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LOCALIZED IDENTIFICATION OF STRUCTURES

BY KALMAN FILTER

Andres W.C.ORETA* and Tada-aki TANABE**

A method to estimate the structural parameters of a small section of a structure was
presented. A structure was decomposed into two substructures which were attached at
a common boundary and three subsystems resulted which were the primary, boundary
and secondary systems. The identification of the structural parameters was concen-
trated on the secondary system. Incorporating the state and observation equations of
the secondary system in the extended Kalman filter, the stiffiness and damping para-
meters of the secondary system can be estimated. To illlustrate the proposed localized
identification approach, a shear building was analyzed and the identification was con-

centrated on the first story.

Keywords . structural dynamics, system identification, Kalman filter, substructuring,

primary-secondary system

1. INTRODUCTION

Importance of system identification and para-
meter estimation in structural engineering has been
recognized in recent years, particularly in the
estimation of the existing condition and the degree
of damage and deterioration of structures. For
system identification purposes, structures are
usually modelled discretely using simplified models
such as lumped mass or finite element models. To
represent reasonably the behavior of real struc-
tures, the discrete models usually involve many
degrees of freedom (DOF) resulting in complicated
and expensive (in terms of computation time)
dynamic analysis especially when this is incorpo-
rated to a system identification and parameter
estimation problem. For this reason, a research
effort” was conducted to apply system identifica-
tion and parameter estimation to a small section of
the structure so as to reduce the size of the system
under consideration. This attempt was further
motivated by the fact that since damage of a
structure is local and occurs at a critical section
then it is only practical and reasonable to con-
centrate the analysis at a local and critical part of
the structure. Hence, the term “localized iden-
tification” was derived.

As the initial step to carry out localized
identification, the concept of primary-secondary
system, which is basically a method of substructur-
ing, was used to formulate the equations of motion
necessary for system identification. In this
approach, a structure was decomposed into two
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substructures which were attached at a common
boundary and three subsystems were formed, i.e.
primary, secondary and boundary systems. The
identification was then concentrated on the smaller
substructure which was the secondary system.
Incidentally, the formulations resulted to a similar
approach proposed recently in an independent
study conducted by C. Koh et al” where the
substructure approach is also used. Although the
two formulations are generally similar, the present
approach is more suited for structures represented
by finite element models since the parameters that
are being identified are the elements of the
damping and stiffness matrices of the finite clement
model. Hence, the present formulation requires
only one general computer program to analyze any
finite element model. However, the disadvantage
of this approach of identifying the clements of the
damping and stiffness matrices is that there are
more parameters to be identified.

In this paper, a procedure for localized identi-
fication of structural parameters was presented.
The extended Kalman filter with weighted global

iteration (EK-WGI) was proposed to be used in
the estimation of the local structural parameters of
a structure. Incorporating the state and observation
equations formulated from the equation of motion
of the small section of the structure in the Kalman
filter algorithm, the stiffness and damping para-
meters were estimated. To illustrate the localized
identification, a simple shear building model
subjected to ground motion was analyzed and the
identification was concentrated on the first story.
Using the numerically simulated data of the shear
building, the stiffness and damping parameters of
the first story werc reasonably estimated. The
application to the shear building model is useful
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and practical especially for highrise buildings since
the stuctural parameters of the first story, which is
usually the most critical part of the building, can be
estimated by knowing only the responses of the
first and second stories.

2. EXTENDED KALMAN FILTER

As a background, the extended Kalman filter
(EKF) will be described briefly. First, an appropri-
ate set of state and observation equations derived
from the equation of motion can be formulated and
can be written generally as nonlinear equations
respectively as :

%:f(X(f)’t) ................................. (1)
Y(E)=h(XCk) k) Hv(k) oo (2)

where X(k) is the state vector at time = k4t, ¥(k)
is the observational vector at time = kAt, v(k) is
the observational noise vector with covariance
matrix, R(k) and At is the sampling time interval.
The EKF algorithm is a recursive procedure
which starts from an assumption of the initial state
vector, X(0/0) and its error covariance matrix,
P(0/0). The procedure®” which is given below is
then performed recursively using one set of
observations.
(1) Store the filter state : X(k/k) and P(k/k)
(2) Compute the predicted state :

Py —~ (k+1)At —
XCk+1/k) =X( k/k)+fw ARk, )t

(3) Compute the predicted error covariance
matrix :

P(k+1/k)=®(k+1/k)YP(kik) ®"(k+1/k)
(4) Compute the Kalman gain matrix :
K(k+D=P(k+1/k)M"(k+DIM(k+1)

XPCE+UEYM™(k+1)+R(k+D1

(5) Compute the filtered state by processing the
observation, Y(k+1) :

X(k+1k+1)=X(k+1/k) +K(k+1)

XLYCk+1) —h(X(k+1/k), k+1)]
(6) Compute the new (filtered) error covariance
matrix :
P(k+1Ek+1D)=[I-K(k+1)M(k+1)]
XPCk+1E)T-K(k+DM(k+1D]7
+E(E+DR(EHDKT(k+1)
(7) set k=k+1 and return to step (1).
Here, @(k+ 1/k) is the state transition matrix
which can be approximately obtained as

O k+1/k) :I+At[——-—-aﬁ(§g)”) ]X<,>=§<k/k>
........................................... (3)

for small Af. I is a unit matrix. K(k-+1)is the

Kalman gain matrix and M(%) is the linearized
coefficient matrix of the observation equation
obtained as

Ohi (X (k) k)

M(k)_ [ aX—; ]X(k):i(k/k—l) ...... (4)

For convergence purposes, the extended Kalman
filter with weighted global iteration (EK-WGI)
developed by Hoshiya and Saito” can be applied.
In this procedure, global iterations of the extended
Kalman filter are carried out by overweighting the
error covariance matrix at each global iteration.
One global iteration means performing the EKF
algorithm using one set of observations. At first,
the filtering is performed for N observations with
initial guesses of the state vector, X(0/0) and its
error covariance matrix FP(0/0) to obtain the final
values, X(N/N) and P(N/N). Then, the second
global iteration is performed using the final values
of the parameters at the first global iteration as
initial guesses. For the initial error covariance
matrix, the diagonal elements of the covariance
matrix at the first global iteration associated to the
parameters are multiplied by a weight and used as
initial values. This global iteration procedure is
repeated until convergence in the system para-
meters is achieved, i.e., the initial and final values
at a global iteration are almost the same.

3. EQUATION OF MOTION : PRIMARY -
SECONDARY SYSTEMS

In substructuring, the complete structure is
subdivided into several substructures. Without loss
of generality, the structure can be divided into two
substructures in which one of them is usually
smaller (in mass and/or stiffness) compared to the
other. The smaller substructure is commonly
referred to as the secondary and the larger as the
primary. These two substructures, which are
attached at a common boundary or interface, are
referred to as primary-secondary systems or simply
P-S systems (Fig.1).

Let the vector X, denote coordinates of degrees
of freedom (DOFs) that belong only to the primary
system, X; denote solely the secondary DOFs and
X, denote DOFs of the boundary or interface
points that belong to both the primary and
secondary systems. The equation of motion of the
composite P-S system in partition form can then be
written as follows” :

M, P 0 0 XIJ Cpp Cp » O XP
O M bb O Xb + Cb? Chb Cbs Xb
0 0 Mss XS O Csb CSS Xs
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Ky, Ky O X, F,
+ Kbﬁ Kbb Kbs
O Ksb KSS XS FS

where {.) denotes time derivative, M,C, and K are
the mass, damping and stiffness matrices, respec-
tively and the subscripts p, s and b refer to primary,
secondary and boundary DOFs, respectively. Fj,
F, and Fs are external forces applied to the
primary, boundary and secondary DOFs, respec-
tively. It has been assumed for simplicity that X,
and X, are not inertially coupled with X, A

lumped mass model satisfies this assumption.
The three parts of the composite P-S system
when analyzed separately, can be represented by
the three equations of motion corresponding to the
primary, boundary and secondary systems, respec-

tively, i.e.

My X+ Cop X+ Ky X, = Fy— Cps Xy — K X,

.......................................................... (6)
Mbeb+Cbeb+Kbeb:Fb~Cngp
— O X — Kip Xy Ko X vvvveeeeerensnns (7)
MssXs+ CssXs+KssXs =F;— Cszbm KX,
........................................... (8)

4. STATE SPACE FORMULATION

Since our interest is on the identification of the
structural parameters of a small and localized
section of the structure, only the equation of
motion of the secondary system will be considered,
i.e.

MSSXS+ Co X+ K Xs= F— K X,— CalX,

Sometimes this equation is simplified by neglecting
the damping term on the righthandside. For
structural systems, this damping term is usually
small and its neglect causes insignificant error””.

The state equation can be derived from the
cquation of motion of the secondary system.
Premultiplying Eq.(9) by M' and introducing the

following matrices

C;;ZMS.;ICSS,

Ki=M' K,

K3= Mstlesb,

;fl;:Ms;leb,

FS*:MSEIFS,
will result in

X+ CEX A+ KXX,=F&— K3X,— C3X, -+ (10)

The current identification problem consists of
finding the optimal estimates of the unknown
coefficients C*gs, K&, Cs5, and K5. The secondary
mass matrix Mss is assumed to be known for
simplicity. Selecting X and X as the state variables
and the coefficients of the matrices, C&, K%, K

and Cg as augmented state variables, the state
vector X becomes

_ .. .o %
X=1{ zaZs LsmTrsas - TsmCssn1 'Cssmmk;};ll' .

k;ksmmksﬁu'"kﬁmzCﬁn‘“Cs)%mz]T ........... (11)
or it can be written in compact form as
DD €D CD. €. 05 €5 ¢ LTI (12)
in which

Xl - { Ts1Tsz"* 'xsm} Ta

Xz = { 3:"31-73'32' ‘ 'j:sm} T’

X,={ c;‘:‘sll"'c;{;mm} T

X4: { k.:sksll' * k;’fsmm} T>

X;=A{ ke kdm T,

Xo={ C;in"‘cs}imz} T,
where ¢Zi;, k&, k&, chi=1 elements of matrices
CE, Kk, K3 and Cg, respectively ; m=number of
secondary DOFs and /= number of boundary
DOFs. Eq.(11) or (12) is a [2m + 2w + 2ml]
dimensional state vector.

With the aid of Eq.(12), the differential equation

(10) can be written into a state equation of the
system as

X
X
X;
X,
X
X

_
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Fig.2 A four DOF shear building model considered asa composite P-S system

X,
- Cst( XS)XZ_K;!;( X4)X1+Fs*"Ks’Z ( X Xy~ CS’Z( Xe)«Yb

........................................... (13)

where matrices with (X;) include elements in the
vector X;.

Eq.(13) is a continuous state equation of the
dynamic system and corresponds to Eq.(1). Using
an appropriate observation equation and response
time histories of the secondary system, the
structural parameters can be identified. Having
identified the elements of the matrices O K* K*

ified the elements of the matrices O, K& K
and € and multipying by M, an estimate of Css,
K, K, and C can be obtained. It must be
understood that inorder to implement the identi-
fication procedure described, the external force
vector F, boundary displacement vector X, and
boundary velocity vector X, must be known.

5. APPLICATION TO A SHEAR
BUILDING

As a test problem of the localized identification
of structures, a simple shear building will be
analyzed. Consider the model of a four DOF shear
buiiding subjected to ground motion as shown in
Fig.2.

The equation of motion for the shear building
considered as a composite P-S system equivalent to
Eq.(5) can be written as

m 0 0 07714
0 me O 0|2
0 0 m O 25
0 0 0 m- ‘s

ot o 0 0 4
4| e e +te —e 0 2
0 —¢ Gt —e| | 2
0 0 —C 2
vtk ke 0 0 ((a
| e Rtk <k 0 |
0 —ks ksthke —ki| |2
0 0 —ky k4 24
my
e (14)
3
my

If we divide the composite system such that z is
the secondary DOF, 2, is the boundary DOF and
both z; and 24 are the primary DOF, then the three
equations of motion corresponding to the secon-

dary, boundary and primary systems can be written
as

myi+ ( ate)z+( k1+kz)21
:—m1ﬁ+k222+c2é2 ..................... (15)
weZat (ot en) 2ot (ko ks) 2= —mati+ ko

+1[ % 0] ‘[23}+6221+[c30] { ) (16)
(Z1) (4]

W3 0 {23 + C3+C4 ""'C4} {23

O Wy 24 (4 Cy 24

|tk — {23 _ mg}ﬁ
—ky ky 24 o

+[1;3}22+{;3]z~2 ............................ (17)

It would be practical to concentrate the identi-
fication on the first story which is usually a critical

23
2y
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section for a building. Hence only Eq.(15) will be
considered and it can be rewritten as

zi+{(£‘1+cz)}z.l_{_{(k1+kz)}zl

m my
:__u._{f;il}zzu{_;%}z-z .............. (18)

This equation corresponds to the general equa-
tion of motion of a secondary system derived as
Eq.(10) given by

X+ CEX A KX = F& — K3 X,— C3X, -+ (19)
in which X,=z, Xo=2,, F&¥=—1, Cx={(c1+c)/
m)}, KE={(ki+kosm)}, Ks={—ky/m} and Cs§
= {— ¢y/m} . Having derived the equation of
motion of the secondary system, the state vector
given as Eq.(12) and the state equation given as
Eq.(13) can be defined. In our present problem,
the state vector consists only of 6 elements with X;
=21, Xzzél, X3:C;ls<, X4=K;§, X5:K;§ and X():
Cs. '

The observation equation (Eq.2) relating the
observation to the state vector can now be derived.
If the observed data are the displacements or
velocities at the first story, the measurement or

" observation equation is given by Eqs.(20a) or
(20b), respectively.

Y(k)=[100000]X(k)+uv(k) - (20a)

Y(E)=[0100001X(k)+v(k) - (20b)

On the otherhand, if the observed data are the
accelerations at the first story, the observation
equation can be derived from the equation of
motion as a nonlinear equation given by

Y(k) :Fs*— sﬂ;Xs*Ks?Xs_K;gXb
SR 059, ¢ 171 (73 TSP TPITIRIO PRI OO (20¢)

and the linearized coefficient matrix can be derived
from Eq.(4) as

M(k)=[-K% —C& — X, — X,

— Xy, K] e 21

Although more complicated than the observation
equation based on displacement or velocity and
nonlinear in form, the observation equation based
on acceleration is more useful in actual applications
since acceleration records are more commonly
available than other records. However, the effect
of nonlinearity of the observation equation must be
carefully investigated. The work of Denham and
Pines" will be useful for this purpose.
Incorporating the state and observation equa-
tions in the EKF algorithm, the parameters can be
identified. It is noted that the state variables X; to
X; are the parameters to be identified. It must be
understood that the input data which consist of the
ground acceleration, #, boundary displacement, z,

Table1 Parameters of Structural Model (m; : mass in
kgf-sec/em, ¢ : damping coefficient in kef-
sec/em, ki : story stiffness in kgf/em)

Parameter mass 1 | mass 2 | mass 3 | mass 4
my 20 10 10 10
[ 32 18 14 14
k; 8000 4500 3500 3500

100.0

INPUT GROUND ACCELERATION

50.0

0.0

Acceleration(x 10 cm/s?)

-50.0

T
0.0 5.0 10.0 15.0 20.0
Time(s)

-100.0

Fig.3 Input Ground Acceleration

and boundary velocity, 2, must be known so that
the identification can be implemented.

6. NUMERICAL EXAMPLE

The identification method was applied to the
four DOF shear building described in Fig.2 using
the structural parameters given in Table 1.

From Table 1, the parameters of the secondary
system represented by the first story can be
computed as M=20, Css=50, K, ,=12500, K=
—4500 and C',= —18. Dividing each parameter by
M, results in C=2.5, K£=625.0, Kf=—225.0
and Cj5=—0.90.

Using the linear acceleration method, Eq.(14)
was solved to obtain the response of the composite
system using a sampling time of 0.05s with an
carthquake acceleration data based on the El
Centro (1940) acceleration as the input ground
motion, % (Fig.3). The calculated responses for #2
and m, were used in the identification, where the
calculated 2z and Z, were used as input data
(Fig.4), and the calculated responses of 21, Z or Zi
were used as the observed data (Fig.5)

In implementing the EK-WGI procedure, initial
values for the displacement and velocity were set at
0. The initial error covariance matrix was set at 0.1
for response and 100 for unknown parameters. The

]
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Fig.5 Observation Data
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Global Iteration
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a) Parameter Xs :%
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d) Parameter X5 : C3

Fig.6 Convergence of Parameters by EK-WGI

Table 3 Estimated parameters of the
shear building

Parameter

¢ ky ¢y ks
True Value 32.0 {8000.0 | 18.0 | 4500.0
Tstimated Value(Disp.) || 31.92 | 8000.0 | 17.94 | 4500.0
Bstimated Value(Vel.) || 32.0 | 8000.0 | 17.98 | 4500.0
Estimated Value(Acc.) || 32.0 | 7998.0 | 17.96 | 4500.0

-200-
S0 B3 - 3|
-250
i S L S S -
Global Iteration
oIS + UEL © ACC
¢) Parameter Xs : K3
Table 2 Results of identification of parameters of
secondary system
Final Value
Parameter | True Value | Initial Value | Disp. Vel. Acc.
C:, 2,500 1.0 2.493 | 2499 | 2.49%8
K, 625.0 0 6250 | 6250 | 6249
K, —225.0 1.0 25,0 | 2050 | —2250
[ —0.900 1.0 —0.897 | -0.899 | —0.898

noise covariance matrix for the observation res-
ponse was taken as 1.0. A weighted value of 100
was used in the global iteration. .

The displacement, velocity and acceleration time
histories of m: were used as observed data.
Assuming initial values of 1.0 for all the para-
meters, the EK-WGI procedure was carried out to
estimate the parameters. Shown in Table 2 are the
results of the identification using the three different
sets of observed data. Fig.6 shows the convergence
behavior of the parameters during identification
using the EK-WGI algorithm. In general, the
behavior of the parameters at the initial stage was
unstable, but after several global iterations, the
parameters started to converge to their final values.
Using the three different sets of observed data,
EK-WGI worked well in the estimation of the
parameters even with poor initial guesses. It is
interesting to note that the estimates obtained by

using the acceleration as observed data were good
despite the nonlinearity of the observation equa-
tion. This encouraging result, however, must be
given further investigation for possible application
to actual structures.

Multiplying the estimated parameters by Mss, we
will obtain the estimates of Css, Kss, K and Cg,.
Using the relationship between the parameters of
the secondary system and the actual stiffiness and
damping parameters of the shear building, the
estimates of the first story parameters can be
obtained as ¢; and k;. Incidentally, the second story
parameters, ¢; and ki, were also estimated as
shown in Table 3

From Table 3, we can see that the stiffness and
damping parameters of the first and second stories
of the shear building can be reasonably estimated.
The estimates of the first and second story
parameters were very close to the true values
especially the stiffness parameters.

]
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7. CONCLUSION

A procedure for localized identification of
structural parameters using the extended Kalman
filter was presented As a starting point, the concept
of primary-secondary system, which is basically a
method of substructuring, was applied. In the
procedure, a structure was decomposed into two
substructures which are attached at a common
boundary and three systems, primary, boundary
and secondary systems, were formed. The identi-
fication of parameters was concentrated on the
secondary system. A structure, however, can be
decomposed not only into two substructures but
also into many substructures. The same localized
identification procedure can be applied to estimate
the parameters in these substructures by using the
corresponding equation of motion of the substruc-
ture. With the localized identification procedure,
the stiffness and damping parameters of selected
substructures which are critical to the overall
performance of the total structure can be esti-
mated. However, the response at the boundary
DOFs in the substructure must be available as
input so that the identification can be im-
plemented.

In the present localized identification formula-
tion, the state equation necessary for system
identification and parameter estimation was de-
rived from the equation of motion of the secondary
system. The elements of the damping and stiffness
matrices of the equation of motion which are
augmented to the state equation are the parameters
to be identified. This approach, although it
involves many parameters to identify, is easy to
translate into a computer code and suited especially
for finite element models.

As a test problem, the localized identification
procedure was illustrated by analyzing a simple
shear building where the first story parameters
were reasonably estimated. Three different sets of
observed data (displacement, velocity and accel-
eration) were used in the identification. The
numerical results showed that the EK-WGI
procedure worked well even with poor initial
guesses of the parameters. Furthermore, the result
obtained by using acceleration as observed data
were encouraging as it is useful for identification of
actual structures. The application to the shear
building is useful and practical especially for
highrise buildings since the structural parameters at
the lower levels can be estimated without consider-
ing the response at the higher levels.

This study is only the initial step towards the
objective of identifying the structural parameters of
a local and critical part of a structure. To verify the

capability and usefulness of the localized identifica-
tion procedure, applications to more complicated
structures must be conducted. After the numerical
verification, the validity of the localized identifica-
tion to actual applications must be tested by
carrying out experiments using laboratory models
and field experiments.
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