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STRUCTURES
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Structural optimization method using the quadratic approximation functions for the
structural responses are studied. There are two kinds of the design variables in the
shape optimization of truss structures. For the sectional variables, the linear approx-
imation functions are used for the calculations of the structural responses. For the
geometric variables, the quadratic approximation functions are proposed. The functions
are approximately generated by using the elements on the main diagonal and ignoring
the off-diagonal elements of the Hessian. Several numerical examples show the reliabil-

ity and the efficiency of the method proposed
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1. INTRODUCTION

It has been a long time since the approximation
concepts for the structural optimization began to
study. The approximation concepts, in a wide
meaning, involve the linking of the design vari-
ables, the screening of the constraints and the
approximation of the functions. This paper studies
the approximation of the functions.

Generally speaking, there are two kinds of the
approximation methods. One is the method
presented by Schmit and Farshi’ and Schmit and
Miura??. In this method, the sub-problem approxi-
mated by the linear functions with respect to the
reciprocal variables is solved by the method of the
inscribed hyperspheres or the method of extended
penalty function method. The new approximation
method presented by Vanderplaats and Salajegheh®
can be included in this category. These methods lay
emphasis rather on the quality of the approxima-
tion function.

Other methods were presented by Schmit and
Fleury. In these methods, objective and constraints
are approximated by the simple separable function
and the sub-problem is solved applying the dual
theorem. The methods are called as dual method”®
and new dual method”. The newly presented
MMA?® (method of moving asymptotes) can be
included in this category. These methods lay
emphasis on the separability of the approximation
function and make it possible to apply the dual
theorem effectively to solving the sub-problem.
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In structural optimization, most of the comput-
ing time is occupied by the structural analyses.
Many structural analyses are necessary during the
optimization process. For the sake of this reason,
approximation methods have been proposed to
replace an exact analysis by the approximation
calculations. In approximation techniques, the
exact analysis is carried out only for the generation
of the approximation formulation. It is expected, in
this case, that the approximation functions are
simple and the quality of the functions are high.
The high quality means, in this paper, that the
structural responses calculated by the approxima-
tion functions are close to the values calculated by
the exact structural analysis. Now, in different
structural system design, how to make a high
quality approximation function has become the one
of the big themes in the application of structural
optimization.

As written above, based on the concept of
approximation, dual method and new dual method
have been produced. New dual method is more
applicable than dual method and be said as more
general. But for the sake of the generality, the
method has some unsatisfactory points, such as
unsatisfactory agreement to original function, and
too conservative approximation, which lead to the
convergency of optimization getting poorer.

In the optimum design of structures, the design
variables usually involve the variables dealing with
the sectional sizes (abbreviated as sectional vari-
ables after) and the geometric variables dealing
with the coordinates of joints. As reported already,
the displacements and the stresses of the truss
structures can be regarded as linear functions with
respect to the reciprocal variables of the sectional
variables. The partially approximating methods”
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using these approximation functions gave the good
results in the truss optimization where the design
variables are the sectional variables only.

On the other hand, various studies on the
approximation functions with respect to the
geometric variables have been done”. It was
concluded that the stress and the displacement
were nonlinear functions of the geometric vari-
ables, and the high quality approximation formula-
tions were not readily available by using only the
first order information. Therefore a method using
the second order information is presented here.
This study is based on the principal that the more
terms of the Taylor series expansion give the better
agreement with the original function. The second
order information is provided by the Hessian where
only the elements on the main diagonal are used.
The reason for using only the elements on the main
diagonal is to consider the computer storage space
and the expensive calculating time. This paper,
laying emphasis on the quality of the approxima-
tion function, studies the method using the
quadratic approximation functions {(abbreviated as
the quadratic approximation method after) to
improve the reliability of the convergence of the
structural optimization.

2. LINEAR APPROXIMATION
FUNCTIONS

Before giving an explanation of the new
approximation method, the linear approximation
functions using in dual method and new dual
method are investigated.

As an example, following cubic function is
considered. The function is represented in Fig.1 by
a thin curved line.

g(x) :—év(x——gi) (x2~8x+4) ................... (1)

In Fig.1, the curved line of equation (1) is
divided into four parts, A to D, by their curvatures
and the gradients.

In dual method, the approximation function of
g(x) is formulated as follows,

ﬁ(x)=g(xo)+(%)ox°<l _%0) .............. (2)

Also, in new dual method, the approximation
function of g(x) is formulated as follows,

9@ +(92)" @29 : (%) 29

34 @/
/@)

Fig.1 A cubic function and its linear approximation
functions.

0
where, (%) is the gradient of g(x) corresponding

to z=x°

These approximation functions are generated at
four approximation points, x°=1, 3, 5, and 7.
Equation (2) to equation (3-b) are calculated
around these four approximation points and shown
in Fig.1 also. In this figure, equation (2) and
equation (3-b) are represented by broken lines and
equation (3-a) is represented by thick lines. This
figure shows the relation of the approximation
functions to the original function [equation (1)]. As
equation (2) is for dual method, and equation (3-a)
and equation (3-b) are for new dual method, it can
be considered that the original function is approxi-
mated by lines (a), (b), (c) and (d) around each
approximation point in dual method, and by lines
(a)’, (b), (¢) and (d) in new dual method.

Following three matters are given from this
figure.

@ The approximation functions of dual method
almost agree with the original function in region C
and A. (@ The approximation functions of dual
method and new dual method disagree with the
original function in region B and D, and in region
A, B and D respectively. ® The approximation
functions of new dual method are convex in all
regions and more conservative than those of dual
method.

When dual method was published, it was applied
successfully to the minimum weight design of truss
structures where only the sectional variables were
the design variables. It is well known that the
relation of the stresses or the displacements of truss
structures to the sectional variables are similar to
the curved line in region C of Fig.1. So, it can be
said, as one of the reasons of the initital success of
dual method, that it owed to the numerical
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examples taken.

As shown in Fig.1, the regions where the linear
approximation functions almost agree with the
original function are limited to the neighbourhood
of each approximation point. So, in the optimiza-
tion methods based on the linear approximation,
SLP (sequential linear programming), dual method
and new dual method, the move-limits play an
important part. Generally speaking, the move-
limits are the useful and so important parameters,
but, have some difficulties from the standpoint of
the numerical calculations. For example, ill-suited
initial values of the move-limits lead to the very
slow convergence or unusable design. It appears
that the optimization method without the move-
limits or the method where the move-limits don’t
play so important part is preferable.

3. SHAPE OPTIMIZATION OF TRUSS
STRUCTURES AND PARTIALLY
APPROXIMATING METHOD

The shape optimization problem of truss struc-
tures of this paper is defined as follows.

N
O Obijective : O(X, Y)=_§L,»(Y)xi—+min

............................................ (4)
O Constraints :
stresses g°=ou(X, ¥)—0,=0
(i=1~NM, k=1~NLC)-+++ (5)
displacements ¢¢=08;(X, ) —0,=0
(GEP, k=1~NLC)-+-wweeeeeeees (6)
slenderness ratio g'=#(x;, 1) — 7. =0
(= 1= NMY ooeeeeeensmseseeensen. %)
upper and lower zf=x:;=x” (1=1~N),
GESy Syl (=LMoo (®)

(O Design variables :
X=Ax, 22", xN}, Y=Ap, vz, ZIM}
............................................ (9)

where, O is the objective, g° are the stress
constraints, g are the displacement constraints, g~
are the constraints on slenderness ratios. x; is the
sectional variable and is sectional area in this
paper, N is the number of the sectional variables, y;
is the geometric variable, M is the number of the
geometric variables. L; is the sum of the lengths of
the members which are linked to the i-th sectional
variables. 0y is the stress of the i-th member in k-th
loading condition, §; is the displacement of the j-th
freedom in k-th loading condition, #; is the
slenderness ratio of the i-th member. 04 is the
allowable stress of the ¢-th member, and when
considering the buckling, is the function of the
sectional arca and the member length. J, is the

allowable value of the displacement, 7, is the upper
value of the slenderness ratio, NM is the number of
the members, NLC is the number of the loading
conditions, P is the set of the freedoms those
displacements are constrained. %, .7, yit, yi¥ are
the lower and the upper limits of z; and y;
respectively. :

The optimization problem formulated by equa-
tion (4) to equation (9) is called as primal problem
in this paper. In dual method or new dual method,
all of the functions in equation (4) to equation (7)
are approximated by the linear functions with
respect to the reciprocal or/and direct variables.
On the other hand, in the partially approximating
method” of this paper, only the terms those are
related to the structural analysis, oy of equation (5)
and 8, of equation (6), are replaced by the
approximation functions. Equation (5) and equa-
tion (6) of the primal problem are replaced by the
following equations in the sub-problem of r-th
iteration.

Fr=6,X Y, X"V, Y")~0,=0

(i=1~NM, k=1~NLC)-- (10)
g‘““=5;k(X, Y, X(V—l)’ Y(r—l)) — 0,20
(jep’ k=1~NLC) ................. (11)

where, G is the approximation function of the
stress and 0, is the approximation function of the
displacement. X", Y7V are the optimum
design of the previous iteration and are the
approximation points for this iteration. In this
formulation, the allowable stresses are considered
as constant values.

In this approximation method, as shown in the
above, only the terms those are related to the
structural analysis are approximated and the other
terms are left as they were in the primal problem.
So, if the stresses and the displacements are
approximated by the functions those are simple and
agree with the true structural responses well, it can
be expected that the efficiency of the optimization
procedure is improved.

4. APPROXIMATION FUNCTIONS OF
STRESSES AND DISPLACEMENTS

The stress approximation functions of equation
(10) and the displacement approximation functions
of equation (11) are not necessary to be separable
in the approximation method of this paper. It is to
be desired that the quality of these functions are
high in their agreement with the true structural
responses and the functions are easy to calculate.

The approximation functions which satisfy those
requirments are thought to be different according
to the kinds of their variables. The approximation
functions with respect to the sectional and geomet-
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ric variables are presented in the following sections
respectively.
(1) Approximation Functions with Respect to
Sectional Variables

The stresses and the displacements of truss
structures were generally approximated by the
linear functions with respect to the reciprocal
variables. But, from the numerical and the
theoretical studies™ ", it was concluded that the
force approximations with respect to the reciprocal
variables were superior to the others for the stress
approximations. So, in this paper, following
approximation functions are used in the #-th
iteration. :

Approximation functions for stresses with re-
spect to the sectional variables ;

5ik(X, X(r-l)) :ZL{(Fik)(r-l)

N @i (r-1) - _ xp(r—l) }
(G e (-2
(t=1~NM, k=1~NLC)--+-+ (12)
Approximation functions for displacements with
respect to the sectional variables ;

gjk (X, X(y»l)) — (5jk) (r=1)

N aajk (r—1) -1 _xp(r—-l)
+p§:1< axp ) T (1 Xp )

(EP, k=1~NLC)-+--wrrveeeneee (13)
where, 4; is the sectional area of the i-th member,
Fy is the axial force of the i-th member in k-th
loading condition. (*)“~" means the value of the
function in the brackets corresponding to X 7=V,

Equation (12) and equation (13) will be used as
the approximation functions with respect to the
sectional variables in this paper.

(2) Approximation Functions with Respect to
Geometric Variables

The relations of the stresses and the displace-
ments to the geometric variables are not so simple
as to the sectional variables. Every four types of the
region A to region D of Fig.1 are to be appeared.
It seems clear, from the study on Fig.1, that the
approximation function based on the first deriva-
tives only has its limit. These will be explained
numerically in chapter 5.

For the geometric variables, accordingly,
quadratic approximation function is studied and
proposed in this paper.

The quadratic approximation function of a multi-
variable function f(X) corresponding to X° is
defined as follows,

100 =7 + 5L (3~

»

+%(X“XO)T[I{]°(X—XO) ......... (14)

where, [H]° is the Hessian consisting of the second
derivatives of f(X). An element of the Hessian is as
follows,
9% f \°

Hm (2L ) e )

Although the quadratic approximation functions
of this paper is formulated according to equation
(14), the every terms of the second derivatives of
equation (15) are difficult in their numerical
calculations and require much computer storage
space. So, it is proposed to use only the elements
on ihe main diagonai of the Hessian. In this way,
equation (14) becomes :

O YA
FO X0+ 5 (3L =)

1 N 02 0
+§ﬁ§<a$jz) (xp_xpO)Z .............. (16)

The effect of ignoring the off-diagonal elements
will be investigated in the numerical examples.

According to equation (16), the approximation
functions for stresses and displacements with
respect to the geometric variables are formulated
as follows,

Approximation functions for stresses with re-
spect to the geometric variables ;

Gu(Y, YY)
=1 [ Ny &(OFu\7-D 1)
—‘Ai{(ka) +q§1< ayq) (?/q yll )
L& (Fu\ob
+2E(ayq2) o=
(E=1~NM, k=1~NLC)"+++- 17

Approximation functions for displacements with
respect to the geometric variables ;

5‘1’}6 ( Y; Y(r—-l))

_ M08 \o-D ~
= Y (r-1) 1 (-1
(0,71 +q§l( e ) Ya—y,"?)
L3220\ ey
+24§1( Ik > Ye—y,"")?
EP, k=1~NLC)-+++++srvveee (18)

These functions naturally contain the second
derivatives, so, when the derivatives are calculated
by the finite difference method, one more addition-
al structural analysis is needed comparing with the
calculation of the first derivatives. This means that,
if there are m variables, m additional structural
analyses are needed for one iteration. Suppose the
number of iteration is k, (m X k) additional
analyses are necessary to compare with the linear
approximation method. However, on the other
hand, high quality approximations generated by
this method will improve the reliability and the

L
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Fig.2 Finite difference calculation

efficiency of the optimization.
(3) Summary of Approximation Functions and
Second Derivatives

In the previous sections, the approximation
functions with respect to the sectional variables and
the geometric variables are presented separately.
In this section, these functions are combined and
presented. They are as follows.

Approximation functions for stresses ;

5",k(X, Y: X(T—D, Y(v-l))

—| @0
(G e =)
+ 2 (%) )
A ]
(i=1~NM, k=1~NLC)-+-- (19)

Approximation functions for displacements ;
0n(X, Y, X770, YO0) = (§;0 P

n % <Q5i>(r—nxp(7"1)<1— xp(r—-l))

=1 6x,, Zp
& ((00w\"" . v
+q§1{( oY, ) @—y"™")
1 _a.zjﬁ =D D
+ 2( oue’ ) s )2}
(jep’ k= 1~NLC) ................. (20)

In equation (19) and equation (20), the first and
second derivativese are contained. Even though
they can be obtained analytically in some cases of
truss structures, they are calculated in this paper by
the finite difference method as shown below.

The curved line shown in Fig.2 represents a
relation of a function f(x) to the variable x. f°is the
value of the function corresponding to x°. Ax is an
increment of x, fi corresponds to z°+ Az, f
corresponds to x° — Ax. The derivatives are

Table 1 Loading condition of 25-members truss

nodal loding condition 1 loding condition 2
point Px Py Pz Px Py Pz

1 0 22.7 | 90.6 |-4.53 | 22.7 | 45.3

2 0 22.7 |-90.6 o} 22.7 | 45.3

3 0 0 0 |-2.27 0 0

4 0 0 0 |-2.27 0 0
(t£)

Fig.3 25-members truss

calculated by the following equations respectively.
The first derivatives with respect to the sectional
variables :

Of AL
oxr Az @
The first and second derivatives with respect to

the geometric variables :

@Ji_—__ﬁ —f ﬁ_zisz____._—— 2 fo (22)

Ox  24x° {r? (Ax)?

The reason why the first derivatives with respect
to the geomeric variables are calculated by the
central finite difference method is that the three
values are calculated for the second derivatives.

5. NUMERICAL EXAMPLES

Several numerical examples will be shown here
to demonstrate the effect of the quadratic approx-
imation method by comparing with the linear
approximation method.

(1) Shape Optimization Problem of Truss
Structures

Shape optimization problem of truss structures
calculated in this paper are explained here.

One is the 25-members truss shown in Fig.3.
Loading conditions are represented in Table 1.
Number of design variables is 9 including 3
geometric variables. The geometric variables are -
and z- coordinates of nodal points 3 to 6 and -
coordinates of nodal points 7 to 10. They are linked
each other to ensure the structural symmetry.

]
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Table 2 Loading condition of
50-members truss

nodal loding condition 1

point Px Py Pz

13 0 50.0 0

14 0 50.0 0
(tt)

Yo X OO
{
, A y ., 200
#€200 »€ 200 w200 » 15

Fig.4 50-members truss

Table 3  Initial values and optimum geometric values of
25-members truss

case
W 16e [ TE
3,4,5,6-X| 16 | 10 | 50 | 50 32

3,4,5,6-Z| 10 | 10 | 50 | 50 85
(cm) |7,8,9,10-X| 30 | 30 | 50 | 50 113
(cm®) 50 1100 | 50 {100

design variables optimum

nodal point
and

direction

sectional area

Table 4 TInitial values and optimum geometric values of
50-members truss

case
O 10 T8 1@
7.8 | 20 | 20 | 50 | 50 3
direction |11,12-Y | 30 | 30 | 50 | 50 | 15
{om) |15,16-Y | 40 | 40 | 50 | 50 | 90
sectional area {cm?) | 50 {100 50 | 100

design variables optimum

nodal point
d

Sectional areas of 25 members are linked to 6
sectional variables. Four couples of the initial
values are given to this problem. They are shown in
Table 3.

Another one is the 50-members truss shown in
Fig.4. Loading conditions are represented in Table
2. Number of design variables is 7 including 3
geometric variables. The geometric variables are y-
coordinates of nodal points 7, 8, y-coordinates of
nodal points 11, 12 and y-coordinates of nodal
points 15, 16. Sectional areas of 50 members are
linked to 4 sectional variables. Four couples of the
initial values are given to this problem. They are
shown in Table 4.

(2) Structural Responses by Quadratic Appro-
ximation Functions

In this paper, as an approximation function with
respect to the geometric variables, the quadratic
functions of equation (17) and equation (18) were
proposed. Those functions are generated here in

03 (kgf/cm?)
-1000 4
O :quadratic
O :linear(direct)
4 :linear(reciprocal)

[} (cm)
+ b
=50 0 50

geometrical variable of No.l

Figba o—uy

03 (kgf/cm?)
-1000 4

O :quadratic
O :linear(direct)
4 :linear(reciprocal)

-1500 -4
E gb
i oa
O (cm)
" s s
L A e S e e e B IS [t S
50 100 150
geometrical variable of No.2
Fig5b o3—y,
03 (kgf/cm?)
—lOOO-r—
O :quadratic
] O :linear(direct)

4 :linear(reciprocal)
mE
¢}

|
g H
-15004-0 g ®
A

; o

el
7 (e}
.. (o]

(cm)

T L S e A e
50 100
ometrical variable of No.3

? o4

&

Fighe 05—y

the case of 25 members truss of Fig.3, and the
values of the functions are compared with the true
structural responses and the values calculated by
the linear approximation functions.

Fig.5a to Fig.5¢ show the relations of the
stresses of member-3 (connecting nodal point 1 to
4) to three geometric variables respectively. Rigid
line corresponds to the true structural responses, O

L
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o3 (kgf/cm?) 03 (kgt/cn®) 03 (kgf/cm?)
~1000 + ~10004 -1000 4
O :quadratic g o :quadrat(:ic
0 :linear(direct) R Y O :linear(direct)
7 4 :1inear (reciprocal) g ;g::::gire“) 4 :1inear (reciprocal)
| A :linear(reciprocal)
gd ; ;
-15004 -1500 4 ~1500
o -
4 a - o
] N o®
o (em) o8 (em) (cm)
| : L . . L N
o o fr—r—r S NS s S e e e S Ll i o o s s S S e e
-50 4] 50 -50 0 50 50 100 150
geometrical variable of No.l | geometrical variable of No.l geometrical variable of No.2
L e e = eyt e
50 100 150 0 50 100 o 50 100
geometrical variable of No.2 geometrical variable of No.3 geometrical variable of No.3
Fig6a 03— 4, ¥ Fig.6b os— v, U3 Fig.6c 03— Us
w1 (em) w wy (em,
10470 104 1(em) 1.04¥ )
O :quadratic O :quadratic
o :lj:near(ditect) 0 :linear(direct) O :quadratic
A :linear (reciprocal) A :linear(reciprocal) 0 :linear (direct)
0.8 + 0.8 4 0.8+ & :linear (reciprocal)
0.6 A 0.6+
S W
4135 4
ga”®
0.4+ gg® 0.44
04
1a
0.2 0.24
(cm) (cm) (cm)
$3 4 3. i 4 4 i
+ T ~t 4 4 vt 4 gt T
-50 0 50 50 100 150 ~-50 [¢] 50

geometrical variable of No.l

Fig.7a w—1u

geometrical variable of No.2

Fig.7h wi—

geometrical variable of No.l

gt
50 100 150
geometrical variable of No.2

Fig.8 wi—y, ¥

represent the approximation points. The values
calculated by each approximation function gener-
ated at these approximation points are shown also
in this figure. O corresponds to the quadratic
approximation, [] corresponds to the linear
approximation with repect to direct variable, and
A corresponds to the linear approximation with
respect to reciprocal variable.

From these figures, it can be said that the
quadratic approximation function shows the better
agreement with the true structural responses than
the linear approximation.

In these figures, however,; the responses with
respect to only one variable were shown. The
better agreement mentioned above is, in a sense, a
natural result, because only the main diagram of
Hessian is considered and the other second
derivatives are neglected in the quadratic approx-
imation function. So, next, two variables are
changed simultaneously and the stresses with
respect to the variables are calculated. Fig.6a to

Fig.6 ¢ show the results. Fig.6 a shows the stresses
with respect to the geometric variable 1 and 2,
Fig.6 b and Fig.6 ¢ show the relations corespond-
ing to the variable 1 and 3, and 2 and 3 respectively.
Generally speaking, even if the two variables are
changed simultaneously, the quadratic approxima-
tion function show good agreement.

In the same manner as the above, the displace-
ments of a nodal point 1 in z-direction is calculated
and the results are shown in Fig.7 a., Fig.7b and
Fig.8. Fig.7a and Fig.7b show the results with
respect to one variable, and Fig.8 shows the results
with respect to two variables.

These are the part of the results calculated in this
study. It can be said that the quadratic approxima-
tion functions of this paper show the good
agreement and are better than the linear approx-
imation functions.

(3) Results of Optimization

In the quadratic approximation method of this

paper, the second derivatives with respect to the

_
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0.250 $083(m)
0/’0\0—0“ ®
0.245 —O e OO
move-1imit
0.240 : .
5 10 20 40 60 80 100
2.0 CPU time
1.5 4
1.0 g
0.571 move-Timit
0.0 + +
5 10 20 40 60 80 100
number 1teration
of 8 ® 120
good
designs7 ) number of good designs
6 15
5
4
3 iteration 10
2
! 5
5 10 200 40 60 g0 100
move-limit

Fig.9a Optimization results of 25-members truss.

0BJ

(m3)
0.610.
0.605
é 10 2‘0 49 60 80 100
move-Timit
CPU time
1.04
®
0.51
: 5 s 20 6'0 gb 100
sumber move-1imit
of 8
good
designs number of good designs iteration
; 10
a1 iteration
3 5
2
14

5 10 20 40 60 80 100
move-limit

Fig.9b Optimization results of 50-members truss.

geometric variables must be calculated. On the
other hand, the quality of the approximation
function is improved by introducing the second
order information, when applying them to the
structural optimization, the reduction of the
number of the iteration and the improvement of

the convergence reliability can be expected. Also,
the move-limits are expected to be unnecessary in
this approximation method.

In this section, quadratic and linear approxima-
tion method are applied to the shape optimization
problem of the truss structures described above.

Both of the scaled problem' and nonscaled
problem are solved for each initial value. The
results of the optimization of 8 cases are arranged
and compared. For the linear approximation
method, optimum design is calculated under the
several values of the move-limits on the geometric
variables, they are 5 cm, 10 cm, 20 cm, 40 cm, 60
cm, 80 cm, and 100 cm. For the quadratic approx-
imation method, the value of the move-limit is
fixed to 100 cm. This optimization problem with
the move-limit being 100 cm is almost equal to the
problem with no move-limit. The results of
optimum design of 25-members truss and 50-
members truss are shown in Fig.9a and Fig.9b
respectively. O and & represent the results by
linear approximation method, and @ and &
represent the results by quadratic approximation
method. The axis of abscissas corresponds to the
values of move-limits.

Lower figure shows the two kinds of the results.
One is the number of the cases, where the feasible
designs are obtained, among 8 cases described
before, and the other is the average number of the
iterations in which the feasible designs are
obtained. The former corresponds to the left axis of
ordinates and the latter corresponds to the right.
Middle figure shows the average CPU time (sec)
and upper figure shows the average values of the
objective. In these figures, only the cases in which
the feasible designs were obtained are considered.
Among these four values presented in these
figures, the number of the cases of the lower figure
and average value of the objective will be the
parameters to estimate the reliability of the
convergence, and the average number of the
iterations and the average CPU time will be the
paremeters to estimate the efficiency.

From these figures it is concluded that the linear
approximation method is a good method in so far
as the value of the move-limit is chosen reasonably.
However it is also pointed out that the reliability
and the efficiency of this method highly depend on
the move-limit. On the other hand, the results by
the quadratic approximation method are almost
same with the best one among the results by the
linear approximation method for the various values
of the move-limits. Taking into consideration that
the move-limit is basically unnecessary for this
quadratic approximation method, it can be con-
cluded that the method is in no way inferior to the
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Fig.10 Structural optimization system using approximation method.

linear approximation method with move-limits.

The optimum values of the geometric variables
are shown in the right columns of Table 3 and 4
respectively.

6. STRUCTURAL OPTIMIZATION SYS-
TEM USING APPROXIMATION
METHOD

In this chapter, the structural optimization
system including the approximation method of this
paper is proposed.

In structural optimization, the approximation
method in which the sub-problems consisting of
some approximation functions are solved iterative-
ly has better efficiency and reliability than the
method in which the primal problem is solved
directly by some mathematical programming, SLP,
GRG, etc™?. Especially, for the optimum design
of the large scaled structures, the approximation
method is considered to be the indispensable
techniques.

Design variables can be classified into two parts
from the standpoint of the approximation. One is
the variable like the sectional variable of framed
structure. The behaviour of the structure in regard
to these variables are simple and well known, and
so the linear approximation function with respect
to these variables shows the better agreement with
the true structural responses.

And the other is the variable like the geometric
variable studied in this paper. The behaviour of the
structure in regard to these variables are not so
simple, and the linear approximation function with
respect to these variables does not always show the
better agreement with the true responses. For these
variables, quadratic approximation function is
recommended.

For the optimum design of the structures with
several kinds of the design variables, the general
purpose structural optimization system shown in

Fig.10 is proposed.

Although the basic structure of this system is
same as the other system of approximation
concepts, but, in this system, the most reasonable
approximation function can be selected depending
on the relation of the structural responses to the
design variables.

7. CONCLUDING REMARKS

In structural optimization, the use of the
quadratic approximation function partially was
proposed. The method was applied to the shape
optimization of truss structures and the results were
compared with the results by the linear approxima-
tion method.

The conclusions are as follows :

(1) In structural optimization, the method using
the quadratic approximation functions for the
structural responses with respect to the geometric
variables were proposed.

(2) The quadratic approximation function of this
paper was generated by using only the elements on
the main diagonal of the Hessian to reduce the
required computer storage space and the comput-
ing time.

(3) Numerical calculation of 25-members truss
showed that the quadratic approximation function
represented the better agreement with the true
structural responses than the linear approximation
function.

(4) Both of the linear approximation function and
the quadratic approximation function were applied
to the optimum design of 25-member truss and 50-
member truss, and the results were compared. As a
result, it was given that, in so far as the reasonable
values were chosen for the move-limits, the linear
approximation method was good method, but the
reliability and the efficiency of the method highly
depend on the move-limits. It was also given that
the quadratic approximation method showed the

]
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almost best results among the results by the linear
approximation method.

(5) By taking into consideration that the move-
limits were basically unnecessary for this quadratic
approximation method, the quadratic function
seemed to be superior as the approximation
function with respect to the variables like the
geometric variables to the linear approximation
function.

(6) This method can be applied not only to the
truss structures but also to the framed structures
and the shape optimization of the continuum. For
those purposes, the general optimization system
using approximation method was proposed also.
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