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OPTIMAL CONTROL OF FLOOD USING
FINITE ELEMENT METHOD

Tsuyoshi UMETSU™, Yuji TANAKA™
and Mutsuto KAWAHARA™*

This paper presents a method for optimal control of flood propagating through a reser-
vior of river channel using the combination of the finite element method and optimal
control theory. The numerical model of the flood propagation can be expressed by the
linear two dimensional shallow water equation and the equation can be solved by the
two step explicit schemes. For the control theory, the method presented by Sakawa
and Shindo is effectively used. It is shown that the water elevation can be controlled as
flat as possible by adjusting the discharge of the dam gate. This method is also adapt-
able to the control constraining the control outflow within the limit of inflow into a re-

Servoir.
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1. INTRODUCTION

Recently large scale dams are constructed along
a river to protect human properties, which have
often been damaged by a flood. There arises a new
problem, i.e., how to control the dam gate. For
instance, consider a flood flows into a reservior
built up with a dam. If the water gate equiped to
the dam is suddenly closed the reflective wave will
be generated and propagated toward the upstream
area of the reservoir. In case that capacity of the
reservoir is not sufficient, the wave will cause an
unexpected damage to the upstream area. The
unexpected wave propagation will also happen in
the downstream area. Recently, there happend
some accidents in which the human properties of
the upstream area around the reservior of dam was
severely damaged by the reflective wave generated
by the unsutable operation of the dam gate.
Therefore, it is necessary to introduce the control
of flood, in which the hydrodynamic behavior of
flow through the whole field including dam
reservoir, upstream and downstream rivers is
considered. In the conventional flood analysis, only
the analysis” Yitself or the control analysis without
hydrodynamic model” *was carried out. The flood
control analysis with hydrodynamic model was
obtained by Muskatirovic and Kapor” and Kawa-
hara and Kawasaki'. But, those are limited in one
dimensional model. To cope with the behavior of
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the wave propagation through the reservior, the
planar propagation is essential to be clarified.
Thus, the two dimensional analysis should be
introduced. For this purpose, the finite element
method seems to be one of the most powerful
method.

Assume that the flood behavior is known in
advance during the whole duration time and flood
behavior can be expressed by the linear two
dimensional shallow water equation. The control
problem can be defined to minimize the water
elevation and the control water discharge for the
whole flow field, in which the control function is
the water discharge through the dam. For the
minimization technique, the conjugate gradient
method and the Sakawa-Shindo method™ are used
and compared about their efficieney. The optimal
control system can be established introducing the
discharge of the dam gate as the control function.
To solve the control problem in this paper, the
control discharge is included in the performance
function not only because the cost of the control
should be proportional to the control discharge but
also because several constraints should be imposed
on the control discharge. The quadratic functional
of the water elevation and the control discharge is
chosen as the performance function. The hydro-
graph of the flood is assumed to be given at the
upstream of the reservior as a time function over
the interval to be analyzed. The control problem is
the fixed terminal time quadratic control problem.
To solve the time dependent equations, both
forward and backward integrations should be
introduced. To do this, a two step explicit scheme
has been used effectively, which was presented in
the authors’ previous papers®”.

Several numerical studies are carried out to
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express the adaptability of the method presented in
this paper. This paper presents a numerical
procedure which can deal with the control problem
in which the hydrodynamic model is included in the
state equation. This paper also shows a possibility
that the water elevation of the whole flow field can
be controlled as flat as possible by adjusting the
discharge at the gate equiped to the dam, knowing
the hydrograph of the flood in advance. Moreover,
it is detected out that the control can be performed
constraning the outflow control discharge within
the limit of inflow to the reservoir. But, in this case,
it can be shown that the efficiency of the control is
not as much reasonable as that of the control
without constraint.

2. BASIC EQUATIONS

The wave propagation through the surface of a
reservoir and/or river can be expressed by the
linear two dimensional shallow water equation. Let
the cartesian coordinate system xi(i=1,2) be
introduced as shown in Fig.l. The time is
represented by ¢ Denoting mean discharge and
water elevation as ¢; and (, the equations of motion
and continuity can be written in the following
forms.

qﬂ_ghg,i ......................................... (1)

where g, / are gravity acceleration and water depth
respectively and superscripted dot and subscripted
comma mean partial differentiations with respect
to time and coordinate respectively and the usual
summation convention with repeated indices is
employed. In this paper, linear equation system is
used for the convenience of computational time
and storage.

The wave is given at the upstream boundary S,
as the boundary conditon for mean discharge :

= 7q;

where superscripted caret represents a function
given on the boundary. The wave control is
assumed to be carried out by the outflow decided
by the strategy following the optimal control theory
for the operation of the water gate equiped to the
dam. This can be expressed as :

=7
where S, is the boundary in which the water gate is
equiped and superscripted bar denotes a function
determined by the optimal control analysis. This
bundary is referred to as the control boundary.

The initial conditions are given as :

szo AL £ fyeereerrrnrrrereniini e eeeniien (5)

qi= @\/g
where (° and g7 are water elevation and mean
discharge at the initial stage defined on the whole
domain.

3. OPTIMAL CONTROL THEORY

The optimal control theory employed in this
paper is the quadratic control theory. Before
application of the theory, the basic equations
should be converted to the discritized forms. Based
on the Galerkin formulation, equations (1) and (2)
can be transformed into the weighted residual
equations. Using the linear interpolation function
based on the three node triangular element, the
semi-descritized form of the finite element equa-
tion can be derived. The usual finite element
procedure leads to the following equation.

(M2} + [H] {2} + [Al{f} + [Bl{u} = {0}

where

{x}:{qg} ......................................... (8)

in which ¢; and { mean dischrge and water
elevation at all nodal points of the flow domain to
be analyzed. The boundary condition (3) is
transformed to the term [A]{f} where

{f}:{g'] ........................................ (9)

in which 7; denotes the discharge of the input
wave at all nodal points on the upstream boundary
Su. The control term [B] {#} is derived from
equation (4) and

() = { zi ] ....................................... (10)

where ¢ represents control outflow decided at the
nodal points on the boundary S;. The initial
condition is expressed as
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where 7?and E" denote mean discharge and water
elevation at all nodal points at the initial stage.

The wave control problem is formulated as to
determine an optimal function {u} that minimizes
the performance function :

J=L [ QOmS1Q + W TR i)t - (12)

under the state equation
{2)}=[ClHx} +[DI{ug} +[F] --vvvveeen (13)
with the initial condition {x,} where [S], [R] are

weighting matrices and #, f, are initial and final
times of the time domain and

[C1=—[MI 1L H o eveeerecmnneniieecnennne. (14)
[D]=—[M]7I[B] vevevrrvermrveremmneananenanns (15)
[Fl=—[MIHAI{f} -oeremmrrmmeeeeineenns (16)

The optimal function of equation (12) denotes the
gross weight which means both of water elevation
in control domain and outflow discharge as optimal
function{u}. The final time £, is fixed and assumed
to correspond to the duration time of the whole
flood. Namely, the control is continued until the
flood is disappeared. The final state {r(t,)} is
chosen as free, which means final water elevation
should be coincide with the still water level.

For the optimization technique to seek the
minimum value of J in equation (12) with the
constraints of equation (13), both the conjugate
gradient method and the Sakawa-Shindo method
have been employed and compared each other
about their efficiency of the computation. The
conjugate gradient method searches for the
minimum value of J along the conjugate direction
of the gradient of /. To obtain the absolute value of
the gradient, the line search technique should be
introduced because the problem is itself nonlinear.
It is well-known that the minimizing function # for
J is coincident with the function that minimizes the
Hamiltonian H defined below. To secure the
stability, the Sakawa-Shindo method employes the
modified Hamiltonian using the known constants.
The efficiency of the method is wholly dependent
on these constants.

4. THE CONJUGATE GRADIENT
METHOD

To apply the optimal control theory, it is
necessary to introduce the Hamiltonian function
as :

H=H(0 ISHO +5 ) T[R] ()

+{p T((CHx} + (D) {ug} +[FD) oo 17
where {p} denotes the Lagrange multiplier. The
Euler-Lagrange equation and the transversality
condition can be described as follows:

($1=—2E=—1SHO — 1417 (5} - (1)
{PE)Y=A0) remeeervmeerienei (19)

The algorithm of the conjugate gradient method
investigates the minimum of J among the direction
of the conjugate direction. The gradient of Jin this
problem is

]u:—%z—[R] () —[DI7{p} -ooevvveeeee (20)

The optimal control function # can be determined
as the final value of the sequence :

{u(H»l)} — {u(i)} +a(i) {s(i)} i:l’Z’...,N . (21)

where a” is to minimize

](u“) Fa@s@) ciniii (22)
and

{sP}=—{]9} +B{s<i—1)} ..................... (23)

in which f is the determined as if {s’} is conjugate
with the gradient {/’}.

To obtain the amplitude a®, the line search
algorithm is introdued. The precise algorithm will
be described in section 7.

5. THE SAKAWA-SHINDO METHOD

To secure the stability of the computation, the
Hamiltonian function is modified in the following
form.

K(i):H(i)+ ({u(i)} —_ {u(i—l)})T[W(i)] ({u(i)}

— {0} e (24)
where superscripted () means ¢ th iteration cycle

and [W @] is a constant weighting matrix for the ¢
th iteration ;

W
[W@]= W)
Wy

in which wqa), W, **, We =0 are given constants.
Because K ¥ is not restrained with respect to {#'"},
the optimality condition can be written :

ﬁﬂ_ (&) T [ i=1)
gy = R + D17 ()
; +2[W 1 ({u?} — {u=}) =0---(26)
which leads to the optimam control as:
() =— (R1+2[W “D (D" (p~)
— o[ W O s D) cenvveeeeniieeenn @7)
The optimal control of the Sakawa-Shindo method

_
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can be summariged as follows. Assuming the
appropriate stability constants wqa),we), ", We, the
minimum value of J in equation (12) can be
obtained by equation (27) based on {®} in
equation (18) with (19) and {z“} in equation (13)
with (11). Thus, the minimum value of J can be
found by equation (12) solving equation system
with respect to {p”} and {x”} respectively. The
precise algorithm will be described in section 7.

6. NUMERICAL INTEGRATION
IN TIME

To obtain the optimal control solution, time
dependent differential equation (13) with (11) must
be solved in the forward direction, from £, to £, and
equation (18) with (19) in the backward direction,
from Iy to £, because the initial condition is given at
the final time £;. To solve these equations, the time
marching numerical integration scheme is used.
The total time interval to be analyzed is divided
into a plenty of short time intervals, one of which is
denoted by Af. Representing time point by #, the
forward two step explicit method can be applied to
equation (13) : for the first step :

(@3 = [ (8] (&) — 400 L) )

and for the second step :

{2 = (M)~ [M) {2} — At M) [H {z™+2)
........................................... (29)
starting from the initial condition equation (11).
The backward two step explicit method is used for
equation (18) :
for the first step :

{2y = (M) LMD " ()
LI D T 7 181 )

and for the second step :
() = (L0~ L) ™ ()
+AH(M) D () + [STH{e™2))
........................................... (31)
starting from the initial condition equation (19). In
equations (28) ~ (31), the lumped -coefficient
matrix [M] is introduced to obtain the full explicit
scheme. To secure the stability, the mixed
coefficient matrix [M] is used as follows
[Ml=elM]+ (A —e)[M]oreeeerrinniniann. (32)
where e is referred to as the lumping parameter.
To compute equations (30) and (31), it is
necessary to use the value of {x”}, which is
computed in the computation process in equations

(28) and (29). Therefore, the values of {z"} should
be stored inside the computer for the retrieval of
the later computation. But a tremendous number
of core storages are required to store all the values
of {x™}. However, the behaviors of these values do
not show rapid changes. Thus, the values at every
T time point pitch are stored for the use of the later
computation,
T AL eeeeveneennneiiiiiiiiineie et v e, (33)

where M =10~ 100 was used in the practical
computation.

7. COMPUTATIONAL ALGORITHM

The computational algorithm employed in this
paper is summarized in this section. To express the
procedure of equations (28) and (29) with (11), the
following abbreviated form is introduced.

(XD ={UP)} erereirerir e, (34)

where superscripted (¢) means the function is
evaluated in the ¢ th iteration cycle and " denotes
the optimal control function assumed at the 7 th
iteration. Thus, equation (34) represents to solve
equation (13) with (11) by the procedure of
equations (28) and (29) assuming the control
function as #. Similarly, the abbreviated form :

PP} =P D D)} ceverrereeirieiiiieci (35)
means to express the procedure to solve equation
(18) with (19) by equations (30) and (31) assuming
the control function as u.

(1) THE CONJUGATE GRADIENT METHOD

The computational algorithm of the conjugate
gradient method'” can be described as follows.

1. Assume initial control function

u® (8) € [to,t]

2. Solve {x}={zx(u?)}

3. Solve {pt={p® .z}

4. Compute {s}=—{]9}=—([R]{x"}

— [D] T{p(o)})

5. Determine amplitude a'” by minimizing
J?+a®s).
Compute {u(i+1)} — {u(i)} +a(2’) {s(i)}
Solve {x(i+l)}:{$(u(i+l>)}
SOIVC {p(i-ﬂ)} — {p(u(i+1) ’x(i+1))}
Compute {/V} =~ ([R]{n"}

—[D)17{p+1})

10. IF{/."*V}<e THEN STOP ELSE

o N

i=i+1
; { u(i)}T u(f)}
11. Compute 3¢ >:E¢Z{:§T—{%§W
12.  Compute {9} =~ {J 2} +B?{s9V}and

GOTO 5
“The parameter ¢ is a small number which expresses
the convergence allowance. The flow chart of the
computation is shown in Fig.2.
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Fig.3 Flow chart

Fig.2 Flow chart

The amplitude & can be determined by minimiz-
ing J(u+as) where the present position # and the
search direction s are both given. Determine the
amplitude « that minimizes J(u«) by means of u+as
on a quadratic line. Put g(a@)=J(#+as), then it is
converted to the problem of searching the mini-
mum point of function g(a). This algorithm is
called as the line search algorithm™.

Three points #w, %, #e are called as the
u-shape three points where uw <#e <#e,
J(n@) > J(ne) <J(#e). If the u-shape three points
are found, the minimum point of J(#) can get in
between section [u,ue]. The value J(#w) is
conputed by the initial point # ). The value J(2q)
is computed by uo=uwtas. If J(ue)>J/(nw),
the direction is right. And the amplitude a doubles
the step size again and determine #, then
continue the same procedure. If J(uw) <J(uw),
the u-shape three points are found. If the u-shpae
three points are found, #¢41 divides the section
(Ui, uem] into 2:1 (or 1:2). Ju is solved by the
middle point between %+ and #@+n. Comparing
both sides, the even intervals of u-shape three
points are obtained. If the iteration of the three
points approach is complete, /(%) can be obtained
by the parabolic interpolation of the three points.
the minimum point of the parabola through three
points is given as follows ;

1 (why—ul) J(ne) + (uy —ulb) J(na)
2 (uy—ue) ] (ue) + ey —ue) J(uw)

+ (uly —uty) J(ue)

S G (e I (36)
Assumming this point as the initial point, the next
iteration can be carried out. The amplitude « is
replaced with @/10. The u-shape three points are
found again. If the amplitude « is obtained as small
enough as less than the preassigned allowance
value, the final amplitude « is obtained.

(2) THE SAKAWA-SHINDO METHOD
The Sakawa-Shindo method™ employed in this

U —

paper is described in this section. The computation
of J(x®,u®) is performed as :

T u?) =%f;tf({ﬁ‘i)}T[S] (¢

YT [RIM D) dt-eeeeeenee (37)

Using the equations (34) and (35), the computa-
tional algorithm can be described as follows.

1. Assume initial control function
u' @ (),£E [to, 7]
Solve {x©}={z(»®)} and set =1
Compute J(z©®,u”)
Solve { (i—l)}:{p(u(i—1)7x(i—1))}
Solve control function %’ by equation
@n

Bl

5. Compute e= élilu‘i’(k)—u“'”(k)ﬂ

IF ¢<e¢ THEN STOP
ELSE
Solve {r?¥} = {x(u'")}
Compute J(z®,u")
8. Compute JI=Ji x(i)’u(i))__](x(iwl)’u(i-l))
IF JJ<0 THEN i={+1 and GOTO 3
ELSE choose larger [W ] and GOTO 4
The parameter ¢ is a small number which expresses
the convergence allowance. For the stability of the
computation at the first stage, the matrix [W ]
should be chosen rather large value, for instance,
comparable to the order of 10-1 000 was chosen in
the following numerical examples. But, according
as computation converges and [W ] tends smal-
ler, ther variation of the control function computed
takes large values. Therefore, the initial value of
[W @] should be chosen as small as possible. The
flow chart of the computation is shown in Fig.3.

8. CONPARISON BETWEEN THE
CONJUGATE GRADIENT AND
THE SAKAWA-SHINDO METHODS

To validate the adaptability of the present
control method, a simple one dimensional channel
problem has been solved. Fig.4 shows the finite
element idealization and boundary conditions.
Total numbers of nodal points and finite elements
are 123 and 160 respectively. On the boundary Sy,
the input flow is specified as a time function shown
in Fig. 5. The normal velocity component on the
boundary S; is given to be zero. On the boundary
S., the outflow discharge is controlled. Without
any control, the discharge shown by the dotted line
in Fig. 6 is obtained. This and input flow in Fig.5
are mutually congruent. This fact shows that the
exact computation can be carried out using the
present computer program.

In Fig.6, the solid line and the cross symbol are
controls of outflow discharge, which are computed

e
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Fig.7 Computed water elevation at various observa tional points

by the Sakawa-Shindo method and the conjugate
gradient method repectively. In this figure, both
results of the computed control of outflows can be
shown to be completely coincident. Fig.7 repre-
sents the computed water elevation at the various
observation points. In the figure, the dotted line

shows the computed water elevation without
control and the solid line is the controlled water
elevation. It is observed from the computed results
that the water elevation can be controlled to be
almost coincident with the still water level by
controlling the water outflow on boundary S
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Fig.9 Input flow at bonudary S,

Fig.10 Control discharge at boundary S. and Sc. ‘

following the way represented in Fig. 6. The
outflow on boundary S, should be larger than the
normal outflow at the time before the peak value.
For the parameters [S]=1.0 and [R]=0.0001 are
used. It can be stated that the water elevation can
be controlled as almost flat as possible if the
parameters will be chosen suitable. It has been
shown that the way how to control the discharge
can be obtained by the method presented in this
paper.

In this computation, both numerical results
obtained by the conjugate gradient and the
Sakawa-Shindo methods are comletely coincident.
The core storage requirements of the conjugate
gradient method and the Sakawa-Shindo method
were approximately 5Mbites and 7Mbites respec-
tively. The computation time of the conjugate
gradient method is twice as long as that of the
Sakawa-Shindo method. Considering this fact, the
Sakawa-Shindo method is employed in the com-
putation shown in the following section.

9. DAM CONTROL ANALYSIS

(1) TWO DAMS CONTROL

In case of the flood control problem by a dam,
both upstream and downstream conditions have to
be considered at the same time. In the present
analysis, the control problem in which two dams
are located along the river is carried out. The river
basin used is shown in Fig.8 with water depth and
width. The total numbers of nodal points and finite
elements of upstream are 140 and 224, of
middlestream are 153 and 232 and of downstream
are 123 and 160 respectively. The lumping
parameter ¢=0.9 and time increment At=4.5
(sec.) are used. Fig.9 shows the input flood
discharge on boundary S..

The computed results are shown in Figs.9~11.
Assume that the flood which comes to the
boundary S, is expressed by a time function shown
in Fig.9. There are two dams at the control points
denoted by B and D in Fig.8. Controlling the
discharges of the gates as shown in Fig.10, the
controlled water elevations at points A, C, E can
be represented in Fig.11. In Fig.10 the solid line

1
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Fig.12 Finite element idealization with water depth

shows the control obtained by the present theory
and the dotted line is the discharge at the gates
without any control. In Fig.11, the solid line shows
the water elevation obtained by the present theory.
The water elevations without any control are also
represented by the dotted line. It is shown in
Fig.11 that the controlled water elevations are all
computed as smaller values than those obtained
without control. Referring to the discharge control-
led at gates B and D, the discharges at the gates
have to flow out larger amounts than those of the
inflow. Namely, it is necessary to flow out the
water discharge at the gates in advance and to keep
the water elevation lower than the still water level.
Thus, it can be concluded that the discharges at the
dam gates should be flowed out in advance before
the peak value of the flood arrives. It is interesting
to see in the computed result that the downstream
control flow should start earlier than the starting
time of the upstream control. For the parameters,
[S1=1.01in area A to C, [R]1=0.001 on S.,, S.; are
used. Using the different parameters [R]’s, the
weighted controls for each area can be performed.
(2) CONTROL WITH CONSTRAINT ON
CONTROL FLOW

To protect the downstream area, it is sometimes
required that the outflow at a dam should not
exceed the inflow at the same time. Therefore, in
the present analysis, the flood control problem with
the constraint on the control flow is carried out.

This constraint can be expressed as follows.
{a@)}<{A)} cooeeermien (38)
where f(f) means the inflow flowed into the
reservoir of the dam. To express the river flow, the
equation of motion is modified in the following
form to consider the inclination of the river bed.

Gi+g(ht+0 (h+c+z),,+ o Cug=
+0s
........................................... (39)

where z is altitude, # is velocity and # is Manning
coeffcient of roughness. The river basin used is
shown in Fig.12 with water depth and width. The
total numbers of nodal points and finite elements of
upstream are 33 and 40 and of downstream are 63
and 80 respectively. Lumping parameter ¢=0.9,
time increment Af = 5.0 (sec.) and Manning
coefficient of roughness #=0.04 are used. Fig.13
shows the input flood discharge on boundary S,

The computed results are shown in Fig.13~15.
Assume that the flood which comes to the
boundary S, is expressed by a time function shown
in Fig.13. There is a dam at the control point
denoted by C in Fig.12. Controlling the discharge
of the gate as shown in Fig.14, the controlled water
elevations at points B, D can be represented in
Fig.15. In Fig.14 the thin solid line shows the
control without any constraint, the thick solid line
shows the control with constraint and the dotted
line in the discharge at the gates without control. In
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Fig.15, the thin solid line shows the controlled
water elevetion without constraint and the thick
solid line shows the controlled water elevation with
constraint. The water elevation without control are
also represented by the dotted line. It is shown that
the water elevation with constraint should be
controlled more repidly using larger amount of
volume than the one without constrant. Thus, the
water elevation with constraint is less efficient than
the one without constraint at the downstream area.
This fact shows that the efficiency of flood control
is rested on the point that the dam gate should be
flowed out in advance before the peak value of the
flood arrives. For the parameters, [S]=1.0 and
[R]=0.01 are used.

10. CONCLUSION

The outcomes of the present paper are summa-
rized as follows.

1. The optimal control theory for the flood
propagating through a reservior and river channel
has been formulated based on the quadratic control
theory combined with the finite element method

assuming the flood is known in advance.

2. For the control technique, Sakawa and
Shindo method is effectively used. Because this
method is one of the most effective techniques on
the point of computational time and core storage
requirement. The effeciency depends on the
selection of the known constants.

3. Two step explicit schemes with the lumped
coefficient matrix have shown to be efficient for the
numerical integration in time not only in the
forward direction but also in the backward
direction. The lumping parameter ¢=0.9 is used in
the computation in this paper.

4. Tt has been shown that the water elevation in
the whole flow field can be controlled as flat as
possible by adjusting the discharge of the dam gates
following the strategy obtained in this paper. It is
necessary to discharge through the dam gate in
advance before the peak value of the flood arrives.

5. Tt is sometimes necessary that the control
outflow is limited by several constraints. The
method presented in this paper can be adaptable to
the control analysis with constraint. It is matural
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that the control without constraint is much more
efficient than that with constraint with respect to
the outflow.

In this paper, the linear shallow water equation
and the quadratic optimal control theory have been
used, but the extensions to the nonlinear theory is
straightfoward. A part of this research has been
carried out with the help of Mr. Tomoyuki
Kawasaki, graduate student of Chuo university.
The computations in this paper have been carried
out using FACOM VP-30 of Chuo University. A
part of this research has been supported by the
Grant in Aid of Science and Engineering, Ministry
of Education, No. 01613001.
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