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A PROPOSAL FOR IN-PLANE STABILITY
DESIGN OF STEEL FRAMED STRUCTURES

Fumio NISHINO* and Walid ATTIA**

One aspect not considered seriously in the revisions of the structural steel design codes
is the adoption of design analyses where the use of computers is presupposed. A proce-
dure to determine effective length is presented for in-plane stability failure of frames
by utilizing eigenvalue analysis of the tangential stiffness matrix, for which the use of
computers is essential. Determination of the effective lengths by the eigenvalue analysis
encounters one difficulty when there exist members in a frame subject to very small
amounts of internal compression. The load carrying capacity of the frame could be de-
termined by these members resulting in unrealistically small capacity. This difficulty
was overcome by introducing an amplification factor concept. The proposed procedure
is clear and applicable for any frame including one with non-prismatic members.
Keywords . beam—column, codes, effective length, frame stability

1. INTRODUCTION

It has been known for many years that small
displacement analysis with the assumption of linear
material properties does not predict the ultimate
strength of structures. Because of the lack of
knowledge of structural theory in the early years
and, even later when theoretical work was
advanced, because of the lack of computational
capability, structural design was based on linear
small displacement analysis.

Design codes are revised continuously to in-
corporate the latest developments in structural
engineering. One of the understandings when
codes were revised in the past, however, seems to
be that structural designs are based on linear small
displacement analyses except in a few cases such as

design of simple and small framed structures by the .

so-called simple plastic analysis”, and of arches and
suspension bridges in which the presence of initial
stresses, and hence, geometric stiffness are consi-
dered in the analyses.

Structural theory has developed extensively.
Computing facilities have developed even more
extensively and the cost of computation is getting
much cheaper. It seems to be the time that efforts
beyond linear small displacement analysis should
be made in the analyses of practical designs, if they
lead to more economical and safer structures
without costing much for additional computing
expenditure.

Almost all design codes specify for an unbraced
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frame that the effective length of compression
members shall be determined by a rational method
and shall not be less than the actual unbraced
length”. The clause, however, does not specify nor
suggest any method of analysis. The present codes
assume that the structural analysis is made by small
displacement analysis and they provide clauses or
refer to charts for the determination of effective
lengths of columns. These provisions or reference
charts are prepared for a variety of cases as a
function of the flexural rigidity of the member and
those of the adjacent ones and/or the boundary
conditions.

It should be noted that the effective length
depends not only on the boundary conditions and
the rigidities of the adjacent members, but also on
the pattern of loading even for a structure with
linear elastic material®”. This effect has been
recognized many years ago and incorporated,
though in very primitive way, in the German
specifications”. Different effective lengths are
given for the same column under different loading
patterns. This dependence of the effective lengths
on the loading conditions may make their deter-
mination erroneous, if they are determined by the
rigidities alone, especially for members of struc-
tures such as tied arches which have to be designed
under a variety of completely different loading
conditions. The effective length for a member is
not constant but it changes for different loading.
This process of recalculation for each case of
loading leads to either an economical or a safer
design.

2. NECESSITY OF DEFINING
EFFECTIVE LENGTHS

There are statements in many text books for
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design of steel structures that overall frame stability
can be easily determined by the eigenvalue analysis
of the tangential stiffness matrices. This, however,
is true only for structures made of elastic materials.
Such factors as material nonlinearity, presence of
residual stresses, initial geometric imperfection and
nonhomogeneity of materials in each member have
to be taken into account for the evaluation of the
strength of a framed structure. Since present design
procedure for in-plane stability does not directly
evaluate the strength considering these factors even
when eigenvalue analyses are made, the eigenvalue
analysis of the whole frame cannot be directly
applied, but additional considerations are neces-
sary. These factors are reflected in the evaluation
of the strength by a column strength curve specified
in codes with the use of the effective length or more
precisely by the so-called slenderness parameter.
By this reason, the result of the eigenvalue analysis
of the whole structure can only be used in practical
design to determine the effective lengths of the
components of the framed structure. Once the
effective length, and hence, the slenderness
parameter are determined, the above stated effects
can be incorporated in the design following the
present design procedure.

This paper presents a proposal, as an extension
of the past works®, for a rational method to
determine the effective length by utilizing an
eigenvalue analysis of the tangential stiffness
matrix. This determination proposed by Nishino et
al.?? has been already adopted in the German
specifications”. However, the application of the
effective lengths so determined in design of a
complex frame is not straight forward, but some
additional considerations are necessary which are
also presented in this paper.

Because of the difficulty of defining a member in
a framed structure, the effective length is defined in
this proposal at each section along the lengths of
the members, as defined in the previous works??,
so that the safety for in-plane stability failure can
be checked at each section. Because of the
availability of computers, such as the so-called
engineering work stations, the proposed analysis
seems no longer a burden even at present for the
designs of complex framed structures, although the
effective length at a section is not constant but
changes with the change of loading.

Similar attempts made in the past”” and adopted
in specifications”, however, had one problem in
practical application. If there exist sections in a
framed structure subject to very small amounts of
internal axial compression, there is a possibility
that the load carrying capacity of the frame is
determined by these sections resulting in an

unrealistically small load carrying capacity. Major
aim of this study is to solve this problem. The
utilization of an eigenvalue analysis would be the
first step of employing a finite displacement
analysis in the design procedure. Although no
proposal is made in this paper, the next step is to
utilize a more accurate nonlinear analysis®,
When the design codes assume that a structural
design is made with the assumptions of small
displacement and linear elasticity, the codes
include a number of clauses to consider nonlinear
effects and imperfections for estimating the

- ultimate carrying capacity. Limiting to in-plane

stability failure of a member in framed structures,
the so-called interaction formula adopted in many
codes is one of the typical examples of these
clauses. When a member subject to external axial
forces and equal amount of moments at both ends
resulting in single curvature, the formula can be
written in a general form” by separating the so-
called safety factor » from the allowable stress®, or
by multiplying both the denominators and numer-
ators by cross-sectional-area and section modulus
after separating the safety factor as

G o
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where 04, 0s, P, M=axial and bending stresses,
internal axial force, all positive in compression, and
bending moment, respectively, evaluated by the
small displacement analysis under design loads ;
Ocu, Oy, Pu, My=ultimate axial and yield strengths,
ultimate carrying capacity for axial compression, all
positive in compression, and yield moment,
respectively ; and P, =Euler load in the plane of
stability, again positive when a compressive
internal force results. The ultimate axial strength is
evaluated as a function of effective length for
prismatic pin-ended columns considering the
effects of geometric nonlinearity, and geometric
and material imperfections including the presence
of residual stresses. The second denominator of the
second term is the correction term for the
evaluation of the bending stress due to the
geometric nonlinear effect. When v is placed inside
the brackets, vP and vM can be regarded as
internal forces resulting from the factored loads.
The factor v changes its value for different limit
states and load combinations. The formula is
reasonably accurate for the estimation of the
ultimate carrying capacity of a simply supported
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beam-column with equal external moments applied
at both ends. The equation is assumed, with the
incorporation of additional correction factors, as
applicable in any other loading cases and boundary
conditions®”, which increases the error though
efforts are being paid to minimize it”.

3. DETERMINATION OF EFFECTIVE
LENGTH FOR IN-PLANE STABIL-
ITY BY EIGENVALUE ANALYSIS
OF THE WHOLE STRUCTURE

The tangential stiffness equation of a short
prismatic beam-column element p, which is free
from distributed external axial forces, and hence,
the internal axial force is constant, can be
expressed as

A= (ko) y+ (k) ) Auy=[ (k) p+ N, (k) )] Auy
............................................ (3)

where (- ), = quantities for element p and for
section p later in this paper ; (k,) ,=elastic stiffness
matrix ; (k) ,=N,(k,),=geometric stiffness mat-
rix which is expressed as a product of internal axial
force N, under design loads and a matrix which is
not a function of the internal axial force (&), ; f;
and u,=vectors of end forces and corresponding
end displacements, respectively ; and A=notation
to indicate increments.

The critical axial end loading for an elastic
prismatic member p for a variety of boundary
conditions known as Euler buckling load can be
written as

(Pcr)p =r?

(L%) P A (4)

where E=modulus of elasticity ; and I, L%=
moment of inertia and effective length of the
member, respectively.

The small displacement analysis for an end-
loaded member results in the internal axial force
being equal in magnitude to the external loading
applied at both ends. This leads to

(Ncr)p= j— (Pcr)ﬁ .................................. (5)
where (N.,),=internal axial force (positive in
tension) when the member becomes unstable.

By employing the effective length L°,, Eq.(4) is
applicable to any free body cut out from a framed
structure, and hence Eq.(4) can be understood as
the condition for a short element or an arbitrary
section p of a member or of a frame to become
unstable. Then, in view of Egs.(4) and (5), the
effective length of a section p of a framed structure
can be defined as

| _El
Li=x ._._UV_Z’:)_; ................................ (6)

In the design procedure proposed in this paper,

the design loads are increased by a factor « until
the frame becomes unstable. Since geometrical
nonlinear responses due to the increase of external
loading are already considered in Egs.(1) and (2),
linear analysis is sufficient to evaluate responses
due to external loading. Therefore, multiplying N,
of Eq.(3) by the undetermined coefficient a for
each element and assembling them for all elements
of a structure, the tangential stiffness matrix of the
structure K, is expressed as

Kt= [Ke_}.aKg (Np)] ............................. (7)

where K,=elastic stiffness matrix of small displace-
ment theory ; and akK,(N,)=geometric stiffness
matrix when the structure becomes unstable.

Substituting N, determined by the small dis-
placement elastic analysis into Eq.(7), the undeter-
mined coefficient « when a frame becomes
unstable can be obtained as the smallest eigenvalue
of the tangential stiffness matrix. The internal axial
force when the structure becomes unstable can
then be expressed as

(Ncr)p —_ C(Np ....................................... (8)

The so-called slenderness parameter, referred to
as A, is defined as

1L /o

2__57 f...............................T ...... (9)
where r=radius of gyration. The radius of gyration
at section p is defined by the moment of inertia I,
and the cross-sectional area A, as

Substituting Egs.(6) and (10) into Eq.(9) results
in a slenderness parameter defined at a section p as

| Asoq
Ap= Tﬁﬂ .................................. 11)

4. SECTIONS WITH SMALL VALUES
OF AXIAL FORCE

Since the stiffnesses of all members of a
structure, the boundary conditions and the loading
conditions are considered, the definition of the
effective lengths by Eq.(6) together with Eq.(8)
and a determined by the eigenvalue analysis of the
tangential stiffness matrix of a structure should be
much more accurate than those determined by the
conventional methods using stiffnesses of the
adjacent members. The stability design procedure
using this definition, however, has one drawback
when there exist sections subject to small amounts
of internal axial compression under design loads.

Consider a simply supported frame subject to
horizontal loads F; such as wind loading in addition
to the usual gravity loading F, as shown in Fig.1.
Both positive and negative wind forces, though the
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Fig.1 Simply suppored frame subject to horizonal load
of small magnitude

latter is unlikely in practice, are considered for
demonstration purposes representing forces in the
direction of the wind and suction, which is in the
opposite direction of the wind.

The girder is subject only to bending moment
when no horizontal loading is present. The same
girder is subject to both bending moment and
internal axial force when external horizontal force
is present, compressive and tensile axial forces as
for the cases of positive and negative F), respec-
tively. The stability of these two cases is deter-
mined by the vertical loading and the horizontal
force, F. Common sense of structural engineering
suggests that the load carrying capacity of these two
cases, and hence, the designs for a given loading F,
cannot be much different when the magnitude of
the external horizontal force is extremely small.

The proposed procedure could lead to a very
long effective length for a section subject to a small
value of internal axial compressive force such as the
case with a small value of positive horizontal force
in Fig.1. Incorporating such a design formula as
Eq.(1) or (2) to check the safety of a structure, the
proposed procedure might lead to a much different
load carrying capacity depending on the sign of the
internal axial force in the girder.

Noting that the internal tensile axial force does
not play any role in the column stability, the value
of 1, is taken as equal to zero when the internal
axial force is in tension or zero. For an element
with a large value of slenderness parameter, the
ultimate axial compressive strength o, is well
represented by the Euler buckling load of Eq.(4)
divided by the cross-sectional area. Hence, in view
of Egs.(4), (5) and (11), the strength of a section
subject to a very small amount of internal
compressive force is expressed as

Gew 1 (12)

% (2,)?
Noting that 6,=—N,/A,, substituting Eqs.(8)
and (12) into Eq.(11) leads the first term of Eq.(1)

for the section with a small value of compression to
s 1

s :E ............................................. (13)

whereas if the internal axial force N, changes from
an infinitesimally small value of compression to
tension, the ultimate strength 0., becomes equal to
0y and 0, is close to zero, and hence this term
becomes
e _ 0
O Oy
The change of magnitude of the second term of
Eq.(1) or (2) is insignificant for the change of the
axial force from tension to compression or vice
versa when its absolute magnitude is small

compared to P,,. On the other hand, the magni-

tude of the first term changes in general with the
change of the sign of internal axial force even if its
magnitude is infinitesimally small. Except for the
case when the value of « is very large, the
magnitude of the first term changes significantly.
Because of this, when a small axial force changes its
sign at a section, the carrying capacity of that
section could also change significantly as shown
later in Numerical Example (3). As stated earlier,
common sense suggests that there should not be
much difference in the carrying capacity in both
cases. Hence, some sort of preventative technique
is necessary for the proposed effective length to be
used in practical design when the internal axial
force is in compression of very small magnitude.
Such a preventative method should lead to a safer
design.

To avoid a very long effective length at each
section with a small value of internal axial force, its
value is amplified by multiplying it by a factor &,
larger than or equal to unity as

N,=k,N, (Fop=1) ormemerviniineciiinnnn, 15)

where ()= quantities for a frame with the
adoption of Eq.(15) for some parts of the frame.
The amplification factor %, being equal to unity is
included so that Bq.(15) is applicable for all
sections including the sections where no amplifica-
tion of internal forces is necessary. Employing
these values in Eq.(7), the modified tangential
stiffness matrix K, by the use of N, is written as

_,——[Ke—}*ang(N,,)] ............................ (16)

The smallest eigenvalue & of the tangential
stiffness matrix of Eq.(16) decreases its magnitude
from a with increasing value of each k,. The
modified slenderness parameter by the amplifica-
tion factor &, at each section with small axial
compression is evaluated in the same way as for
Eq.(11) as

L= [—B9%
/ZP - (Ncr)p (17)

Since the amplification of the internal forces is
made only for elements with small axial compress-

L
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Fig.2 cantilever colummn (example 1.)

jon, its effect for & is expected to be very small and
insignificant. Because of this, the magnitude of @k,
and hence that of (N.), becomes larger than
(N,,), for members with the adoption of the
amplification factors. With the larger value of
(N.,), than (N.,),, the value of A, becomes smaller
than A, of Eq.(11). This smaller slenderness
parameter leads to a larger value of ultimate
compressive strength o, for the section p. The
value of &, and hence, the load carrying capacity
determined by the stability analysis decreases with
the employment of k, for some parts of a frame,
but the decrease of the overall load carrying
capacity is expected to be very small for the reason
stated above.

The same amplification factor can also be
utilized to increase the evaluation of the carrying
capacity of a structure to some members which are
not necessarily subject to compression of a very
small magnitude. This use is also demonstrated
later in Numerical Example (2).

In view of Eq.(5) and the definition of (Ne,)»,
Eq.(1) can be rewritten into the following form

_(Ncr) [1 vg;a‘l] .............
F3 L>y {1 v_g:_a %:L (18)

The safety of a section is satisfied even if the
value of (N.,), is made larger by an arbitrary
amount as long as Eq.(18) is satisfied. In view of
Egs.(8) and (15), the adoption of an arbitrary
amount of amplification factor k, is identical to an
arbitrary increase of (N.,), satisfying Eq.(18) to
(N.,),. This arbitrary selection of increased (N.»);
can be repeated until a satisfactory optimum design
is made under given loading. The employment of
the amplification factor k,, and hence the use of
Eq.(17) leads to a safer design as long as (Nc,), at
each section satisfies Eq.(18).

5. NUMERICAL EXAMPLES

(1) A cantilever column

Consider a prismatic cantilever column of length
L, subjected to an external axial force P at the free
end as shown in Fig.2. It is well known that the
effective length of this column is 2L. This example
is to show that, when the column is divided into
many elements of arbitrary lengths, the proposed
procedure results in the effective length of 2L for

each elements.

Treating the column as one element and
imposing boundary conditions at the fixed end, the
tangential stiffness equation can be written using
the well known stiffness matrix including the
geometric matrix as

EIl 12 —6L N| 6/5 L0

e —a Au=0

L’ —6L 4 L/10 2L%15
........................................... 19)

Solving for the smallest positive eigenvalue and
substituting it into Eq.(8) and then Eq.(6) give
effective length of 2L with a small amount of error
inherent in the stiffness matrix evaluated by the
finite element integration technique with a coarse
mesh as for this case.

One of the proposals of this paper is to define the
effective length at a section. In practice, the
stiffness analysis cannot be made for a structure
with an infinite number of elements, and hence the
effective length at a section has to be understood as
that for a short element. In this meaning the above
analysis implies when the section is represented by
one element with the length L, the effective length
is 2. If the cantilever is divided into two elements
of any lengths, similar analysis gives again effective
length of 2L for both elements. It is noted that
dividing the column into many elements of
arbitrary lengths does not change the effective
length, and hence, the slenderness parameter for
each of these divided elements.

For the design of a real steel column, the effects
of material nonlinearity, and presence of residual
stresses and initial imperfection have to be included
in the evaluation of the carrying capacity of the
column. This is made by a column strength curve
specified in the codes with the use of the
slenderness parameter. Regardless of the selection
of the number of elements including two extreme
cases of one element and an infinitively large
number of elements, i.e., sections, the slenderness
parameter of an element, or a section, is identical
and hence the proposed design procedure results in
an identical design for a given load.

(2) A stepped cantilever column

No clear procedure is specified for designing
stepped columns in the design codes presently in
use though the German code” implies that stability
checks are necessary for the two elements. The
situation is the same for columns with variable
moment of inertia. This example is presented to
show that the proposed procedure including the use
of amplification factor is applicable to the design of
these types of columns and the results of its
application.

Consider a stepped cantilever column subjected

_
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Fig.3 Stepped cantilever column (example 2.)
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Fig.4 Ultimate load of the stepped cantilever column

to an external axial force at the free end as shown
in Fig.3. The column consists of two different
sections of equal lengths. From the list of column
type hot rolled sections', H 350 X 350 and H 300
X 305 were selected arbitrarily for the purpose of
demonstration for the elements (1) and (2),
respectively. The value of the modulus of elasticity
was selected as 212 000 MPa.

The proposed method is first applied to this
stepped column to evaluate the effective lengths of
both elements. The elastic buckling loads deter-
mined by both elements using these effective
lengths are equal and the same as the buckling load
of the stepped column itself. This is obvious by
noting that N, and hence (N,,), are the same for
both elements and that substituting this (N,,), into
Eq.(6) and then into Eq.(4) results in the same
value of elastic buckling load regardless of the
difference of moment of inertia of the two
elements.

The ultimate compressive loads were evaluated
for both elements after calculating the slenderness
parameters by the proposed procedure and using
the column strength curve in the Japanese design
code™. The results are shown in Fig.4 in which
(P)1(ky=k,=1.0) and (P,):(k;=k,=1.0) are the
ultimate compressive loads for the elements (1) and
(2), respectively. Fig.4 shows that the element (2)
gives smaller ultimate load than that of the element
(1). Therefore, the load carrying capacity of the

column is equal to the ultimate load of the element
(2) when the original proposed method for the
effective length of each arbitrary divided element
of a structure is applied. This smaller carrying
capacity can be increased by incorporating an
amplification factor k; larger than unity for the
internal axial force of the element (2) without
loosing safety, as explained earlier.

Since the carrying capacity of this stepped
column is determined by the smaller ultimate load
of the two elements by the proposed procedure, it
is the largest when the ultimate loads of the two
elements coincide. An arbitrary selection of the
amplification factor k, for the element (2) was
repeated until the preceding condition was satisfied
and the results are shown in Fig.4 by the curve
(P)1=(Py): (k1=1.0, k,>1.0). When the length
of this stepped column approaches zero, the
carrying capacity is determined by the yield
strength of the cross section rather than stability.
Because of this, the carrying capacity of the
stepped column with the adoption of an optimum
amplification factor approaches the yield load of a
prismatic column made of H 300X 305 as the
length of the stepped column approaches zero
which is the same with the ultimate load of the
element (2) when k,=1.0. With the adoption of
the optimum amplification factor, the carrying
capacity of the stepped column exceeds the
ultimate load (P.)» (ki=k.=1.0) of the element
(2) and approaches the ultimate load (P,); (k,=k,
=1.0) of the element (1) with increasing the
length.

For reference, Fig.4 also shows the elastic
buckling load of the stepped column and the
carrying capacities of the prismatic columns made
of H 350X 350 and H 300X 305, respectively.
The two curves for the elements (1) and (2) with k,
=k, = 1.0 fall within the range between the
carrying capacity curves of these two prismatic
columns and the curve with the optimum amplifica-
tion factor k,>1.0 falls within the range of the two
curves for the elements (1) and (2) with k,=k,=
1.0.

The German code”, if applied as it implies,
results in the design strength of this column equal
to (P,), for ky=/k,=1.0 which is smaller than the
strength proposed in this study.

The same procedure can be applied for a column
with variable moment of inertia by modifying it
physically into a stepped column consisting of short
elements. Since no procedure is specified for
columns with variable moment of inertia, the
present custom for the design of this column is to
change it into a prismatic column with the same
elastic buckling strength and use the column

6 (174s)



Structural Eng‘/Earth?uake Eng. Vol.8, No.4, 169s-178s, January 1992

Japan Society o

Civil Engineers (Proc. of JSCE No. 441, ] -18)

R, R F
1 Fh Fh 1 Fh
L
e p————re————{ A
L L L L L L
() (b) ()

Fig.5 One bay one story frames (example 3.)

Table 1 Values of sectional properties of girder and columns of example 3)

Element Case (a). Case (b) Case (c)
Girder: I (10¢mm*) 270.29 125.56 108.55
S (10°mm®) 1005.5 491.1 42729
A (10°mm?) 7.6448 5.2104 4.8446
Column: T (10°mm*) 2.1924 45.104 56.29
S (10°mm®) 9.0099 182.05 226.17
A (10°mm?) 0.68852 3.1229 3.4887

Note: 1 mm, = 0.03937 in.

strength curve for this equivalent prismatic column
to evaluate the load carrying capacity, for which no
rational background seems to be present. Whereas
the proposed procedure can utilize the column
strength curve introducing the strength at each
element by its slenderness parameter rather than a
single equivalent slenderness parameter. This
proposed procedure is much more rational and the
results are expected to be closer to the strengths of
real columns.

(3) Simple Plane Frames

This example is presented to show the improve-
ment of the difficulty presented in previous
works?® by the introduction of the amplification
factor k, when there exist elements subject to small
values of axial compression in simple one bay one
story frames.

The in-plane behavior of three simple frames
with different supports was analyzed under a
vertical load in the middle of the girder, as shown
in Fig.5. The same geometrical configuration was
used for the three cases with L=3 000 mm. The
values of the moment of inertia in the three cases
were determined together with the cross-sectional
areas and the sectional moduli by using the
empirical formulas proposed in Ref. 12) under the
condition that the carrying capacity of the frame
determined at a critical section of each of the three
members is identical, i.e. a fully stressed design,
under vertical load alone. The values of the
moment of inertia, the sectional area and the

sectional modulus of the girder and both columns
are shown in Table 1 for the three cases. The
values of yield strength and modulus of elasticity
were selected as 235MPa and 212 000 MPa,
respectively and a safety factor v of 1.7 was
employed. This safety factor can be also under-
stood as a load factor as explained earlier, Since the
purpose of this example is to demonstrate the
proposed procedure, no serious attention was paid
to the selection of this value of v.

A horizontal force with variable magnitude and
changing direction is then applied, in addition to
the vertical load. The carrying capacities deter-
mined at the critical sections of the girder and the
two columns are computed accordingly. The
slenderness parameter of the girder and the two
columns are evaluated, both with and without the
amplification factor k,. The interaction formula as
given in Eq.(1), which is identical to Eq.(2), is
employed as the safety criterion.

When the amplification factor is not adopted, the
carrying capacity determined by the girder is
different when a small value of internal axial force
with different signs is present. Figs.6 (a)~(c) show
the load carrying capacity determined at each
critical section of the girders and the two columns
for the three frames, respectively. The ordinate is
the carrying capacity of the girder and the two
columns, and the abscissa is the ratio of the
horizontal force to the vertical force.

The lowest envelope of all curves determines the

]
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Fig.6 Carrying capacity of one bay one story frames

carrying capacity of each frame by this proposed
design method when F, is changed. Since an
optimum design is made under F, alone, the
carrying capacity of each frame determined at the
critical sections of the two columns and the girder is
identical when F,=0, while it is determined in the
case of Fig.5b (a) by the carrying capacity of the
critical section of the left column for almost all the
range of F;/F,. As can be seen from Fig.6 (a), the
carrying capacity of the girder, when k=1, changes
abruptly when the axial force in the girder changes
from tension to compression and it determines the
carrying capacity of the frame for the range of
F4/F, between 0. and 0.003 2. At the same time,

the figure shows that, when k>1, the carrying
capacity is determined by the left column. The
value of k is determined by the condition that the
ultimate carrying capacity determined by one of the
three elements, i.e. the lower envelope of the three
curves becomes the maximum. For the range where
the carrying capacity of the frame is determined by
that of the girder, the amplification factor should
be applied to the girder so that the carrying
capacities of the girder and the left column become
equal.

For demonstration purposes, the value of k& was
selected for the entire positive range of F,/F, to
make the carrying capacity of the girder maximum.
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Fig.7 Difference in girder’s carrying capacity for cases (b)
and (c) by the change of sign of internal axial force

The resulting carrying capacity of the girder is
shown in Fig.6 (a) by the dashed curve. It is noted
that the carrying capacity of the girder with this
amplification factor becomes continuous even
when the internal axial force changes its sign.
Meanwhile, the carrying capacities of the two
columns decrease but their changes are insignifi-
cant. The carrying capacity of the girder has a peak
value when the maximum value of the bending
moment in the girder is minimum. Similar peaks
take place in the carrying capacity curves of the
columns for all the three frames when the
maximum values of the bending moment in the
columns are minimum.

Since reasonably large axial compression is
present in the girder at F,=0 for the frames of
Figs.5 (b) and (c), no such differences are present
in Figs.6 (b) and (¢) at F,=0. The internal axial
force becomes equal to zero and hence changes its
sign when F,/F,=—0.25934 and —0.50604 for
the frames of Figs.5 (b) and (c), respectively. The
abrupt changes of the carrying capacities deter-
mined by the critical sections of the girders similar
to that of the frame of Fig.5 (a) at F;,=0 is present
for the other two frames when the internal axial
force changes its sign. As can be seen in Fig.6 (b),
the magnitude of this abrupt change, however, is
very small for the frame of Fig.5 (b) and it occurs,
with a much smaller value, outside the considered
range of Fy/F, for the frame of Fig.5 (c).

These insignificant differences in the carrying
capacities of the girders of the frames of Figs.5 (b)
and (c) are due to the presence of large values of
bending stresses as a result of the conmsidered
dimensions of the frames resulting in a large value
of a. For the two frames, the share of the axial
stress term, i.e. the first term of Eq.(1), is very
small compared with the share of the bending stress
term, i.e. the second term. The change of the
geometry changes the shares of the first and second
terms of Eq.(1) resulting in a difference of the

value of @, and hence, of the carrying capacity
when the internal axial force changes its sign. To
demonstrate this phenomenon, the heights of both
columns were increased without changing the
sectional properties of all the three elements.
When the internal force changes its sign, the
difference in the carrying capacity at a critical
section of the girder increases with increasing
height. The decrease of the carrying capacity when
the internal axial force changes from tension to
compression is computed for these two cases by
changing the height and the results are shown in
Fig.7. This decrease can be reduced to zero by
employing the proposed amplification factor as to
be shown below for the case of the frame of Fig.5
(a). These examples, though they are very simple,
show the possible necessity of the proposed
employment of the amplification factor when
members subject to small internal axial force are
present.

6. SUMMARY AND CONCLUSIONS

The present design of steel compression mem-
bers and frames for in-plane stability failure utilizes
an interaction formula between stresses due to
axial compression and bending moments. A
reasonably consistent safety is expected in the
design by the formula provided that the effective
length and hence the slenderness parameter are
evaluated properly and that the variation of the
bending moment is not significant along the length
of an element.

A design procedure for members and frames is
presented by utilizing an eigenvalue analysis of the
tangential stiffness matrix and by defining the
effective length at each section along the length of
the members so that safety for in-plane stability
failure can be checked at each section.

The procedure has three main advantages
compared to the conventional design procedure.
Firstly, evaluating the slenderness parameter of the

|

9 (x77s)



A PROPOSAL FOR IN-PLANE STABILITY DESIGN OF
STEEL FRAMED STRUCTURES,”NISHINO - ATTIA

member using eigenvalue analysis means including
not only the boundary conditions and the rigidities
of the adjacent members, but also the pattern of
loading.

Secondly, safety check at sections implies
application of Eq.(1) or (2) for the case of a
member with equal end moments, i.e. the bending
moment is constant along the length of the
member, so that a better accuracy is expected
compared to the case with variable distribution of
bending moment along the length.

Thirdly, adopting the amplification factor con-
cept results in increased strength and, hence, in an
economical design as demonstrated in Numerical
Example (2).

Additional advantage is that safety checks for
both yielding and instability can be made simul-
taneously by one equation, present design proce-
dure requires separate safety checks for yielding
and instability, the former at all sections and the
latter for each member.

A possible drawback of similar previous works
for the case of a section subject to small internal
axial compression was overcome by adopting the
amplification factor concept, though it is most
likely that the change of the signs of internal axial
force may not influence the load carrying capacity
greatly as shown in Figs.6 (b) and 7 of the third
example. Also, the design procedure for members
and frames is clear as demonstrated in the example
of the stepped column for which no clear procedure
was established.

Neither material nonlinearity nor the presence of
residual stresses were considered but linear elastic-
ity of the material is assumed in the proposed
analysis. The essence of the proposed procedure is
to convert sections or arbitrary short elements of a
framed structure to equivalent pin-ended prismatic
members. This conversion makes it possible to take
advantage of the numerous experimental as well as
theoretical results available for the strengths of the

pin-ended members taking into accounts of all
these material nonlinearities and imperfections.
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