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TWO-DIMENSIONAL SLOSHING ANALYSIS BY
THE ARBITRARY LAGRANGIAN-EULERIAN
FINITE ELEMENT METHOD

Takashi OKAMOTO**
and Mutsuto KAWAHARA**

This paper presents a mew Arbitrary Lagrangian-Eulerian (ALE) finite element
method for the calculation of a large amplitude sloshing wave in a tank with roofs
and/or chamfers. For the analytical procedure, a new fractional step method to satisfy
the free surface boundary condition has been applied, and the treatment of a free sur-
face flow on the multi-sloped wall boundary has been advanced. Compared to ex-
perimental results, this method has proved to be sufficiently accurate to follow the free
surface position and to obtain the velocity and pressure distributions. Furthermore,
numerical examples show the validity to calculate large amplitude sloshing waves whose
configuration of the free surface is double-valued function.
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1. INTRODUCTION

Sloshing is a free surface flow problem in a tank
which is subjected to forced oscillation. Clarifica-
tion of the sloshing phenomena is very important in
the design of the tank. A plenty of studies have
been presented about the large amplitude sloshing
analysis. Numerical methods presented previously
for the sloshing analysis can be roughly classified
into three methods, i.e., the finite difference
method” "7, the boundary element method®™" and
the finite element method®™". But the shapes of
the tanks analyzed in almost all previous research
has been limited to simple ones, i.e., rectangular or
circular, and without roofs and/or chamfers. In the
conventional numerical approach, there are two
common ways of describing of the fluid motion.
The first is the Eulerian description”™, i.e., a
coordinate is fixed in space and fluid moves
through it. The second is the Lagrangian
description® ™ in which a coordinate moves with
the fluid. In addition to these descriptions, the
Arbitrary Lagrangian-Eulerian method, i.e., refer-
ence frame moves with arbitrary velocity, has been
proposed” and has been applied to the analysis of
the fluid flow'®™®. In this paper, a new Axbitrary
Lagrangian-Eulerian finite element method for the
analysis of a free surface flow has developed, and
its application to the large amplitude sloshing
analysis in a tank which has complex configuration
especially with roofs and chamfers is presented.

The main difficulties of computation in the large
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amplitude sloshing analysis arise from the fact that
both the calculations of an unknown free surface
position and free surface condition should be
satisfied simultaneously and the fact that the
configuration of the fluid is strongly distorted. In
the Lagrangian finite element method®™, a
coordinate moves with the fluid, which always
agrees with the region to be analyzed. This is a
great advantage in sloving the free surface
problem. But, there is a disadvantage, which is
related to the strong distrotion of the finite element
mesh as a large amplitude sloshing. To overcome
this point, the Arbitrary Lagrangian-Eulerian
method is applied in this paper. In the analytical
procedure of the present method, there are three
phase procedures, i.e., Phase 1 : Purely Lagran-
gian calculation, Phase 2 : Remeshing procedure
and Phase 3 : Rezoning procedure. In the Lagran-
gian calculation, a new fractional step method to
satisfy the free surface boundary condition has
been applied, and treatment of the free surface on
the multi-sloped wall boundary has been advanced.
In the remeshing procedure, a simple remeshing
method which is adaptable to the multi-sloped wall
boundary is introduced to avoid the strong
irregular distortion of the mesh. Applying these
three phase procedures, the present method
overcomes the main difficulty of computation in
the large amplitude sloshing analysis.

In order to investigate the accuracy of the
present method, a comparison between the ex-
perimental and calculated results is performed, and
a calculation of a large amplitude sloshing in a tank
which has roofs and chamfers is carried out to
verify the viability of the present method. The
results show that the present method is sufficiently
accurate and that the large amplitude slosing waves
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can be analyzed even if the configuration of a free
surface is a double-valued function.

2. ARBITRARY LAGRANGIAN-EULE-
RIAN FINITE ELEMENT METHOD

(1) ARBITRARY LAGRANGIAN - EULE-
RIAN METHOD
Any function f of a physical property on a
continuum medium has three types of time
derivative, i.e., the material time derivative, the
spatial time derivative and the referential time
derivative, which are defined as follows :

d
_f;t[X] :Et/:l)ﬁzconst ................................. (2. 1)
d
f,f[x] :bé]ﬁ:const .................................. (22)
=Y,
Som= dﬂmmst (2.3)

where a comma followed by the subscripts denotes
a partial derivative with respect to the following
function and X; (=1, 2) are the material
(Lagrangian) coordinates attached to the material,
Z; (1=1, 2) are the spatial (Eulerian) coordinates
fixed in space and x; (i=1, 2) are the referential
coordinates which are defined independent of
material and spatial coordinates. The subscripted
Xi, i, and yx; accompanying the vertical bar in
equations (2.1)~(2.3) indicates the differentiation
of f that X;, z; and y; are held constant.

The velocity of a material particle, U; is given by
(2.4) and the referential velocity (or mesh velocity)
Wi is introduced to express the motion of a finite
element mesh as in equation (2.5).

Uissy gy ovmeeeeeseeeeemeseenenennneneniinnn. (2.4)

VVizxi.t[xl ......................................... (2.5)

The convective velocity C,, which is the differ-
ence between the material and mesh velocities is
expressed as follows,

C’. = Ui_ (R LR ETPEPPPTPPPP PPN (26)

The relationship between the time derivative
with respect to material and referential functions is
formulated in the following form.

o =FapaFfiCy veveeeeoereeemnnnnneeniiieenn, (2.7)

Equation (2.7) is an important relationship in the
Arbitrary Lagrangian-Eulerian method, the mean-
ings of which are :

(1) If Wi=U, C;=0, the reference frame
moves in space with the same velocity as the
particles. Equation (2.7) is reduced to fim=/fu.
This corresponds to the Lagrangian description.

(2) ¥ Wi=0, C;=U, the reference frame is
fixed in space. This corresponds to the Eulerian
description. ~

(3) If WixU;x0, C;¥U;%0, the reference

Phase 1 : The Lagrangian Calculation Phase 3 Rezoning Procedure
2 n n nt1[L] n+l[L] se1fL)
X0, P =X RN » P i+l n+l n+l
i
Phase 2 ! Remeshing Procedure
n+l (L) n+l
i i
Phase 3 | Rezoning Procedure
a1 [L] m+[L] ol mel
N P
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Calculation
e
T
N
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Fig.2.1 Three phases in the Arbitrary Lagrangian -
Eulerian finite element method

frame moves in space with an arbitrary velocity.
This is the Arbitrary Lagrangian-Eulerian method.

Three phases will be employed in the Arbitrary
Lagrangian-Eulerian method which are schemati-
cally shown in Fig.2.1. The total time to be
analyzed is divided into short time increments one
of which is denoted by Af. At the #-th time point,
the analysis is carried out using the following
procedures.
Phase 1 : The Lagrangian calculation : Calculate
the (n+1)-th value using the #-th time result based
on the Lagrangian method.

x,”, Ui", pn_,xinﬂm’ Uin+1[L], pn+1[u
Phase 2 : Remeshing procedure : To avoid the
strong irregular distortion of the mesh in the
Lagrangian calculation, re-generate a new finite
element mesh. The referential velocity (mesh
velocity) is specified in this phase.

.Z';‘n+l[” _’x{’Hl

Phase 3 : Rezoning procedure : Calculate the (n
+1)-th value to be compatible with a new mesh.

Ui”“[u, p"“”“*U;”“, pn+1
(2) LAGRANGIAN CALCULATION

(PHASE 1)

a) BASIC EQUATION

The equations of motion and continuity in the
Lagrangian description are expressed as follows,

DUi/sz “p,f/p”l“))(U;,j‘i" Uj,;‘)yj+f; """ (28)

U‘,",—_—_—O ............................................ (29)
where U; and f; are velocity and acceleration in the
z-direction (i=1, 2), p is pressure, p and v are
density and kinematic viscosity respectively.
DU;/Dt means the material derivative of velocity.
The following two types of boundary conditions are
used in this analysis. One is assumed to be the
boundary on the rigid wall (on S;) and the other is
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the boundary on the free surface (on Sy).
U,=U, onS; (on the rigid wall) -+ (2.10)
{~p5ij+V(Ut:,j+ U)n=T,=0
on S; (on the free surface) -+ (2.11)
where U, and T, are given values on the

boundaries, and d;; is the Kronecker delta, #; is the
j-th component of the outward unit normal vector
respectively.

b) FRACTIONAL STEP METHOD

In the Lagrangian calculation, the material
acceleration is approximated as follows :

DUi/DtE (Uinﬂ[L] _— Ui”) /Af .............. (2_12)
where

Ur=U; (tn, xtﬁ) ............................... (2_13)

UiﬂHU«l_—_ U (t,+At, x;”+1[L]) ............... (2‘14)

2 = g AU (2.15)

in which x/ and z"*'*! are positions of the fluid
particle at time points ¢” and ¢"*'=¢{"+A¢, and U/
and U+ are the particle velocities at time £ and
1=¢"+ At in the Lagrangian calculation, and
superscript [L] means that the function is obtained
by the Lagrangian calculation. The new fractional
step method is originated based on the Lagrangian
formulation. The calculation procedures are as
follows :

(1) Pressure is obtained by the implicit scheme
i.e., by the solution of the Poisson equation for p**!
as follows.

p,ii”“m — (1/At) Um_n_’_ D(Ui,j”+1[L]

+ []j,in+1[L}),ii+ﬁ,i"+1 ............. (2.16)
(2) Velocity is computed by the explicit
scheme :

Uin-(»l[L] = Uin__ A t{ﬁ,;”“m —y ( Ui’jnﬂ[m

A+ U} AP A fEY e (2.17)

Because in the right-hand side of equations
(2.16) and (2.17) unknown value U/ is
included, these equations should be solved by an
iterative procedure.

¢) FINITE ELEMENT FORMULATION

Multiplying both sides of equations (2.16) and
(2.17) by the weighting functions U;* and p*
respectively and integrating over the domain Vi,
applying the integration by parts and using the
divergence theorem, the weighted residual equa-
tions are derived in the following forms.

f;/(p,i*P,f"+l{L]) dVL

=—(1/4) fV G*U.MdVy

+Vfﬁ*,i(Ui,jnHm+ Uj,inH{L]),jdVL
+ [ @ rnav,

+f§t'*{(Uin+l“‘“ U,”)/At}n,dSL

fv( Ui* U¢”+1[u) dVL
= [ wrumavi At [ UV
14 14
_ vf U,-,j*(U,',jn“m'f“ Uj,in+1 [L])dVL
14

—fV(Ui*ﬁ")dVL"‘LUf*{'_pnﬂméij

+ I)(Ui’jn-‘-l[L] + Uj,;‘”+1m)}ﬂdeL]
........................................ (219)

The boundary conditions for equations (2.18)
and (2.19) are as follows :

-~

{(Ui”+l[L] _— Uin) /At}%,: Q
on S; (on the rigid wall) -«-«---+ (2.20)

p?H-l[L} =ﬁ
on S; (on the free surface) -~ (2.21)

-~

U=

on S (on the rigid wall) ===+~ (2.22)

{_pn+1u]5ﬁ+y( U{Jnﬂm + UNnH[LI)}nj — Tiz 0

on S; (on the free surface) -+ (2.23)

Equation (2.20) and (2.22) are the boundary
conditions on the rigid wall, and equation (2.21)
and (2.23) are the boundary conditions on the free
surface.

The pressure will be given by equation (2.21) as
the boundary condition on the free surface in
equation (2.18). Boundary condition (2.21) does
not correspond to the boundary condition on the
free surface which is given by equation (2.11).
Therefore, the pressure p"H* on a free surface is
calculated to satisfy the equation (2.11) from the
velocity U+, and the pressure is given on a free
surface to satisfy the boundary condition. The
pressure is calculated by the explicit method as
shown in equation (2.24).

P"Hm ={2v/ (m+n"} {Ux,ﬂ’hz"‘ U, oms"

+ (ULZ UZ,I) nlnz} ................... (224)
where #; and #, are components of a outward unit
normal in the direction of x;, and s, respectively.

Velocity U, pressure p and the corresponding
weighting functions U*, p* are interpolated in
each finite element as follows :

Ui= @ Uia,
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p:@a - p*:@apa* ....................... (226)
where @, denotes the interpolation function for
both velocity and pressure. Quantities Uy; and p.
are nodal values of velocity and pressure at ath
node of the finite element respectively, and Up*
and p,* are the nodal values of the weighting
functions U;* and p* respectively. The standard
linear interpolation function based on the three
node triangular finite element are used.

Substituting equations (2.25) and (2.26) into
equations (2.18) and (2.19), the finite element
equations (2.27) and (2.28) can be derived as
follows.

A iBianH[L](m-H)
a

= (I/At>H“5iUﬂin+Faiﬂﬂgi"+l+§a

M BUB‘)H»I[L] (m+1)
@
— MaB Uﬂin +At{Fag,9p3"H L} om+1)
_— Saiﬁj anﬂm (m) +Na5ﬁ3in+1+gai}

........................................ (2.28)

where
Aaiﬁf=L(¢a,i@5,i)dVL ...................... (2.29)
Hasizj;(@aq)ﬁ,i)dVL ....................... (2'30)
Faiﬁz‘]‘v(@miQB)dVL ........................ (2.31)
Maﬁzﬂ,(@a@ﬁ)dVL ......................... (2.32)

Saiﬁj:ﬂ{ﬁ(q)a,k(pﬁ,k&j)dvz +ﬂ(¢a,i@ﬁyi)dVL}

........................................ (2.33)
Na,s:j;($a@ﬁ)dVL .......................... (2.34)
5= j; O (U1 — UP) /A ndS,

:j;(@a@d& ............................. (2.35)

Qm_ =_[;@a{“17"“m5ﬁ+ v( Ui,jnﬁ-l[L]

+ U, 10 i, d S, = fs (D7) dS,=0

........................................ (2.36)

Mas in equation (2.28) is the lumped coefficient
obtained from My;.

d) CALCULATION PROCEDURE

The calculation procedures for this method at =
" time point are summarized as follows :

(1) Assign Ui”+l[1‘](m)= Ui".

(2) Calculate new position of the nodal point

by xini-l(m) __.xin+AtUin+l(m).
(3) Solve the Poisson equation (2.27) for

Fig.2.2 Treatment of sloped or multi-sloped wall
boundary

pn+1(m+1) using Ufn—o—l(m) and U;n

(4) Calculate U *'™*V by equation (2.28)
using pn+1(m+1), []ln and Uin+1(m)'

(5) Examine whether U™V  converges
sufficiently close to U™ or not and if
not replace Uin+1(m) by (]‘_m»l(mﬂ) and
recalculate from step (2).

(6) Continue to calculate until the preassigned
final time.

In this procedure, () means m-th iteration.

e) SLOSHING WAVE ON SLOPED WALL

In the calculation of a large amplitude sloshing
wave in a tank which has roof or chamfer, it is
necessary to treat the sloped or multi-sloped wall
boundary. The treatment of this boundary is shown
in Fig.2.2. The procedure is summarized as
follows.

(1) Judge on which sloped wall the boundary

nodal point lies.

(2) Calculate the components of a unit normal
to the boundary wall surface.

(3) Compute the tangential velocity U, of the
boundary nodal point and use U, to
determine the new position of the nodal
point.

(4) Set the component of velocity normal to the
wall U, to be zero.

For the analysis of a viscous fluid in general, the
boundary condition at the wall is sometimes
nonslip boundary. i.e., both normal and tangential
components of the velocity are set to be zero.
However, in this sloshing analysis, due to the finite
element size, which is not enough to resolve the
boundary layer, a free slip approximation is used
on the wall of the tank. In this paper, an explicit
type of numerical integration in time is used. In the
scheme. U, and U, are corrected at each time step.

As shown in Fig.2.3, when nodal points cross a
corner of multi-sloped wall boundary, an artificial
cave occures between wall and finite element. In
the present calculation, it is assumed that the cave
is so small that it can be negligibly small.

f) FORCED OSCILLATION OF TANKS

There are two ways of imposing a forced

L
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A cave occours between
wall and finite element

Finite Element

Fig.2.3 Nodal points cross a corner of multi-sloped wall
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Fig.2.5 Remeshing procedure

oscillation of tanks. In the first one the acceleration
effect of the tank is taken into account as the f; in
equation (2.8) and in the second one the velocity of
the wall is imposed as the boundary condition.
Coordinates axes Xi-X, are fixed in space, and
coordinates axes x1-X; are fixed to the tank, and x,
is chosen to correspond to the tank bottom and x; is
chosen to correspond to the center of the tank as
shown in Fig.2.4. Let a tank be oscillated by the
rotating motion around point P, horizontal and
perpendicular motions along X; and X;-axes. In the
first case, accelerations are assumed to be given by

for=—gsinf+ 20U+ 6(z,— Ry) + 01— Rz,

— X, cosO—X;inf -ooeereeeeriiennns (2.37)
f12=—gcos@—Z@Ul—9(x1—Rm)+92(xz“Ru)
+X1 sinﬁ—Xz COGH +orereeierreisinannes (2.38)

where, g is gravity acceleration. R, and R, are
coordinates of point P which is the center of the
rotation. Angular displacement 6 is positive
counterclockwise. Notation ° denotes the dif-
ferentiation with respect to time. In the second
case, velocity on the wall is assumed to be given by

Ui=—(z,—R:,) 6+ X cosf+ Vsind

(on the side wall) -+«++--eemeeereneeees (2.39)
Up= (£1— Rz) — X sinf+ Ycosf
(OIl the bottom) ......................... (2 40)

where Xi, Xz, T1, T2, Ry, Rz, are the same as in

equations (2.37) and (2.38).

(3) REMESHING PROCEDURE (PHASE 2)
In the ALE method, the remeshing procedure

plays an important role in continuing the stable

computaion avoiding the strong irregular distortion
of the mesh. In this paper, a simple remeshing
method which can be applied to the multi-sloped
boundary is used. The outline of the remeshing
procedure is shown in Fig.2.5. Fig.2.5 (a) shows
the finite element mesh before applying the
remeshing procedure in the analysis of the tank
with a sloped wall boundary. Mapping transforma-
tion is done in such a way that this mesh is mapped
to the shape of a rectangular region. This is the
transformation that both sloped walls move into
the perpendicular ones. The outlines after the
transformation are shown in F'ig.2.5 (b). The mesh
is generated based on these outlines. Consider a
free surface. The number of mesh divisions is N,
and node P, is a node for the control point of the
remeshing procedure. The length on a free surface
is divided into N interpolating segments by a
quadratic function with node P;, P, and P, as
shown in Fig.2.5 (c). At this time, it becomes the
equal division when the middle point is not
considered. When the free surface configuration is
complex, the length on a free surface is divided
using a third order polynomials with the two middie
control points. Other sides are also operated in a
similar way. Auxiliary grids are made by connect-
ing the node of each side. The reverse mapping
transformation is made, and the remeshing proce-
dure is completed. Finally, the new coordinate
value z;"*! is obtained. Using the new coordinate
value x", mesh velocity W; and convective
velocity C; are calculated in the following form,

] (a:,-”+1-:ci”) JAE e (2'41)
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Ci= Ui<n+1) i WWjoorormmmmmina, (2_42)

(4) REZONING PROCEDURE (PHASE 3)

The velocity and pressure at the (n+1)-th time
pointin the Lagrangian calculation are transformed
to adapt the re-generation of a new mesh. The
velocity and pressure should be transformed to the
corresponding positions using the relation of the
time derivative shown in equation (2.12), of which
weighted residual forms are :

f(Uz‘*U;'"H)anH:f(Uz‘*Ui("H)[u)anH
v v

— [ AKURU 8 C) AV, (2.43)
j;(p*PnH)an+1=£(ﬁ*P(n+l)[L])an+1

— [ atp, 0 C) v,

........................................ (244)

The kinematic boundary condition on a free
surface is always satisfied in the Lagrangian
calculation. In cases when the ALE method is
applied, the node on a free surface must be
corrected to satisfy the kinematic boundary
condition. This correction can be obtained by the
following equation.

j;(xi*xi”“)dsnﬂZL(SL‘i*xi(MUm)dSnH

- LAI‘(&*@,;’MH) WCYASni

........................................ (245)
From the weighted residual equations of (2.43),
(2.44) and (2.45), U, p"*' and x/*' can be
calculated. The finite element equations for these
equations are obtained as follows.

A — A L) +1{L]
MosUp!™ = Mos Up"* "™ — At Spa;; Up" "™ Cyy

........................................ (2.46)
Masps™ = Magps™ " — AtSapinps™ P C,y

........................................ (247)
Naﬂxﬂin+1: Nag.rg,-"“”“]— Al‘Ha,gj T‘Z.Bin+1[L] Cn‘

........................................ (248)

where

MQBZL(Qa@ﬂ)an-qfl ....................... (2'49)
Saﬁj?‘:.];(¢a@ﬁ,j@r)dvn+l ................. (2.50)
Naﬁzj;(@a@s)dsnﬂ ........................ (2'51)
Haﬁfr:L(@a@B,j@r)dSn+l ................. (2_52)

Meas and Ny in equations (2.46), (2.47) and
(2.48) are the lumped coefficients obtained from
Mep and Ngg respectively.

3. COMPARISON BETWEEN COM-
PUTED AND EXPERIMENTAL RE-
SULTS

To investigate the validity of the present method,
a comparison is made between the computed
results and the experimental results.

(1) COMPARISON WITH EXPERIMENT OF
A RECTANGULAR TANK (1)

A transparent acrylic resin tank was used in the
experiment which was 1 000 mm in width, 1 200
mm in height and 100 mm in breadth as shown in
Fig.3.1. Water was used and the depth was 500
mm. The tank was set on a shaking table which
oscillated in a sinusoidal function of time starting
from the zero velocity state. Sloshing phenomena
were recorded using a video camera.

The finite element model is shown in Fig.3.1.
The analytical region is divided into the mesh of 24
X 20. The density is 1.0 Mg/m® and the coefficient
of kinematic viscosity is v =1.0 X 10~%cm?/sec.
Acceleration f; is g=—9.80 m/sec’. Amplitude
and period of displacement of the table are A,,=
9.3 mm and 7,,=1.183 sec (w,,=5.311 rad/sec),
respectively. The period is nearly equal to the first
characteristic period calculated by the linear
potential theory. The time increment At is 2.0 X
10"*sec. Boundary conditions are shown in
Fig.3.1.

Fig.3.1 (a) and (b) show both the experimental
and calculated results at time /=3.54 sec and t=
7.08 sec respectively. In these figures, the left
column shows the experimental result, while the
right three columns show the calculated results of
the free surface, finite element configuration and
pressure distribution. The calculated configura-
tions of the free surface agree well with the
experimental results. The ratio of the sloshing wave
height to the water depth 1/k is 0.20 at time =
3.54 sec and 0.55 at time £=7.08 sec respectively.
In such cases where that 1/ is larger than 0.20,
the computation is impossible in the Lagrangian
finite element method” because of the strong
distortion of the mesh. If the ALE method is
applied, the computation is which 1/h is larger
than 0.20 is stable even if the time increment is 2
times as long as that in the Lagrangian finite
element mehtod.

(2) COMPARISON WITH EXPERIMENT OF
A RECTANGULAR TANK (2)

A transparent acrylic resin tank was used in the
experiment which was 1 060 mm in width, 756 mm
in height and 200 mm in breadth as shown in
Fig.3.2. Water was used and the depth was 151
mm. The tank was set on a oscillation simulator
and the tank was oscillated by the rotating motion.

L
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Fig.3.3 Wave height of the right and left walls

The tank rotated around point P. The condition of
oscillation is : =0z sin{wed), Gr=0.6 degree, ws
=3.49 rad/sec, where 6 is the angular displace-
ment and 0z, ws are amplitude of the angular
displacement and angular frequency respectively.
The pressure was measured by arranging the
pressure sensors as shown in Fig.3.2. Pictures of
the experiment were taken by 16 mm movie
camera and the wave heights of the right and left

x 20. The density is 1.0 Mg/m’ and the coefficient
of kinematic viscosity is v =1.0 X 107%cm*/sce.
Time increment Af is 1.0 X 107°sec. Boundary
conditions are shown in Fig.3.2 and the accelera-
tion effect of the rolling motion is taken into
account as f; in equation (2.8).

Fig.3.3 shows the wave height of the right and
left walls. The solid line shows the wave height
from the 16 mm movie film of the experiment. The
white circle shows the calculated result of the wave
height. The calculated results agree well with the
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Fig.3.5 Measured and calculated pressure histories
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experimental results. Calculated finite element
configuration at time f=11.3sec, 11.8sec and
12.2 sec are shown in Fig.3.4 respectively. At time
t=12.2 sec, the ratio of sloshing wave height to
water - depth n/h is 1.22. Fig.3.5 shows the
measured and calculated pressure histories. The
calculated pressure history agrees extremely well
with the experimental one.
(3) COMPARISON WITH EXPERIMENT OF
A TANK WITH ROOF AND CHAMFER
To show the adaptability of the present method,

a comparison is made with the experimental results
of a liquid motion in a tank which has roof and
chamfer. The dimension of the tank is shown in
Fig.3.6. Water is used and the depth is 265 mm.
The liquid region is divided into the mesh 16 X 14.
The finite element model is shown in Fig.3.7.
Density is 1.0 Mg/m’ and kinematic viscosity
coefficient is v=1.0 X 1072cm?/sec. A tank is
oscillated by rotating, horizontal and perpendicular
motions. The condition of the oscillation is : X;=
Axsin(wxt) (Ax,=61 mm, wx,=3.77 rad/sec), X,
= Ax,sin(@x,t) (Ax,=72 mm, wyg,=3.77 rad/sec),
0= gsin(wst) (6= 3.0 deg, wy= 2.90 rad/scc).
The tank rotates around point P, center of the
tank. The time increment Af is 1.0 X 10~3sec.
Boundary conditions are shown in Fig.3.6, and the
acceleration effects of the motions are taken into
account as the f; in equation (2.8). Experimental
result at time ¢=4.8 sec and calculated results of
the finite element configuration at time =4.1 sec
and 4.8 sec are shown in Fig.3.7. In Fig.3.7 (b)
and (c), white circles show the experiment’s result.
At time 1=4.8 sec, the configuration of the free
surface is a double valued function of z;. Even if
the configuration of the free surface is a double

L
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Pressure distribution

F.E. configuration
(a) At time t=1.80sec

b ., X
1000 (unit : mm)

Fig.4.1 The dimensions of the tank

valued function, the calculated result completely
agrees with the experimental result.

4. ANALYSIS OF LIQUID IN A TANK
WITH ROOF AND CHAMFER

A liquid motion in a tank which has roof and
chamfer is analyzed. The dimensions of the tank
are shown in Fig.4.1. Liquid region is divided into
the mesh of 12 X 20. Finite element model is shown
in Fig.4.2. Density is 1.0 Mg/m’ and coefficient of
kinematic viscosity is v=1.0x 10 cm*/sec. Accel-
eration f; is g= —9.8 m/sec’. At the initial stage,
the tank is at rest and then moved in a sinusoidal
way. Amplitude and period of displacement are
12.5cm and 1.75sec respectively. The time
increment Af in this calculation is 3.0 X107 sec.
Boundary conditions are shown in Fig.4.1, and the
acceleration effect of the motion is taken into
account as f; in equation (2.8). Calculated results of
the finite element configuration and pressure
distribution are shown in Figs.4.2 (a) and (b).
Sloshing wave can be shown to swell with time. At
time #=2.76 sec, because the wave covers almost
all of the left upper chamfer, the configuration of
the free surface is a double valued function of 1.
As the sloshing wave swells, the pressure distribu-
tion changes from the static pressure distribution.
For example, at t=2.76 sec as shown in Fig.4.2
(b), the sloshing wave climbs up to the right wall

Pressure distribution
(b) At timet=2.T6sec

Fig.4.2 Analysis of liquid in a tank with roof and chamfer

F.E. configuration

and pressure contour lines become sparse in the left
region and dense in the right region. In this
calculation, it is possible to obtain the same result
even if the time increment of 3 times as long as that
in the Lagrangian finite element method™ is
applied.

As shown in Fig.4.2, applying the ALE method
the stable calculation of a large amplitude sloshing
wave in a tank with roof and chamfer can be carried
out.

5. CONCLUSIONS

The outcome of the present paper can be
summarized as follows. g

(1) The new Arbitrary Lagrangian-Eulerian
finite element method for the free surface flow and
its application to a large amplitude sloshing analysis
in a tank with roofs and/or chamfers are presented.

(2) The present method consists of three
phases, i.e., Phase 1 : Purely Lagrangian calcula-
tion, Phase 2 : Remeshing procedure and Phase 3
: Rezoning procedure. In the calculation, a new
fractional step method and a simple remeshing
procedure are applied to overcome the main
difficulty of the computation in a large amplitude
sloshing problem.

(3) Comparison with the experimental results,
the present method is shown to be sufficiently
accurate to follow the free surface position and to
obtain both velocity and pressure distributions.

(4) Numerical examples show that the stable
calculation can be carried out and prove the
validity of the present method to calculate the large
amplitude sloshing waves even if the configuration
of the free surface is a double-valued function.

(5) A refined mesh should be used in the
practical application. The time increment which is 2
~3 times as long as that in the Lagrangian method
can be used. Using the present method, the
calculation can be carried out within the range of
reasonable CPU time and memory size of a
computer. From these results, it can be concluded
that the present finite element method based on the
Arbitrary Lagrangian-Eulerian method is useful

1
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I

and effective for the practical use of the analysis of
the sloshing phenomena in a tank.
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