotations. Namely, while the bound-
ary conditions in the vertical and horizontal direc-
tions are given by the force conditions, the geomet-
rical conditions are assigned about y-axis to specify
the forced rotation of the floating body. Therefore
the boundary conditions about other axes are also
given by the geometrical conditions as

0, =0, 0,=0, — M,#0, M #0

where the nonlinear coupling of the moment forces
leads to non-zero values for all the moment compo-
nents. .
a) Influence of Vertical Load

The influence of the vertical load is shown in
Fig.10. Two models with the same length of the
cable have the identical initial stiffnesses. However
the Model B shows relatively higher nonlinearity and
becomes stiffer at the beginning than the Model A.

__ 1
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When the load approaches to a certain level, the
Model B starts softening. The shorter the cable is,
the more significant this tendency becomes. As for
the Model A, the stiffness decreases monotonically
as deformation progresses. Similarly to the results
in the preceding sections, the vertical load has the
effect to reduce the stiffness which substantially de-
pends on the magnitude of the cable tensions.

b) Influence of Horizontal Load

Fig.11 shows a typical influence of the horizontal
force in the y-direction. Under the boundary condi-
tion specified here, the Model A has almost no effect
of this horizontal action and no difference is visible

on the figure. The vertical motion of the floating
body is plotted in Fig.12 showing higher nonlinear-
ity than that in Section (3), probably because of the
complicated loadings.

For the Model ‘B, there is observed no influence
of the horizontal load as far as the initial stiffness
is concerned, and the stiffness clearly decreases as
the deformation increases. However it is of interest
that the initially apparent nonlinearity disappears
by the action of the horizontal load. Fig.13 shows
the corresponding changes of cable tensions. This
figure suggests that this reduction of nonlinearity
also stems from appropriate re-distribution of the

L
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Fig. 14 Effect of vertical load on torsional resistance

tensions among four cables which becomes possible
because of the non-zero moment components about
all the three axes.
¢) Influence of Tidal Current

No influence of the tidal current is observed in this
case, either.
(5) Torsional Resistance

Again for simplicity the boundary condition at the
floating body is specified geometrically as

0,=0, 0,=0, — M,#0, M,#0

which yields non-zero components of the three mo-
ment forces.

Unlike the cases in the Sections (3) and (4), the
effects of the horizontal load and tidal current are
not so big that one cannot distinguish the results
on the figure. Furthermore the two loading models
yield almost no difference. A significant discrepancy
appears only on the results showing the effects of the
vertical load in Fig.14. The behavior is completely
linear, and it may be due to the states of high cable
tensions.

5. CONCLUSION

The governing equations taking rationally into ac-
count the buoyancy and fluid force are solved to ex-
amine the stiffness of the submerged floating body
moored by four cables. The results of a few case
studies where emphasis is put on the resistance
against the tilting moments are summarized as fol-
lows:

1. The relations between the moment forces and
rotation about all the three axes are linear at

their initial stage, and they become perfectly
linear especially about the z-axis.

2. The application of the vertical and horizontal
loads leads to the decrease of tension in some
cables, and generally reduces the stiffness. How-
ever their effects are small as long as the loading
levels are restricted within 30% of the load car-
rying capacity of the system.

3. Since the initial cable tensions are set approxi-
mately 25% of the strength, the final stage with
almost zero stiffness has been achieved when the
tension of two cables approaches to zero. How-
ever no abrupt drop of the stiffness nor softening
have been observed.

4. The tidal force on the cables themselves in par-
ticular is a minor influence factor for the behav-
ior of the floating body.

5. The sinkage by application of the moment loads
shows nonlinear behavior but its absolute value
is about one-tenth smaller than the horizontal
displacements.

Accordingly, when the large initial buoyancy is intro-
duced in the floating body so that the initial tension
is set approximately 25% of the tensile strength of
the cable, the responses of the system against the ex-
ternal moment forces are almost linear even though
the tidal current is set at the highest level of the
current specification, provided the vertical and hor-
izontal forces are kept within 30% of the load car-
rying capacity of the system defined in Subsection
4.(2). Therefore it is expected that one can establish
an easier approach of designing of such a structural
system. .

The studies left to be done are to use more realistic

boundary conditions of the floating body specified
only by the forces and moments, and to define the
limit state of the system including bifurcation ana-
lyses. The limit state must also include the effect of
the slack cables.
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