Structural Eng. /Earthquake Eng. Vol.9, No.1, 21s-32s, April 1992

Japan Society of Civil Engineers (Proc. of JSCE No. 446, 1-19)

IMPEDANCE MATRICES FOR AXIAL
SYMMETRIC FOUNDATIONS ON

LAYERED MEDIA

Gin-Show LIOU* and George C. LEE**

A procedure to generate the impedance matrix of foundation resting on an elastic
layered half-space medium is proposed. The prescribed harmonic loadings due to the
foundation are decomposed into an infinite Fourier series with respect to the azimuth.
For each Fourier component, the analytic solution is obtained by solving the differen-
tial equations of wave propagation satisfying the prescribed boundary conditions, and
the stress and the displacement continuity conditions at the horizontal interfaces in the
layered system. Using this analytic solution, the impedance matrix is obtained by ap-
plying the variational principle and the reciprocal theorem with the assumption that the
interaction stresses between the foundation and the soil is piecewise linear in the radial
direction of cylindrical coordinates. An example of a two-layer system is often pre-

sented.
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1. INTRODUCTION

In recent years, the effect of wave scattering in
soil medium caused by the existence of structure
has attracted much attention because of the
construction of massive structures, such as nuclear
power plants, offshore oil drilling platforms and
arch dams, in seismic areas. To perform the
soil-structure interaction analysis, the substructur-
ing technique is often employed. In such applica-
tion, the surrounding soil medium of the structural
foundation is represented by an impedance matrix
which can then be combined into the total stiffness
matrix of the structural finite element model.
Therefore, how to generate the impedance matrix
is an important step for soil-structure interaction
analyses.

Several numerical methods with specific assump-
tions can be used to generate the impedance
matrix, e.g. hybrid modelling method and bound-
ary element method. In the hybrid modelling
method, the soil medium is divided into a far-field
and a near-field. The far-field is modelled by
either an analytic or a semi-analytic method and
the near-field is typically modelled by the finite
element method. Then the displacement and the
stress continuities are invoked to combine the
far-field and the near-field models in order to
generate the impedance matrix for the
foundation™. In the boundary element method,
Green’s function is used as fundamental solution in
the soil medium and the formulation of weighted

* Associate Professor, Depatment of Civil Engineering,
National Chiao-Tung University (Hsin-Chu, Taiwan
30049)

#% Professor and Dean, School of Engineering, 412
Bonner Hall, SUNY Buffalo, NY 14260

residual is employed to minimize the error caused
by the discrepancy between the Green’s function
and the finite element solution of structural
foundation at the interface of the soil medium and
the foundation®”. The analytic approach presented
in this paper is an effective and efficient method to
generate the impedance matrix for surface founda-
tion when compared with other available numerical
methods.

There are analytic procedures available for
generating impedance functions for rigid surface
foundations. For vertical vibration of rigid circular
plate, Lysmer employed the analytic solution for
constant normal ring-traction on half-space
medium to generate vertical compliance function
for the rigid circular plate”. Ruco and Westmann
have obtain the compliance functions for rotation-
al, vertical, horizontal and rocking vibrations of
rigid circular plate on half-space medium by
reducing Fredholm integral equation to algebraic
equations using finite difference method”. Luco
also applied the same methodology to solve the
compliance functions for rigid circular foundation
on layered medium and layered viscoelastic
medium”®. Wong and Luco have applied the idea
similar to Lysmer’s to generate the compliance for
rigid foundations with arbitary shape on half-space
medium®. However, in the above mentioned
analytic procedure, a relaxed boundary condition
has been assumed, which ignores the contact shear
stress between the foundation and the soil medium
for the vertical and the rocking vibrations of the
foundation and ignores the contact normal stess for
the horizontal vibration.

This paper presents a systematic procedure to
generate impedance matrices for foundations on
layered half-space media without making the
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assumption of relaxed boundary condition. There-
fore, impedance matrices for flexible foundations
can also be generated. Based on a technique of
decomposing arbitarily prescribed boundary condi-
tion developed in Ref.10), the analytic solution for
arbitary dynamic loadings applied on the surface of
layered medium is presented. According to Ref."”,
the arbitarily prescribed displacements or tractions
on layered medium can be expressed in terms of an
infinite series of Fourier components with respect
to the azimuth. Each Fourier component can then
be decomposed into series of Bessel functions with
respect to the radial direction of cylindrical
coordinates. They can easily be shown to satisfy the
general solution of the differential equations of
wave propagation in layered medium™.

In order to use this analytic solution to generate
impedance matrix, the interaction stresses between
foundation and surrounding soil is assumed to be
piecewise linear in the #-direction of cylindrical
coordinates. Enforcing the compatibility condition
of the foundation and the soil medium, the
impedance matrix for each Fourier component is
formulated using the variational principle and the
reciprocal theorem.

Numerical results for a rigid massless circular
plate rigidly attached to the surface of a soil layer
underlain by a half-space soil medium are pre-
sented to demonstrate the proposed approach. The
numerical results include torsional, vertical, rock-
ing and horizontal impedances. The coupling
impedance for rocking and horizontal excitations is
also presented. Since the behaviors of the impe-
dance funcions change dramatically with the soil
properties of the half-space layer in the two-layer
system, the impedance functions for different
combinations of soil properties are compared in
order to show the significance of layered stratum.

2. ANALYTIC SOLUTION FOR
DYNAMIC LOADING ON
LAYERED MEDIUM

The analytic solution for dynamic loading on
layered medium will now be described. First of all,
the general solution of the differential equations of
wave propagation is independently found for each
layer in the layered medium. The displacement and
the stress continuity conditions at the horizontal
interfaces in the layered system are then imposed in
order to express the displacement and the stress
fields in terms of the prescribed dynamic loadings.
Since the displacements at the contact area with the
structural foundation are only of interest in the
soil-structure interaction analysis, the following
discussions are focused on the relations between
the stress and the displacement components on the
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Fig.1 Dynamic Loading on Layered Half-Space
Medium.

horizontal planes.

The dynamic harmonic loadings applied on the
surface of a layered half-space medium is shown in
Fig.1. In this figure, the dynamic loadings are
applied at the shaded area and the complementary
arca on the surface is traction free. The dynamic
loadings can be decomposed into an infinite series
of Fourier components with respect to the azimuth
as follows :

o cosnf
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Where superscript # denotes the #n'* Fourier
component in the series, w is the frequency and a,
is the distance from the origin of cylindrical
coordinates to the farthest point on the shaded
area. Since the time variation ¢! will appear on
both sides of all the equations in the following
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mathematical manipulations, it is omitted in the
subsequent equations. Through the principle of
superposition, it is sufficient to describe the
solution procedure by considering only one particu-
lar Fourier component (n* component) in Eq.(1)
as the prescribed traction on the area 0<7<4,. In
addition, the superscript # denoting the #** Fourier
component is omitted for convenience in the
formulations that follow.

Now, considering a particular layer j in the total
system shown in Fig.1, the general differential
equations of wave propagation in the layer with
harmonic excitation can be written as follows :

—w’pu,= (A;+2G; )-0-4—_2% aa”érﬂcj aau;o

— wto= U+ 26, 24261 3

— W ojue= Mfﬂ%_zaaggr_‘_zcjaau:’z
........................................... (2)

where subscript 7 denotes the j* layer, 4; and G;
are the Lame’s constants, p; is the mass density of
the soil, w is the frequency, 4 is the dilatation, and
w,, w, and w, are the rotations.

To solve Egs. (2), one can use the technique
developed by Sezawa to separate the dilatational
waves from the rotational waves and then use the
technique of separation of variables to solve the
independent differential equations for the dilata-
tional waves and the rotational waves. After
combining the solutions for the dilatational and the
rotational waves, the general solution of Egs. (2)
for the #'* Fourier component can be expressed in
the matrix form as follows :

v (10 |
Vutna (209) 1
uo(7,2) ("CZ‘S%H)
(o) 0 o
= 0 (csrfnszg) 0 JiieA
o o (T
........................................... (3)
or

Lu=LJkeA

where
Jikn 0 LG
J= 0 kT (kr) 0 IR (4)
a0 JaGn

matrix &, is defined by Eq. (A-1) in Appendix,
vector A= (41, Bi, Ci, A;, By, C;)7 are the
unknown coefficients determined from the bound-
ary conditions at the upper and the lower interfaces
of the layer, matrix e = diag (¢, e

=/ 2—7 V=
Chpj c

Pacad ev,z 2___

¢p; and ¢y are the compressional and the shear
wave velocities in the layer (7 layer), k is the wave
number in the horizontal direction, [,(k7) is the
first kind of Bessel founction of order », and

The stress ﬁeld in the layer can be obtained by
differentiating the displacement field of Eq.(3)
with respect to the corresponding variables 7, z and
0, and then multiplying it with the constitutive
matrix of elasticity. The stress components on the
horizontal plane, with the azimuthal variation
matrix L shown in Eq.(3) factored out, can then be
expressed as follows :

7:(7,2)
=1 0.:(7,2)

75:(#,2)

:chzeA .......................... (5)

where matrix &, is defined by Eg. (A-2) in
Appendix.

Since the unknown coefficients in vector A are
determined from the boundary conditions, the
displacement and the stress fields of Egs.(3) and
(5) can be expressed in terms of the unknown
displacement and stress components at the lower
interface of the layer. Moreover, the displacement
and the stress components at the upper interface
can be combined together and written in terms of
the displacement and the stress components at the
lower interface as follows:

where E=diag (J, ])
matrix J is shown in Eq.(4), transfer matrix a;=
ke (d))k™!, in which matrix £=[«f, £7]7, is
defined by Eq.(A-3) in Appendix, e(d;) =e€l:-q,,d;
is the thickness of the layer, and ¥;_; and Y are the
unknown displacement-stress vectors at the upper
and the lower interfaces of the layer, respectively.
Consider the total system shown in Fig.1. For a
given layer in the system, Eq.(6) shows that the
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displacement-stress vector at the upper interface
can be expressed in terms of the displace-
ment-stress vector at the lower interface. There-
fore, by imposing the displacement and the stress
continuity conditions at the horizontal interfaces
from the first top layer down to the half-space
layer, one can obtain the displacement-stress
vector at the surface of the total system in terms of
the displacement-stress vector at the surface of the
half-space layer as expressed by Eq.(7).
I’():Ealaz """ aME‘IYMZETE“IYM """ (7)

Consider the half-space layer in Fig.1 alone. The
general solution of the differential equations of
wave propagation(Eqs.(2)) and the stress field in
the half-space layer are similar to Egs.(3) and (5)
respectitively except that the upward propagating
reflection wave must be suppressed. The
displacement-stress vector at the surface of the
half-space layer can then be written as

YMz{’;MJzE,C/A' ............................. (8)

M

where matrix £ = [£{7, 717 in which the submat-
rices £1 and «; are defined by Egs(A-1a) and
(A-2a) in Appendix respectively, and A’ =
(A1,B1,C)T is the unknown vector determined
from the boundary conditions at the surface of the
half-space layer.

Eliminating Yy in Eq.(7) using Eq.(8), Eq.(7)
may be written as

u J O Tu Tl ki
Y,= 0]: ot /1 A (9)
to O J| T Tnnl|ss
where T7s are the submatrices of the matrix 7 in
Eq.(7). After some matrix manpulations of elimi-
nating the unknown vector A’, one can obtain the

displacement vector #, in terms of the stress vector
to.

wo=J(Tuki+ Tioks) (Toui+ Tood) T 'ty

S=JQF Uy errerrenieieneniiaiiiiiinn (10)
If the layered medium is assumed to be welded to a
rigid lower boundary, then #4=0 in ¥y in Eq.(7).
This leads to @=T:,T5%" for Eq.(10).

Equation (10) shows the relationship of the stress
and the displacement vectors on the surface of the
total system. However, it is very difficult to directly
satisfy Eq.(10) with the arbitarily prescribed
traction(Eq.(1)) acting on the surface. The pre-
scribed traction thus must be properly decomposed
first. A technique proposed in Ref.10) is used to
decompose the prescribed traction in the following
fashion.

Let 7, be the n' Fourier component of the
prescribed traction in Eq.(1). The traction 7, can

be decomposed as follows'? :
7 re(7) 1
G..(n (=7 0
7o () -1
0 1
i1 (0.(0+30
0 1

1
:fe“’ 0

Frl) = 7o (n)
2

T():
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1
0
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0
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ki () Coui () dlg +vvee e (11)

+ fo 0
1
where

Conpy= [T DTy Gyay,

C, k) :Laor T DDAy oo, (11b)

and
Coa () = fo ao"zg@%ﬁ&lln-x(kr)dr

.......................................... (11c)

The integrals on the right hand sides of Eqgs.(11)
and (11a)—(11c) are Hankel transform pairs. Since
the vector (1, 0,—1)", (0, 1, 0)” and (1, 0, 1)” are
orthogonal eigenvectors corresponding to the
cigenvalues —kJ,.1(k?), kJ.(k7), and kJ,-(k7) of
the Bessel founction matrix J in Eq.(3)-(10),
Eq.(11)can be rewritten as follows

1
a:f:—j 0 {Cour (k) dk
—1
0 1
+f0/(1) Cn(k)dkﬁ—fﬂj(l) Cor (K dic

........................................... (12)

Since the continuity condition of the prescribed
traction in Eq.(12) and the stress components on
the surface of the total system in Eq.(10) must be
satisfied ; i.e. # = — T, one can obtain the
dispalcement vector on the surface by substituting
Eq.(12) into Eq.(10). This leads to the following
equation.

L
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1
w=[TIQ| 0 [Cunak

—1
0 1

- ["1a{1 (C.(0dk— [Taqocak
0 1
Co (B) = Cot ()

=714 Ca(h) i -ee (13)
— Conr () = Coa ()

Equation (13) concludes the analytic solution for -

the layered medium. Although Eq.(13) shows only
the displacement components on the surface, the
displacement and the stress fields in the layered
medium can be determined in a similar fashion.

3. FORMULATION OF IMPEDANCE
MATRIX

To generate impedance matrix using the analytic
solution described in the preceding section, it is
necessary to express the prescribed traction in a
form compatible to finite element model of
foundation structure. Therefore, the stress intensi-
ty in the #-direction of cylindrical coordinates for
each Fourier component in Eq.(1) is assumed to be
piecewise linear in the circular region with radius a¢
in Fig.1.

Assuming that the interval (0, ao) for Eq.(1) is

divided into 7 subintervals with equal width 6="2,

one can express the piecewise linear stress
distribution as follows

T re =§1hj N gthoD qot (D gn=h"p
Te="5 by OBy o) ot o () pm= h7g

m—1
T o= FZ; (D) s;+ho() so+hm (D) s=hTs

where
; n=

1+’—'}Q,if(;'~1)bsrsjb and 1<j<m

1—1:bLb,zfsrs G+1)band 0<j<m—1;

0, otherwise,
......................................... (14a)
and ¢;, p; and s; are the stress intensities at node j
for 7,,0.. and 7y, respectively.
Substituting Egs.(14) into Eq.(11) and making
use of Eq.(12), one can end up with the following
equations.

_D;{+1+DZ—I 0 Df+1+Dr?~1
= fo J 0 Df 0
DI,+DI, 0 -DL,+DL,

q
P dk=j; JDPAFwveeeneeeenenseenns (15)

s
where

DnT+1=j; ogjnﬂ(k?') hdr,

D{:ﬁao;r]"(ky)thy ....................... (152)

and
Dia= [ Tl kn) T dr
0 .

Using f,=— T, and substituting fo=—JDPdk
from Eq.(15) into Eq.(10), the following equation,
which is equivalent to Eq.(13), can be obtained by
integrating the resulting expression from 0 to ©o.

Equation (16) defines the relationship between
the displacement vector and the prescribed traction
on the surface for the #™* Fourier component. To
generate the impedance matrix, one can use the
substructuring concept, the principle of virtual
work, and the reciprocal theorem. Employing the
orthogonal property of Fourier series, only one
Fourier component is considered in the following
formulations.

Consider the layered medium with the pre-
scribed traction defined by Eq.(14). Applying the
variational principle to the system, one may have
the equations as follows :

aw=[" fo " S FTugrdfdr

= ( 2; )51) N fo * JQDdkdrP

—_ < 2; >5p r j; v ( fo “°Herr) QDdkP

where H=diag (h, h, h),
and h, T, and u, are defined in Eqs.(10) and (12)
respectively. The coefficients 27 and 7 in Eq.(17)

27
come from the integrals j; cos’nfdf or
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|

2n
j; sin®#0d0 which are not explicitly expressed in

the formulations. Furthermore, using the proce-
dure developed to obtain Eq.(15), one can show
that

L%H]rdr= EDT o oiiiiiiiiiiiieceeeaee e, (18)

where the matrix D is defined in Eq.(15). The
virtual work in Eq.(17) can then be rewriteen in the
form as follows:

2 o0
W= —( a )5PTf DTQDkdkP
T 0

Using Eq.(10) and Betti’s Theorem, one can show
that the matrix @ is symmetric. Therefore, the

matrix K=— j; mDTQDlmUc is also symmetric.

Now, consider the foundation itself. Similar to
the finite element modelling, the diplacement field
of the foundation for the #'* Fourier component
can be assumed as :

cosnf )

"o=Ni 1)( )

sinnf
where matrix N is comprised of the shape function
in the 7-direction, and vector v is comprised of the
generalized displacements at the nodal rings of the
foundation finite element model. Similarly, the
virtual work of the system is obtained by applying
the variational principle

SW= fo ” j; “5FT wordrdf

2 ag
=< 4 )5PTf HNrdry
T 0

Equating Eq.(21) to Eq.(19) and factoring out
OP7T, it is obtaned

(27[ )KP:(ZE )Bv ........................... (22)
T T
or
V= (271' )B?} ................................... (223)
T

where vector V are the generalized displacements
at the nodal rings of the assumed piecewise linear
stress model. Eq.(22a) gives the relationship
between the nodal generalized displacements of the
assumed stress model of Egs.(14) and the finite

element model of Eq.(20). To obtaing the corres-
ponding force-stress relationship for both models,
the reciprocal theorem can be used. This leads to
the following equation.

2r
F= ( ) BTP oo (23)

T
where vector F are the generalized forces at the
nodal rings of the finite element model. Substitut-
ing P=K™'Bv from Eq.(22) into Eq.(23) yields

2
F:( ﬂ)BTK-le:Iv ...................... 24)
T

The matrix I is the impedance matrix for the n'*
Fourier component. After the impedance matrices
for all the necessary Fourier components are
determined, the analysis of soil-structure interac-
tion can then be carried out by incorporating these
impedance matrices into the total stiffness matrix
of the system. Again, it is noted that both matrices
I and K in Eq.(24) are symmetric.

4. NUMERICAL ANALYSES

In the semi-infinite integration of Eq.(19),
singular points may exist provided there is no
damping assumed for the soil medium. Although
technique such as residue theorem may be used to
calculate the integrations around the singular
points, material damping is assumed in the soil
medium in order to comply with the more realistic
situation of soil medium. Also, the branch cuts due
to multivalued functions v and v* move away from
the integration path of Eq.(19), if damping is
introduced in the medium. Therefore, numerical
integration scheme can be directly employed. A. 05
hysteretic damping ratio is chosen in the following
numerical examples and the Poisson ratio of the

. . . 1
soil medium is assumed to be 3 Furthermore,

using the following two statements, the integrand
in the semi-infinite integral can be easily shown to

be proportional to ‘;‘3 as k— oo

(1) The elements of matrix @ decay with 716— ask

— o, since only downward propagating waves
need to be considered and v=yv'=Fk.

2
(2) Using the identities of [ 72, (k#)dr= -%

Tor1 (k7 +”—Z-1- S #v]ui(kr)Ydr and [ #], (kP dr=—

1D+ S JaaGkn) dr, and T, k) “;%{5‘ as—

oo it is concluded that the elements of matrix D in

L
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Table 1 Nondimensionalized Torsional Impedance

Nondimensional Frequency 755 = 9.8960 !
m =10 m = 20 m = 50 ]
i Faes || mg = 3 | 4.3147 + 14.44841 || ng = 3 | 3.9052 + 15.13281 || ng = 3 | 3.9429 + 15.2932
=170. | ng =5 | 3.8416 + 14.94661 | ng = 5 | 3.9016 + 15.1207i | ng = 5 | 3.9428 + 15.2929/
1 Emacds || 7g = 9 | 4.0027 + 14.8617: || ng = 5 | 3.9549 + 15.0655: || ng = 3 | 3.9429 + 15.2932%
=395, | ng =12 | 3.8422 + 14.94971 || ng = 7 | 3.8987 + 15.09967 || ng = 5 | 3.9428 + 15.2929:
[ kmazo - — ng = 16 | 3.8987 + 15.09521 - —
= 1145. - — ng = 20 | 3.8981 + 15.09551 - —
Table 2 Nondimensionalized Vertical Impedance
‘ Nondimensional Frequency zts = 9.8960
m =10 m = 20 m = 50
1 Fmaz@o || 7g = 3 ] 10.0044 + 59.5764 || ng = 3 | 6.9536 + 61.2884i | ng = 3 | 6.9924 + 61.6245¢
=170. | ng=5 6.8594 + 60.8990¢ || ng = 5 | 6.9447 + 61.2625¢ || ng = 5 | 6.9923 + 61.6239¢
t Fmazo || 7g = 9 | 7.8845 + 60.67441 || ng = 5 | 7.3067 + 61.1330¢ || ng = 3 | 6.9814 + 61.4255¢
=395 |[ng = 12 | 6.8582 + 60.9082 | ng = 7 | 6.0443 + 61.21811 || ng = 5 | 6.9780 + 61.4175¢
1 krmazao - — ng =7 ]| 7.0380 + 61.18081 || ng = 3 | 6.9795 + 61.41527
= 595. - —— ng=9|6.9438 + 61.2135¢ | ng = 5 | 6.9773 4 61.4062:
Table 3 Nondimensionalized Torsional Impedance
‘ Nondimensional Frequency g5 = 5.1836 l
m = 10 m = 20 m = 50 ‘
‘ kmezao || nyg =3 3.6142 + 7.20021 || ng = 3 | 3.6096 + 7.6210: | ng = 3 | 3.6425 + T.7082:
=170, || ng =3 3.5688 + 7.5272: || ng =5 | 3.6071 + 7.6151¢ | ng =5 | 3.6424 ~ 7.7080:
< kmazo || ng =9 3.5950 + 7.4865¢ || ng = 5 | 3.6118 + 7.58707 | ng = 3 | 3.6238 + 7.6546:
=395. || ng =12 | 3.5601 + 7.52817 | ng = 7 | 3.6034 + 7.6038: | ng = 5 | 3.6230 + 1.65271
Pma,ao - — ng = 7] 3.6044 + 7.5958 || ng = 3 | 3.6228 + 7.65231
= 595. “ - — ng =9 ] 3.6030 + 7.6026¢ | ng =5 | 3.6220 + 7.649%:
Eq.(19) decay with “1211? integration range is divided into two regions,

It is therefore appropriate to replace the infinite
integration limit with a finite number without
lossing precision.

The accuracy in calculating the impedance
matrix or functions using the preceding procedure
is dependent upon the integration schemes used for
calculating the matrices D in Eq.(15) and K in
Eq.(19), and the number of subintervals used for
the stress model in Eq.(14). A numerical study is
designed to address these concerns. In this study,
the total system is a rigid circular plate welded on a
half-space medium and subjected to torsional and
vertical harmonic excitations. Some of the numer-
ical results are shown in Table 1~6. In the
tables, m is the number of subintervals for the
stress model in Eq.(14), ng is the number of the
integration points for Gaussian quadrature used to
calculate the elements in the matrix D of Eq.(15a),
and kmay is the number used to replace the infinite
integration limit in Eq.(19). One should also notice
that all the numerical results in the tables and the
following figures have been nondimensionalized.

Since sharp variations often occur to the
integrand of the semi-infinite integral in Eq.(19) in
the region between 0 and Rayleigh surface wave

L 1.16w .
number, which is smaller than Relc)” the entire

1.5 1.5 . . .
namely 0~%7 (g:) and 5~ (2)) ~ Kmax, in which ¢ is

the complex shear wave velocity of the half-space
. 1.5w ...
medium. The reason to choose Relcy) 2 dividing

point for integration is to ensure that the accuracy
of the integration in the region with sharp
variations is maintained. For the integration in the
first region, small intervals and high order integra-
tion formula of Gaussian quadrature(60 equal
intervals and 20-point formula) are used. In the
second region, the integration intervals become
larger and larger as k increases. For larger £, the
sizes of integration intervals may be also controlled
by the degree of the variation of Bessel function J»
(k7).

In general, a larger number of subintervals for
the stress model in Eq.(14) is necessary for higher
frequencies, if the same degree of accuracy is
desired for the entire range of desired frequencies.
After examining the tables, however, it can be
fairly said that, in terms of precision for impe-
dances, 20 linear stress subintervals are sufficient
for the entire range of the nondimensional
frequencies 0~10.0.

The impedances by increasing Amax and m, as
shown in the tables, are converging, and it is also

]
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Table 4 Nondimensionalized Vertical Impedance

i Nondimensional Frequency 72 = 5.1836
m = 10 m = 20 m = 50
kmazte || Ng = 6.5598 + 31.6571:i || ng = 3 | 5.7959 + 32.41211 || ng = 3 | 5.8256 + 32.5933:
=170. || ng = 5.7511 + 32.2170¢ || ng = 5 | 5.7922 4+ 32.39941 || ng = 5 | 5.8255 + 32.59307
kmaz@o || ng =9 6.0139 + 32.12247¢ || ng = 5 | 5.8817 + 32.33727 || ng = 3 | 5.8105 + 32.48164
=395. | ng = 12| 5.7510 + 32.21961 | ng = 7 | 5.7896 + 32.3761¢ || ng = 5 | 5.8092 + 32.4776:
{ kmaz@o - — ng =7 | 5.8126 + 32.3583¢ || ng = 3 | 5.8095 + 32.4765¢
= 595. - — ng =9 | 5.7892 + 32.37347 || ng = 5 | 5.8084 + 32.4717i
Table 5 Nondimensionalized Torsional Impedance
Nondimensional Frequency 7225 = 0.1671
m = 10 m = 20 m = 50
kmazto || ng =3 5.1051 + 0.0048 || ng = 3 | 5.2797 + 0.0052{ || ng = 3 | 5.3278 + 0.0052:
=170. || ng=5 5.2325 4+ 0.0051: | ng =5 | 5.2769 + 0.00517 | ng = 5| 5.3277 + 0.0052:¢
kmazto || 7g =9 5.2090 + 0.0050: || ng = 5 | 5.2613 + 0.0051: | ng = 3 | 5.2967 + 0.0052:
=395, [ ng =12 5.2325+ 0.0051: || ng =7 | 5.2710 + 0.0051: || ng = 5 | 5.2958 + 0.0052i
‘ krmaz o - — ng =17 5.2667 + 0.0051i || ng = 3 | 5.2955 + 0.0052¢
= 595. ~ — ng =9 | 5.2703 + 0.0051¢ || ng = 5 | 5.2943 + 0.0052:
Table 6 Nondimensionalized Vertical Impedance
1 Nondimensional Frequency 7% = 0.1571
m = 10 m = 20 m = 50
l kmazo | ng =3 5.9704 + 0.7753i || ng =3 | 6.0497 + 0.7960¢ || ng = 3 | 6.0680 + 0.8008:
=170. | ng=5 6.0315 + 0.7912i || ng =5 | 6.0486 + 0.7957¢ || ng = 5 | 6.0680 + 0.8008:
‘ kmarto || ng =9 6.0192 + 0.7880i || ng =5 | 6.0413 + 0.7938¢ || ng = 3 | 6.0562 + 0.7977:
=395, || ng =12 | 6.0315+ 0.7912{ | ng =7 | 6.0463 + 0.79517 || ng = 5 [ 6.0559 + 0.7976¢
l kmaz@o - — ng =7 | 6.0443 + 0.7945¢ || ng = 3 | 6.0557 + 0.7976:
= 595. - — ng =9 | 6.0460+ 0.79507 || ng = 5 | 6.0653 + 0.7974¢

observed that kmaxte=170, in which a, is the radius
of the circular plate, is enough to give accurate
results over the nondimensional frequency range 0
~10.0. Since Bessel function J,(k7) varies more
sharply in the #-direction as k& increases, the
number of integration points in calculating the
elements in the matrix D in Eq.(15a) must be
increased either as knax increases, or as the number
of subintervals for the stress model decreases.
According to the tables, ng=3 can give accurate
results, if Knax@o=170 and m=20.

Therefore, m=20, kynaxao=170 and ng=3 are

chosen in the following example to investigate the
influences of layered stratum on the impedance
functions.Fig.2 shows the total system of the
example, which is a rigid massless circular plate
rigidly attached to a two-layer system and sub-
jected to torsional, vertical, rocking and horizontal
vibrations. The corresponding impedances are
defined as follows :
K71 is the torsional impedance, Kyy is the vertical
impedance, Kzg is the rocking impedance, Krz=
Kyr are the coupling impedances for rocking and
horizontal motions, and Kpyy is the horizontal
impedance. The numerical results of these impe-
dances are shown in Fig.3~8.

In order to demonstrate the presented method
further,Fig.3 compares the vertical impedance Kyy
with the corresponding result in reference” for the

Rigid Circular Plate

Mass Density py =1
Poisson Ratio oy =13

Complex Shear Modulus G, =1 +2¢i
Damping Ratio ¢ = 0.05

Mass Density pz=1
Poisson Ratio oz =3} B
Complex Shear Modulus & =1, 3, 6, 10, o

Half-Space Medium

Fig.2 Soil Profile of Example.

case of half space medium”. In the figure, one can
observe both results agree to each other. Also, one
may not distinguish the result with welded
condition from that with relaxed condition (neg-
lecting contact shear stress). The result with welded

L
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Fig.3 Comparison of Vertical Impedance.

condition actually is slightly higher than that with
relaxed condition.

From Fig.4~8, one can see that the impedance
functions for the layered system fluctuate along the
corresponding impedance functions for the
half-space medium, and the fluctuations become
more dramatic as the lower half-space layer goes
stiffer. This phenomenon can be explained as the
influence of the reflection waves from the horizon-
tal interface of the two-layer system. The reflection
waves can be either amplifying or diminishing,
which are dependent upon the excitation frequen-
cy, the responeses at the surface.

For the case of torsional excitation, only shear.

waves are involved in the formulation of impe-
dance function. Therefore, the nondimensional
frequency difference between two adjacent peaks

k3

in Fig.4 is about 5 This is identical to the

characteristic behavior of propagating shear waves

in the top layer of the two-layer system. For the
case of vertical excitation, all the shear, compress-
ional and Rayleigh surface waves are involved, and
these waves have effects to each other. The
behavior of the impedance function (Fig.5), thus,
has more irregularities. However, by observing the
nondimensional frequency differences between two
adjacent peaks in Fig.5, one can conclude that
compressional waves and Rayleigh surface waves
govern the behavior of the impedance function for
the case of layered medium. By comparing the
horizontal impedance function in Fig.6 to the
torsional impedance function in Fig.4, one can
observe some similarities. This demonstrates that
shear waves dominate in the case of horizontal
excitation. Whereas, compressional and Rayleigh
surface waves are more important in the case of
rocking excitation. This can be concluded by
comparing Fig.8 to Fig.5. The coupling impe-
dance, shown in Fig.7, may be small for the case of
half space medium. However, it is not true for the
case of layered medium. This suggests that the
coupling impedance can not be ignored in the
analysis of soil-structure interaction.

Fig.9 show the typical distribution of non-
dimensionalized contact normal stress for the
vertical vibration of the rigid circular plate on half
space medium. In the figure, one can observe that
curves for m =20 and m =40 respectively are
almost identical for #<0.47. For »=0.47 the curves
do not match well to each other. This is because the
stress should go infinite as 7— ao(@o=0.5). This
suggests that the subintervals for the stress model
of Eq.(14) should be small enough near the edge of
the plate, if one wants to calculate the contact
stresses more correctly at the edge. However, this
inaccuracy only has little effect on the accuracy of

— ]

41 (299)



IMPEDANCE MATRICES FOR AXTAL SYMMETRIC FOUNDATIONS ON
LAYERED MEDIA / Gin-show LIOU and George C. LEE

36.0

24.0

TS
B~
x@]z,

81

0

1T

LU B B RO B S S B R L L B

L S B S L S S PO A s L I B B LB B

100.

75.

)

LN ALt RO N B L S N A B L S R S

Kvv
Gao

= 50.

LN L St B A B LS B S B B S SR B I B

[

fpgpopopoe
Tees 8

0.0 25.
~12.0 0. A IR IR
0.0 . 0.0 2.5 5.0 7.5 10.0
way @way
Reley) Relcy)
Fig.5 Nondimensionalized Vertical Impedance.
‘4‘0 T T T T ] T T T T ' T T T T ‘ T T T T 40.0 ¥ T T T ‘ T T T T ! T T T L I T T T T
e ) : :
L %3:1 L
100 &= 30.0~
r @:3 I %zoo
Gy 1
A 5| S=6
=S 6.0 52 200 G=3
E . [ &=t
2.0 100fF
I I | ST | SO SN SO SNV UONE ST UNE TON SONS WU SO S 0.0
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 1.5 10.0
@ay wagy
Re(cs) Rel(ey)
Fig.6 Nondimensionalized Horizontal Impedance.
200‘ LN N S S S St S B RO R B B B BN BN B B 3 3-00-_' LENNLEREL R L L N A A B BN B M
1.001 1,50 ]
<I$ 000 =2 0.00 a
& I Gi=1 ] A I ]
L L=y i o b
i &=6 ] 1.50f ]
-1.00(- G210 ] B 3 ]
: G=o0 ; - o ]
_2.00-. T R B SR —3.00-' FRNVINN SR S P T
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.3 10.0
way way
Relc,) Re(c,)

Fig.7 Nondimensionalized Coupling Impedance.

42 (305)



Structural Eng. /Earthquake Eng. Vol.9, No.1, 21s-32s, April 1992
Japan Society of Civil Engineers (Proc. of JSCE No. 446,1-19)

5.00 T T T 20.0
4 L G g 4
=00y ; i Gy
Gr=10— &=6
i 150+ G
3.75 Gig - Gz i
%f=3 o —g—f:oo 3
= &=1 Eﬁé’ ! ]
218 2.50 =2 00k .
¥ 1 = - 4
< ] L ]
1.25¢ ~ 50 -
000 L e 0.0 AR ST N
0.0 2.5 5.0 7.3 10.0 0.0 2.5 5.0 7.5 10.0
waey way
Relcs) Relcy)
Fig.8 Nondimensionalized Rocking Impedance.
40.007 Frequency=7. 07T where
~++ m=40 (Real)
20.00] roe Bo20 iz;“f:%;“”; —2kGy;  G;2k*—kE) 0
* mwes M= maginary L _
TRNEEI0 Vit Reraxed fonditien ’ff;,i%)m“y) k2= G;2k*—kE)  —2kGpj; 0
20.000 ITEZE0 With Reiazed Condition tidetnary) 0 0 G,
— Gy,
S i
el (A-2a)
L oin o e aini o0 = pmint ot 8 e it s o g s e & ot 2D and
" 2kG;  Gi(2k*—k3) O
3 g = 2__ 1.2 ’
e 2.10 2.2 R .40 o 5o fez G;,Ck*—k3) 2kG;V; 0
0 0 Gjl);
Fig.9 Typical Distribution of Contact Normal Stress — ciiiiiiiiiieieieiee e (A-2b)
(w=1.07). )
. . w
in which k3=—.
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The transfer matrix a; in Eq.(6) is expressed as
q p
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APPENDIX
The matrix £, in Eq.(3) is expressed as follows :
K== [k K] ereererererrerrnerrnriranniaenan (A-1)
where
k. —vi 0
K==y k0| (A-1a)
L 0 0 1
and
[k v} 0
K= 0 kO [ eeeemmmmeeenieeeen (A-1b)
10 0 1
The matrix £, in Eq.(5) is expressed as follows :
S A o S RO (A-2)

a}:[a“ a”] ................................ (A-3)
an Az
where
2
2K (CH—CH)+CH'
i,
an=\| k SH’
E(—Zu;-SH%— k=i )
0
L 2__ [.2\SH __ 7 7’
k§,<(2k )5 2uSH') 0
2
cu-2Ec-cay o |
B
0 CH’
....................................... (A-3a)
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1 soprr_ 29l
ij§i<p,~SH =)
a12=— k
—CH’
ij‘%j(CH )
0
—k
—CH’ 0
G,—k%i(CH )
1 _25H
ijgj(v,-SH k y§) o |
SH'
0 —GjJJJ,
....................................... (A—Sb)
— 4k K —k3)? SH’
G,‘( kgj VjSH+ kg} V; >
an= %’;—G’i(w—kg,)(CH—CH')
By
0
%fc”(:w—kéi)(czf—w') 0
8;
QI8! SH_ 4k,
6 P vsH) 0
0 —Gj));SH,
....................................... (A—3C)
and
2
%’Z‘(CH—CH’)WLCH’
Bj
an=| k L rrr o SH
E:%:(Z”"SH r—kp)H)
0
k fope_ 2y OH
kgi(zujw Ck—k3) u;) 0
2
cH-2tcr—cH) o
By
0 CH’

in which SH=sinhy;d;, SH’ = sinhvid;, CH=
COShl)jdj and CH,:COSh})J/'dj.
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