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EARTH PRESSURE ANALYSIS OF FILLED
MATERIALS BY DISTINCT ELEMENT
METHOD USING ELLIPSE MODEL

Satoshi KATSUKI*
and Nobutaka ISHIKAWA **

This paper presents an earth pressure analysis of filled materials of the steel-made Sabo
structure by using the distinct element method. The filled materials are firstly assumed
as ellipse models in the distinct element method. Then, the contact force between two
ellipse elements is calculated by using the Newton’s method and the difference equa-
tion of motion for the ellipse models is numerically solved by employing the Euler’s
method. Finally, the earth pressure of filled boulder is found by summing up the con-
tact force applying to the steel wall. The three examples are analyzed to illustrate the

validity and application of this approach.
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1. INTRODUCTION

Recently the steel-made Sabo structures have
been built in many places where erosion and
volcanic debris flow are seemed to be occurred. For
instance, a number of steel-made Sabo structures
have been adopted at Usu volcanic mountain area,
Hokkaido and Sakurajima volcanic mountain area,
Kagoshima in Japan. The steel framed Sabo
structures with fill materials have been designed by
using the following two methods in the current
design procedure”.

One method is to design the structure by taking
into account for only shearing resistance of filled
materials without frame, and the other method is to
design it by considering only the resistance of steel
frame without fill materials. In each method it is
necessary to evaluate how much the value of the
coefficient of earth pressure at rest should be taken
for the various kinds and arrangements of fill
materials.

There are, however, quite few studies on the
earth pressure of the fill materials, except the
pressure analysis” of rock-like granular materials in
silo by the distinct element method (DEM) using
circle particles?™.

To this end, this study presents the earth
pressure analysis of filled materials in the steel
framed Sabo structure by using the DEM. The
method firstly assumes the particles as the ellipse
model by considering the shape anisotropy of

* Member of ISCE, Dr.Eng., Research Associate,

Dept. of Civil Engineering, National Defense
Academy (1-10-20 Hashirimizu, Yokosuka, 239,
Japan)

** Member of JSCE, Dr.Eng., Professor, Dept. of
Civil Engineering, National Defense Academy

boulder or gravel etc..Then, the contact force
between two ellipse elements is calculated by
adopting Newton’s method and the difference
equation of motion for the ellipse model is solved
by making use of Euler’s method. Therefore, the
earth pressure of fill materials against frame wall
can be found by summing up the contact force. The
influences of arrangement and shape anisotropy on
the earth pressure of filled material against the
frame wall are examined. Finally, the effect of
arrangement of particles under the back storage
sand pressure on the earth pressure of filled
materials and the movement of elements is studied.
The following assumptions are made in this
study.
(1) A particle of the filled materials is assumed as
an ellipse model which is a rigid body.
(2) The normal and tangential springs and
dashpots exist between two particles.
(3) The tangential spring is assumed as the
elastic-perfectly plastic model for the slip condi-
tion.

2. DISTINCT ELEMENT METHOD
USING ELLIPSE MODEL

The distinct element method (DEM) proposed
by Cundall® can analyze the behavior of the soil
mass from the state of motion to the state of rest by
solving the equation of motion numerically. In this
section the distance and the contact force between
two ellipse elements are firstly derived and then,
the earth pressure analysis procedure is developed.
(1) Distance between two ellipse elements

Consider two ellipse elements ¢ and j with the
local coordinates (Xi, Y1) and (X;, Y3) as shown in
Fig.1. Using these local coordinates (Xi, ¥7) and
(X2, Y2), the points on the boundary lines of the
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Fig.1 Distance between two ellipse elements.

two ellipse elements ¢ and j are expressed,
respectively, as follows :

52 T2
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where,

a;, a; : the lines of apsides of the ellipse elements
7 and j,
the minor axes of the ellipse elements ¢
and 7, !
the local coordinate values on the bound-
ary line of the ellipse element i,
the local coordinate values on the bound-
ary line of the ellipse element j,

Herein, consider the contact problem between
two ellipse elements as shown in Fig.1. The contact
is defined as the existing of the intersecting points
between two elements ¢ and j. However, it is very
difficult to get the intersecting points by solving
Egs.(1-a) and (1-b) of two ellipse elements,
directly. Therefore, the distance L between two
ellipse elements 7 and j is defined by the following
procedure.

Consider an arbitrary point A(xo, #o) on the
boundary line of the ellipse element i. Then, make
the arbitrary local coordinate (X', Y”) in which the
X’-axis is the extended line connecting the center
point Oi(x;, y;) with the arbitrary point A(Zo, %)
and the Y -axis is the line with the origin A(Zo, %o)
at the right angle to the X’ -axis.

Now, express the point on the boundary line of
the ellipse elements j by the local coordinate (X',
Y.

At first, the local coordinate value (71, ¥1) of the
boundary line on the ellipse element ¢ is also
expressed by using Eq. (A-6) in Appendix I as
follows :

bi, b,'l
2, Y

2, Yz

Ti=a;cosltan"{(a/b;) tan(@—gbi)}]}
....( 2)

#i=b;sin[tan{(avb;) tan(6—¢,)}]
where,

6 : an arbitrary angle between the X’ -axis
and X-axis which is the global coordinate,

¢; : the angle between the X;-axis which is the
line of apsides of element 7 and the X-
axis.

Then, by transforming the coordinate from the
local coordinate value (Z:,%:) to the global
coordinate (X, Y), an arbitrary point A(x,, %) on
the boundary line of the element 7 is expressed as
follows :

.Z'G:i'_l cOSs ¢,-°z}] SiIl ¢i+.l',' }

yOZE sin ¢,+E cOos ¢,~+y,~

On the other hand, an arbitrary point P(z, ) on
the boundary line of the ellipse element j is
expressed by using the local coordinate value (x’,
y’) as follows :

x=x’"cos 08—y sin 6+x, }

y=x"sin 0+y cos O+,
where,

x,y: the value of the boundary line on the
ellipse element j in the global coordinate
(X, Y),

x’,y’ : the value of the boundary line on the
ellipse element j in the local coordinate
X, Y

This point P(x, ¥) can be also written by using
the local coordinate value (Zz,%2) in which the
origin exist in the center point of the ellipse
element j as follows :

I=T;Ccos ¢~ Y2 5in ¢; T }

Y=z sin ¢;+y2cos ¢ty
where,

2, ¥z : the arbitrary point value of the boundary
line on the ellipse element j in the local
coordinate (X, Y2),

¢, : the angle between the X,-axis which is the
line of apsides of clement j and X-axis.

Therefore, eliminating the global coordinate
value (z,y) from Egs. (4) and (5), the local
coordinate value (T,,%;) of the element j can be
expressed as the function of the arbitrary local
coordinate value (z’,y’) as follows :

T;=x  cos B~y sin B+R cos 7’}

%=x"sinfB+y cos+Rsiny
where,

R=V(@—z)*+ (yo—y)*
Zo=a;cos & cos¢;—b; sina sin ¢;+x;

L
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Yo=a;cos & cos@;+b; sin a sin ¢; +y;

a=tan"*[(a:/b;) tan(6—¢;)]

B=6—¢;

r=tan " "{yo—y) (xo—2)1—¢;

Furthermore, substituting Eq.(6) into Eq.(1-b),
the points on the boundary line of the ellipse
clement j are expressed by using the arbitrary local
coordinate (X', Y’) as follows :

(X’ cos B—Y’sin B+ R cos p)*

af

[ (X’sin8+Y cos B+Rsin 7’)2_1
} =
b}
.......................................... ( 8 )
Therefore, the distance L between the element ¢
and j can be derived by substituting ¥'=0 in
Eq.(8) and solving the quadratic equation with
respect to X’ as follows :
_ —(aiRsin Bsiny+biR cos Bcosy)
(a?sin’ B+ b7 cos?B)

x/(a}'R sinfsiny+ bR cosf cosy)®— (@} sin®B
(a? sin’B

L +bicos’B) (@iR?sin’*r+bIR? cos’r—a3b})
+b% cos?p)

~(7)

X'=L

(2) Contact judgement

The distance L of Eq.(9) is not the true distance
between the two elements ¢ and j, because the
angle 6 in Eq.(9) is not unknown yet. Therefore,
the minimum value of the distance L is required to
be taken with respect to the angle 6.

Herein, the contact between two elements 7 and
is judged by the condition that the true distance
(min L) becomes zero or negative. That is,

min L{G) SO -orevererenemmmn (10)
where,

min L(6) : the minimum value of the distance L

with respect to the angle &

The angle 6 when the distance L becomes the
minimum value is obtained by following condition.
AL() /A= ++ovevrrereermmramnionniiieniii, (11)

Eq.(11) can be solved numerically by using the
Newton’s method.

(3) Contact point and contact angle

Consider the element ¢ approaching to the
element j from the time #— A? to the time ¢ as shown
in Fig.2.

It is assumed that the contact point between two
elements is given at the intermediate point of the
intersecting line P1P;, when the boundary lines of
elements ¢ and j intersect each other at points P,
and P, at the time ¢ as shown in Fig.2. Herein, the

Fig.2 Contact judgement between two ellipse
elements.

contact angle is defined as the angle @ between the
global X-axis and the intersecting line P P,. It is
noted that the point values P, and P, can be found
by solving the equation L(f)=0 using the Newton’s
method.

It is also assumed that the angle 6; of P, is always
smaller than the one of P,. Futhermore, it is also
noted that the contact angle w is taken as shown in
Fig.2, but the contact angle is given as @' =w@—7 if
the elements ¢ and j are upside down.

(4) Displacement increments at contact point

When the two ellipse elements ¢ and j are
approaching each other from time ¢— A4# to time ¢ as
shown in Fig.2, the normal and . tangential
displacement - increments Awu, (positive if two
elements approach) and Adwus (positive if the
element rotates unclockwise) can be expressed as
follows :

Au,= (Au;— Au;) sin w— (Av;— Av;) cos w
—7:Agicos(6i—w) +rjAp; cos (6;— w)
.......................................... (12)
Aus= (Au;,— Au;) cos w+ (Av;—Av)) sinw
—7:4¢; sin(0;— w) +7;4¢; sin(6,— w)
.......................................... (13)

where, Au;, Au; are the horizontal displacement
increments at the center of elements 7 and j,
respectively ; Av;, Av; are the vertical displacement
increments at the center of elements ¢ and 7,
respectively ; A¢;, A¢; are the rotation increments
at the center of elements 7 and j, respectively ; 7;, #;
are the lengths from the center of the elements £
and ; to the contact point, respectively.
(5) Contact force

It should be noted that the elastic springs and the
dashpots are assumed at the contact point in the
normal and tangential directions as shown in Fig.3.
Therefore, the contact forces can be divided into

]
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Fig.3 Spring and dash-pot at contact point.

the components of the normal force and the
tangential force (positive if the element rotates
clockwise).

a) Normal contact force

The normal contact force at the time { can be
found by the spring force and the viscous damping
force as follows :

[fn]t [en] +[dn}t .............................. (14)

in which,
le.]i=len]i—s:t den
ld.],.=4d,
Ae,=k,Au,
Ady,=n,Au,/At

f» : the total force at contact point in the normal
direction, e,:the spring force in the normal
direction, d,:the damping force in the normal
direction, 4 :increment from [(—At to t, k,: the
spring coefficient in the normal direction, 7, : the
damping coefficient in the normal direction.

It is noted that the spring has no tension force
between two elements. That is,

lea],=1d,],=0 if [eg], <O -eereeemmeeme (15)
b) Tangent1al contact force

The tangential contact force can be calculated by
the following equation.

[fs]t:{es]t.i_[ds]( .............................. (16)
where,

[es]t [es] —artAes

lds],=4d;

Aes=kAu

Ads=ns4us/At
fs : the total force at the contact point in the
tangential direction, e,:the spring force in the
tangential direction, ds : the damping force in the
tangential direction, k;: the spring coefficient in
the tangential direction, 7,:the damping coeffi-
cient in the tangential direction.

It is also noted that the tension force is not
considered and the sliding effect is taken into
account as follows :

[es]l [ds]t O lf [en]t<0 ................ (17)

Lesl;=plea]: X SIGN ([es] ),
and [d;],=0 if [ed:>pleal:
where, £ is the coefficient of friction and SIGN(Z)
is the sign of variable Z.

As for the constant values k and 7, the following
equations are derived by using the radius 71 and 7,
at the contact point”.

2(1—1){2/3+1n j(zéi’l/B) +In (47/B)}
ks=ky s
0= 24/ ks
Ns=0n* \/E

kn=

where,

s : the ratio of the tangential spring coefficient to
normal one; m:the mass of element; B:the
contact width.

It is assumed that the contact width B is given
by the length between two contact points P, and
P, in Fig.2 and the radius » and 7, are given as
the radius of curvature at the contact point which
is obtained by the following equations.

l(a, sin?A;+ b2 cos?A) ¥
aib;

/Yi:tan"l{%:% tan(@,-—gb;)}

(6) Egquation of motion

For particle 7, forces are summed over all parti-
cles contacting with the particle ¢. Therefore, the
equations of motion for particle ¢ are expressed
as follows :

(i=1, 2)

(i=1, 2)

Ui 1 g e,

o m [x1, (20)

OV . L e,

ok - m; [v1, (21)

0%¢;

6;2 =% [M;‘L .................................. (22)
where,

[Xf],‘—"]z: {~ 1] sin w—[fs]; cos w}

[Yi=
[M],=

Z {[fuli cos w—[f]; sin w—mug)
Z {fal: sin w+[£], cos w) 7 sin 6

+([f,,],cos w—[fs]isin w) - #; cos 6;}
in which Z means the sum over all particles j

contacting w1th the particle i and m;g is the grav-
ity of particle 7. In order to solve Egs.(20)~(22),
the Euler’s method” can be adopted by making
the difference of them at time increment A¢,
numerically.

L
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CALCULATE :  Contact force
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o]

Fig.4 Analysis procedure.

Herein, the following two items are the fea-
tures of the ellipse element which are different
from the circle element. At first, it is noted that
the normal and tangential displacement incre-
ments Au,, Au; are affected by the rotation incre-
ments A¢;, Ag; in Egs.(12), (13) and, as such, the
rotational movement causes the normal and
tangential displacements.

Then, it is also noted that the rotational force
M; is influenced by the normal and tangential
contact forces f,, fs in Eq.(22) and, therefore, the
normal contact force as well as the tangential
force causes the rotational force. In the case of
circle element, the rotational movement does not
cause the normal displacement, and the normal
force can not cause the rotational force.

(7) Analysis procedure

Fig.4 shows the analysis procedure by the dis-
tinct element method. In this method the contact
judgement is limited on the neighboring elements
by considering the rule of arrangement.

3. NUMERICAL EXAMPLES

(1) Examplel:

In order to illustrate the wvalidity of the
approach, the earth pressure of 179 circle ele-
ments (@;=b;=a;=b;=7r) in the frame with the

La200cm 200kgf

NENLNE NS N2 N7
ZNINLNDNENS N N N N N L

LN A T O O B O B O

NSNS N

(b) Contact force
after filling

(a) Element arrangement
after filling

Fig.5 179 circle elements.

length L =2.0 m is calculated in the condition
subjected to the self-weight of all particles. The
radius of circle element is #= 7.0 cm and the
material constants are density p = 2.69 gf/cm®,
Poisson’s ratio y=0.3, Young’s modulus £ =750
kgf/cm?®, the ratio s= 0.25 and frictional coeffi-
cient ¢=0.577 (the friction angle=30°). Where,
those values are reffered to the parameters of the
reference 2).

The calculation has been begun from the un-
contact condition between elements and com-
pleted to the rest condition by using the time in-
crement 4¢=10""* sec. Fig.5 (b) shows the earth
pressure at the contact point of each element as
the resultant vector of contact force.

It is confirmed from Fig.5 (b) that the sum of
the horizontal forces is equal to zero and the sum
of vertical forces is equal to the self-weight of all
particles, respectively. It is also noted that the
qualitative result of Fig.5 (b) is agreed with the
ones obtained by Kiyama et al.” and, as such, this
algorithm is valid for the earth pressure analysis
of fill materials in the frame.

(2) Example?2:

In order to examine the effect of the shape ani-
sotropy, the four different types of particles as
shown in Fig.6 (a) have been calculated by using
the same material constants as Example 1.

Fig.6 (b) shows the relation between the height
of side wall and the earth pressure of filled mate-
rials. It is found from Fig.6 (b) that the earth
pressure in the arrangement of the flat shape of
particles (pattern A or B) is smaller than the one
in the case of the longitudinal shape of particles
(pattern D).

It is also noted that the earth pressure at the
bottom becomes smaller than the upper part,
since the bottom force is influenced by the fric-
tion of the bottom plate.

In these cases, the earth pressure is affected by
both of the shape anisotropy and element
arrangement. Here, the contact angle ® is de-
fined as the parameter considering simultaneously

]
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after filling and earth pressure

Fig.6 Earth pressure of side wall at natural pile of
filled materials.

both of the shape anithotropy and the element
arrangement. Therefore, the relationship between
the earth pressure and the contact angle w has
been examined.

Fig.7 shows the relation between the coeffi-
cient of earth pressure and the contact angle w.
The coefficient of earth pressure is calculated as
follows :

_Ou _ P, h/d

K- Oy - Ovmax'h/H
in which, P, is the contact force of the element
contacting to the wall ; d is the mean distance be-
tween the elements contacting to the wall ; Oumax
is the vertical pressure at the bottom due to the
whole filled materials ; % is the height from the
bottom plate to the element corresponding to the
contact force P, ; H is the height of whole filled
materials.

It is found from Fig.7 that the coefficient of
earth pressure becomes K=0.2~0.3 in the case
of pattern A, K=0.6 in pattern C and K=1.2~
2.0 in pattern D.

It is also poted that the coefficient of the earth
pressure is dispersed because of the use of DEM,
although it should be constant in the case of the

........................... (23)
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Fig.7 Relation between earth pressure coefficient and
contact force angle w.

Rankine’s theory.
(3) Example 3 :

The steel-made Sabo dam is generally sub-
jected to the horizontal force from back wall as a
back storage sand pressure. Herein, in order to
examine the case subjected to the back storage
sand pressure, the earth pressure to the wall has
been calculated by changing the arrangement and
angle of particles as shown in Fig.8(a). It is
assumed that the back storage sand pressure
directly applies to the back side boulders as
shown Fig.8 (b), and the steel frame is modeled
as the rigid rectangular frame. Fig.8 (b) shows
the earth pressure at the contact point of particle
as similar manner as Example 1.

It is found from Fig.8 (b) that the earth press-
ures in the case of patterns A and B have diagon-
al force to the lower direction and become larger
at the bottom in the frame. In the case of pattern
C the contact force becomes larger at the upper
part in the front wall. It should be noted, howev-
er, that the contact force of pattern D is diagonal
force to the lower direction in a similar way as
patterns A and B. On the other hand, it is found
from pattern E in Fig.8 (b) that the earth press-
ure to the front wall is uniform at each height in
the frame.

Consequently, the earth pressure transmission
in the patterns A, B and D change direction of
principal pressure from horizontal to the lower
direction, but the one in the patterns C and E
can not change the direction of principal press-
ure. Therefore, the pressures in the front wall of
patterns A, B and D are smaller than those in
the case of patterns C and E, respectively. Furth-
ermore, Fig.8 (¢) shows the relation between the
wall height and the front wall earth pressure per
back storage sand pressure. It is also found from

16 (60s)
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Fig.8 Earth pressure of elements under back storage sand pressure.

Fig.8 (c) the earth pressure in the patterns A, B,
D shows a triangular distribution. This means
that patterns A, B, D are good arrangements for
the frame because the frame resists as a cantilev-
er in the case of back sand pressure and the re-
sistance in the upper part of the front wall is
smaller than the one in the lower part.

4. CONCLUSIONS

The following conclusions are drawn from this
study.
(1) By introducing the ellipse model in the
DEM, the earth pressure can be analyzed for the
fill material in the steel frame Sabo structures.
(2) The computational validity of this method
has been confirmed by using 179 circle elements.
(3) The earth pressure in the arrangement with
particles of flat shape is even smaller than the
one in the case with particles of longitudinal
shape.
(4) It should be noted that the coefficient of

earth pressure becomes K=0.2~0.3 in the flat
shape arrangement, and K = 0.6 in the circle
shape arrangement.

(5) In the case of the uniform sand pressure,
the earth pressure in the flat arrangement of
particles becomes diagonal force to the lower
direction and, therefore, it is very efficient
arrangement because of the smaller resistance in
the upper part of the front wall.
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APPENDIX I

The point on the boundary line of ellipse mod-
el is usually expressed by using the polar coordin-
ate as shown in Fig.A-1 as follows :

- LA P (A-1a)

17 (618)



EARTH PRESSURE ANALYSIS OF FILLED MATERIALS

BY DISTINCT ELEMENT METHOD USING ELLIPSE MODEL /KATSUKI - ISHIKAWA

——
N

Fig.A-1 Ellipse in the polar coordinate.

Fig.A-2 Ellipse in the rotate coordinate.

y=bsin LR T PP (A-1b)
where, 6 : the dummy angle variable which is
defined by the following equation (A-3).

Dividing Eq.(A-1b) by Eq.(A-1a), the ratio
of y to x is given.

Yo (A-2)
r a
Therefore,
rm =LA -
0—~tan‘(m b) (A-3)

On the other hand, y/x also can be expressed
by using the angle f as shown in Fig.A-1 as fol-
lows :

where, B: the angle between the line which
connect the origin point with the arbitrary point (z,
¥) and z-axis, i.e. the apsides of the ellipse
element.

Substituting Eq.(A-4) into Egs. (A-1), (A-2),
(A-3), the point (x,y) on the boundary line of
ellipse element is expressed as follows :

T=a cos [tan"l(%tan B)] ................ (A-5a)

y=bsin [tan“‘(%tanﬁ)] ................ - (A-5b)

When the local coordinate in which the x-axis
coincides with the apsides of ellipse element ro-
tates as shown in Fig.A-2, the angle 8 becomes

B=0—¢.

Therefore,

Z=a cos [tan'l{%tan(@“@}] """"" (A-6a)

y=bsin{tan“{%tan(0—¢)}] ~~~~~~~~~~ (A-6b)

1))

2)

3)

4

5)

6)
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