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AN EXPLICIT FEM FORMULATION OF
THE 2-D TRIANGULAR ELEMENT FOR

FINITE STRAINS

Masahiro AI* and Fumio NISHINO**

Not by means of mathematical expansions, but on the basis of a physical decomposi-
tion of its total freedom into the parameters of position as a rigid and those of de-
formation, an explicit discretization is developed for the 2-D triangular element with
large displacements. While the material is assumed eclastic even for finite strains, any
geometrically nonlinear effects are taken into account, systematically and rigorously.
Keywords : geometrically nonlinear discretization, finite strains, isoparamelric inter-

polation

1. INTRODUCTION

Under the isoparametric interpolation applied to
the finite displacements of solid continua, the
Lagrangian expression for strain remains quadratic
in terms of the nodal parameters. Depending upon
this feature, the existing total-Lagrangian FEM
formulations” ™ classified into the B-notation and
the N-notation methods are mathematically accom-
plished. However, those expansions are not to be
understood physically. Further, to obtain the actual
stiffness relations, an awful calculation is necessary
in the numerical analysis.

In this paper, another formulation is presented

for the 2-D triangular element, with a full physical

explanation, which is developed explicitly in a
complete accordance with an exisiting general
procedure stated in Ref.1, 2) to separate the total
freedom of an clement into the parameters of
position as a rigid and those of deformation. By the
assumption of an elastic strain energy existing even
for finite strains, the realistic material problems are
disregarded, but the expansion classified into the
total-Lagrangian is theoretical and rigorous as a
geometrically nonlinear discretization.

2. DESCRIPTION OF GEOMETRY
AND STRAIN

In the Cartesian {x, y}, let us consider a three-
node triangular element (¢). The spatial coordin-
ates of its three nodes are employed as the element
position :

{x}(g):{(x, y)iy (xy y)j’ (‘r) y)k} """"""" (1)
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Fig.1 Geometry of Triangular Element

where i<j<k. As the element coordinate sys-
tem, we take {z/,y’} in relation to the current
configuration such that 2" is directed from node ¢
toward j with y being perpendicular to z’. As well,
in the initial (or stress-free) state, the {x/, 4’} of
material points are employed as Lagrangian
coordinates (&, n}: §=x4, 1=y, where an initial
quantity is denoted by subscript ¢ Do

As shown in Fig.l, the triangle shape is
characterized by f{z’,y’} of the three nodes.
Excepting the identical zexos, let shape g« be
defined by collecting the remaining three into a set

G =1, @, By -wereeereeemsessoseesssseeees @)
Those lengths are related to {a} @of (1) by

ey az%{fﬂgg}, h="rzj— 2

....................................... (3. a-c)
where {%, 7} and {%, §) are position vectors of
node j and k relative to i:

(z, 3=~ v~y
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{z, g}: {xi—xi, yk—-yi} .................. (4. a, b)
And, the angular positon of the {x’, y'}-system is
given by

T=arctan {f/Z) - veevreerrrmrrrienniii 5
Then, v ={z;, ¥, 7} and g =1{ a, b} are a
separation of the entire freedom into the rigid
position and the shape, respectively.

By applying the isoparametric (or constant-
strain) interpolation to the deformed (e) upon the
{z’, y'}-coordinates, we have

x'(§, n)=1—ié+hio(a*%z—l)n, ¥, n)=h%n

..................................... (6. a,b)
Let deformation &« be defined by the resulting
Green’s strain components :

Em= {eff; enn, 767}} ................................ (7)

«w=3((1) =1}
o= () ).
Ten (=2ee,) = (713) (h%_ ;0 Ollo) ------------ (8. a-c)

The constant strain state is determined for
element position {a}, through relations (3. a-c),
(4. a,b) and (8. a-c). The associated tangential
relations can be obtained by expanding their
derivatives for infinitesimal variation d{x}«,. But,
we here develop those relations under the follow-
ing physical decompositons : First, let the indepen-
dent d{x} ) be re-decomposed into the {z’, y'}:

5{1,',} (&)™ [T(T)] (2)5{.1'} {e)y

[ COS7T,

sin'[]

~~8inT, COSsT.

[T]e= (9-a,b)

[1
L]

The vectors 7 and ik changed by d{x'} ¢ can be
represented in the preceding {z’, '} as

{ P } | t+oz—ox,  oyi—oy; } { i }
ik atoxi—ox{, h+dy;—dy, iy

........................................... (10)
where {i,, i,} are the unit vectors into {z’, y'}. At
the same time, those unit vectors are also rotated
by 5{1"}(3) .

iwtoin| [ 1, 6c)(in
iy +diy ) [ —or, 1] i)
5T=~:;~(5y;——5y”) ......................... (11 a, b)

The above matrix containing 1 and differential o7
can be inverted by the transposition. Introducing
the inverse of (11) into (10), we have the vectors j

and ik represented upon the current {iy +0i,, i,
+3diy}. The nonzero elements of that 2 X 2 matrix
relating {Z}', ik} to {iy+0iy, iy +0i,} are to be I+
0l, a+0da and h+0h. This result is written in the
matrix form

0g0=10%@]wélx"} 0,

-1, 0, 1, O, 0, 0
h h
Q@le=| " ~7 0 7o 1,0
b a
0, =7 0, =5 0, 1
.................................... (12. a, b)

where b=I—a. Succeedingly, by the mathematical
differentiation of (8. a-c), we have

dew=[QF (2] @08 w,

!
—Y O’
7 0
1= Z%(,_aly 1( _aly h
[QXI](e) (z)lo< 10 >, h%(d ll) >, h%
1 ~_25101 !
Wo(" Io ) Tiolo? 0
.................................... (13 a’b)

"Then, collecting (9), (12) and (13) into a unified
matrix form, we have

58(e)= [QX({x})](e)5{x}(e) .................. (14 a)
[Qx({xh)] o (=1Q#] [ Q%] olTlw) =
-1 -1 1
lg 5 g y' lg 5
CloboJj bo 7 aobo . by a . ag
T T TR T A
(ao_bo) . 1 . (ao“bo)_ 1. "2(10_, 1 .
N A WA TR WA
1_
—O;y, 0, 0
as . aq . ~00£§l_j —a . 1
A TR T A
24, 1 1 _ 1
hol? gt hole” holo™ holo?
...................................... (14.b)

3. DEFORMATION FORCE

For simplicity, let us consider an elastic finite-
strain problem, in which a strain-energy-density
function, A(e), is prescribed in terms of the
Green’s strain components. As a set of force
components conjugate to &g, we here define
deformation force f,. Since the strain energy in
our condtant-strain element is given by U(e) =
VoA (e), where V, is the initial volume, the present
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Fig.2 Nodal Forces in Simple Support

= F

fiy—& relation is given by

0A(e)
fee(=Vooee) = Vo ae; ,
0A
S (= Vo) = Vo 66(1:) ,
0A
Fon(=Vooen) =V a;j ................... (15. a-c)

where {0, Om, Ocn} denote the second Piola-
Kirchhoff stress components.

4. RELATIONS FROM f, TO
NODAL FORCES

The element force, {F}y,, is defined as the nodal
forces conjugate to {x}e. Those force components
into the spatial {z, y} can be derived in accordance
with the former geometrical decompositions.

With our vey={z:, y;, T} and gw=1[, a, i}, the
simple support shown in Fig.2 is associated : if that
support is fixed in the space, the rigid displace-
ments into {z;, ¥, T} are constrained, but any
deformations are possible by the variety of {/, a,
h.

Upon that support fixed, the force components
into g =11, a, b} are now denoted by G={F,,
F,, F,}. By substituting (13) into the virtual work
equation, f) * 06w ==Gw * 0w, we have

Go= [ngl(g)]mf(e), [Qfﬂl] @ = [Q)I(I ?;) (16)
Next, we consider the entire nodal forces, {F} ),
resolved into the element coordinates. Apparently,
FxszFz,szkzFa and Fy’k:F},. By the equilib—
rium condition as a rigid upon the current shape, or
as the reactive forces in the simple support, the
remaining components in {F'}, are determined
for G(. This result is written in the form :

(F o =[QE(@ 1@ Gey+rerereeesererenes (17. a)

where matrix [QF(g)] is found to be in the
contragredience with (12) :

[QE(@)] = [QE(@)1E) -+ererrrrrrenereene (17.b)

Finally, element force {F}¢ is obtained from
{F’}, by the inverse rotation to (9) :

(F = [T ) g eveeeremmmnmnsenenss (18)
Collecting (16), (17) and (18) into a unified
matrix form, we have

{F} 0= [QF({x})](e)ﬁe>:
[Qr{xD) ] = [T(D] &[Qé(g)] (e)[QpI‘I(g)] (e)

Apparently,
[Qr ()] 0= [Qx (@))% -rerermermeesnenee (20)

5. TANGENT STIFFNESS

By the use of (3), (4), (7), (15) and (19), element
force {F) is obtained for element position {a} ).
Let us consider the tangent stiffness matrix upon
freedom {x} ).

By differentiating (19.a), we have

MF} =[Qrl 0fiy+ (61Qrl @) fiey=-ee++- 21
The form for 6{F}« to be developed is

S{F} o =k{axN] w0z} @),

(K= [k ({x) 1o+ ke (F, {x})] e (22. 2, b)
where [kulw and [kel (o are the so-called deforma-
tion and geometrical stiffnesses, associated with the
first and second terms of (21), respectively.

By the use of (14) and (15), the deformation
stiffness is written as

k({1 w= [Qr{aN)]wle@]w [Qx{xH) ],

[elo=Vo| 2. <25 > 1]

From (14) and (19), matrix [@r({xx}) ], itself can
be rewritten as

[QF({-T})]W): [QX({‘”})]EI;) - {5?;} ] :-e)

Hence, the second term of (21) is developed as

wiedwfo=| 55 [srg] o], fo

[0 0N,
_[a{x} < ol > ](e)
where notation [ ]I denotes a three-dimensional
matrix ; and subscript | fer=const. means to regard fi,)
not subject to the differentiation. As the actual
expansion, first, we have the three derivative
matrices by differentiating each transposed row of
[Qx({ah) 1) of (14. b) with respect to {x}w. And,
as the sum of those matrices multiplied by
respective fi, fon and fi;, we have the geometrical
stiffness matrix :

o{x} o - (24)

fley=const.

]

115 (1038)



AN EXPLICIT FEM FORMULATION OF THE 2-D TRIANGULAR

ELEMENT FOR FINITE STRAINS /AT - NISHINO

|

[ke(F, {x})] @=

L0, —L 0, 0 0
13 §
L, 0 —L 00
I 8
1
VoO';:g "l_g', 0, 0, 0
1
7k 0, 0
Sym. 0, 0
L 0
- bo 2 Gobo ”bo "
T 3 3 07 3 O
() 0 (hlo? Wil
b\ @obo b
(holo> ! O’ (hglg)w Oy h%lo
4 —a
<kolo) 0 0 n,’ 0
+ Vo
(.ﬂ)z 0 )
holo! ' Rl
Sym. —, 0
ym 0
1
L h% d
[ 2bo ([lo bo) -1 ]
0 ) 0, 77, 0
hold hol? holo
2bo (@—bo) :i
l'l()l(%, Oy holg ’ 01 hOIO
20, 1
+V00'5,, hol§ ’ O, holo’ 0
—2a, ._1_
Sym. Wk 0, e
0, 0
........................................... (25)

6. CONCLUDING REMARKS

Guided by the stated-in-general-terms pro-
cedure””, an explicit discretization is developed for
the triangular FEM element, in which as intermedi-
ate parameters toward &) and £, respectively,
shape g, and its associated force G, are defined
exceptionally here in this paper. The present
formulation is based on a physical decomposition
of the geometrically nonlinear problem. The
geometrical relations and force transformations are
related into each pair by the contragredience.
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