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ELASTIC BUCKLING STRENGTH AND POST—
BUCKLING BEHAVIOR OF A PANEL UNDER
UNEQUAL BENDING AND SHEAR

Masatoshi NAKAZAWA* Tetsuo INAKUMA*™*
and Shigeru KURANISHI***

The main objective is to investigate analytically the elastic interactive buckling strength
and the post-buckling behavior of a simply supported panel subjected to combined
loading of bending and shear. Special attention is paid to the effect of unequal end mo-
ments at both-side of a panel, which appear in the actual girder structures. The buck-
ling modes are found to be governed mostly by the shear buckling mode. A simple-
form formula to predict the buckling coefficients under combined unequal end mo-
ments and shear is proposed for the practical use. Moreover, the elastic post-buckling
behavior and stress distribution are also discussed.

Keywords: combined loading, interaciive buckling strength, post-buckling behavior,

Galerkin's method

1. INTRODUCTION

A large amount of experimental and theoretical
works have been carried out to investigate the
behavior of panels in a plate girder subjected to
shear forces and bending moments, and many
useful findings have been accumulated. Although it
is possible in the actual girder structures that a
girder section is subjected to bending moment
alone, the pure shear loading state never exists,
because the shear force in a beam theory is
equilibrated with the rate of change of the bending
moment distribution. In other words, the existence
of shear forces essentially requires non-uniform
bending moment distribution in the longitudinal
direction. Thus, most of the panels in the real plate
girder structures are usually subjected to combined
loading of bending moments and shear forces.
Therefore, the true strength of plate girder must be
discussed under these combined loading condi-
tions.

Stein®, Chwalla?, Timoshenko” and Way® have
presented the interactive buckling strength dia-
grams of a simply supported panel, but they are
limited to apply for the cases of the equal end
moments and shear forces. This unrealistic but
simple loading condition is employed probably for
a conservative estimate. Another researchers®™
carried out the buckling analysis of web panels
under different loading conditions and boundary
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conditions.

On the other hand, Radulovi¢" investigated the
elastic buckling stress of a rectangular flat plate
under the combined action of unequal end
moments and normal force, which vary linearly in
both directions. Galerkin’s method is applied to the
fundamental equation by Kérman under Navier’s
boundary condition for simply supported edges. He
extended this analysis to a rectangular plate
reinforced by a system of transverse elastic
stiffeners™. Moreover, this linear buckling prob-
lem is developed for a longitudinally stiffened
rectangular plate” and both longitudinally and
transversely stiffened plate™ with the effect of
torsional rigidity of stiffeners. Radulovi¢ presented
the method of calculation in these papers, however
the characteristics of the interactive buckling
strength has not been discussed sufficiently.

Kutzelnigg" calculated the diagram of buckling
coefficients for the unstiffened web plates of
continuous I-girder under the action of unequal
end moments and shear. However, the special
attention is paid for the effect of torsional rigidity
of flanges for the interactive buckling strength. The
typical analytical models corresponds to the
conventional loading case of pure bending and pure
shear and to the case of end shear panel, and there
are not intermediate cases.

Takeda et al.” studied the elastic buckling of
plate girders loaded with the unequal end moments
by the finite difference method. The simultaneous
buckling of the flange and web is analyzed by
means of the theory of orthotropic plates, and the
relationships between the flexural and torsional
rigidities of the flange and lateral buckling strength
are investigated in detail.

Hence the actual interactive buckling strength of
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plate girder webs with unequal end moments and
shear forces has not been evaluated sufficiently yet.
In addition, the investigation of the post-buckling
behavior of a panel subjected to such a loading
does not exist at all. The main purpose of this study
is to investigate analytically both the elastic
buckling strength and post-buckling behavior of a
web panel. Special attention is paid to the effect of
the realistic combined loading of bending and shear
in the actual plate girders. This analysis includes
the combined case of pure bending and pure shear
in order to compare with the case of unequal
bending and shear. Moreover, the elastic post-
buckling behavior, the stress distributions, and the
principal stress distributions are discussed.

2. BUCKLING ANALYSIS OF A PANEL
SUBJECTED TO COMBINED UN-
EQUAL BENDING AND SHEAR

(1) Governing equations for buckling
analysis and critical moment

For the buckling analysis of a flat plate, it may be
straightforward to examine the incremental
changes of the strain energy and external work at a
critical state when the plate is subjected to the in-
plane stresses. Let w (z, ) denote the out-of-plane
incremental deflections of the middle plane at
buckling. Then, the incremental strain energy AU
induced by the bending of plates and the in-
cremental external work AT done by the pre-
existing stress components in the middle plane can
be expressed in the following form' :

su-bo f((Gee 3y

-2 (1—9)[azw 62w"( 0"w )z” dzdy

dx? gy® \0x0y
......................................... (l-a)
ar=yt[ [lo=(G2) +odl 5)
+27w%% %—Z] dxdy
......................................... (lfb)

where ¢ and D= E1*/12(1 — v*) are the plate
thickness and the flexural rigidity of the plate,
respectively. E is Young’s modulus and v is
Poisson’s ratio. 0z (2, ¥), 0, (z, ¥) and 7y (z, ¥) are
the in-plane stress components and are treated as
applied forces. These stress components are related
to the Airy stress function F(x, y) as
_0F __QF ___0*F
oy’ 7 ozt ™ owdy
Let four sides of a rectangular plate in Fig.1 are
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Fig.1 A web panel subjected to unequal end moments
and shear force.

simply supported, and the buckled deflection can
be assumed by a double-Fourier-series form as

wz, P=t> ibmnsin<%>sm<w>

m=1n=1 b

where m and # are the number of half-waves in the
x-and y-direction, and b, are unknown coeffi-
cients to be determined.

The stress function F (x, y) must be determined
to satisfy the actual combined loading condition of
the unequal end moments and shear along edges.
We here consider a problem in which the plate is
subjected to pure shearing stress and unequal
bending moments M; and M, at both sides as
shown in Fig.1. Then, the mechanical boundary
conditions given by the stress resultant forces can
be expressed as

b
M= ~—tj; oz (x=0) (y~g) dy,

b
M=—t 0. G=a) = Dyay---- (4-a,b)
fboxdy:O along £=0, @--eeorereereens (4-¢)
0
O.yzo along y:O, Borererennnieenans (4..d)
Toy™ 14 along y=0, booeerrneeieinns (4'6)

where 7, is the applied pure shearing stress
component. The boundary conditions of Eqs. (4-a
~e) can be satisfied if the Airy stress function F (z,
y) is chosen as

F(x, »
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in which non-dimensional parameters

= Ta
Ox2

are introduced to express the applied loading
ratios, where 0, is the maximum normal fiber
stress at the right-hand-side edge. These -para-
meters are not independent in the actual plate
girder, and this relation is given by w={(1—7)
va/at, where 7, is the ratio of cross-sectional area of
flange plate A; and web panel ; i.e. y1a=A,/(bi). a
is the aspect ratio defined by a=a/b. Although @
is the dependent parameter with y as mentioned
above, we adopt this one in order to cover the
general cases including the conventional loading of
pure bending and pure shear. Note that the
substitution of Eq. (5) into Eq. (2-¢) yields the
parabolic distribution of the shear stress compo-
nent along x=0,a as shown in Fig.1.
Substitution of Eq. (3) into Eq. (1-a) yields
_m*abt’D & 2 2(11_4_"’_ _2>2
4y 3 manébm a? +b2
Similarly, by substituting Eqgs. (2) and (3) into Eq.
(1-b) using Eq (5), we finally obtained

n
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where a prime on 2. indicates that the summation
of i and j are taken only when (m=i) or (ny) is
odd.

The out-of-plane equilibrium condition requires
that the incremental potential energy (AU—AT)
becomes stationary for given M,. Therefore, all
derivatives of (AU—AT) with respect to all bu.’s
must vanish. As a result, the governing equations
for the buckling analysis are obtained as

byun(m*+aPn ﬁ“‘z%z
sy [1924° _ 2mm'j (m*+1%
Z? ; bz‘j{ b2 Azer (1 T)[(mz_iz)Z(nz_jz)z

mnij (n?+37% T
@2 —m?) (n*—j*?*
192(1 mnij
b3 4 ( 2_m2) (nZ__]'Z)
form,n=1,2,3,... (9)

where A, is the non-dimensional critical moment
defined by

o= M

iymn (2307 ]
(mZ_Z‘Z) (1'2_"2)3

=0

/1267’

..................................... (10)

Since Eq. (9) is a system of homogeneous
equations for bu», the ordinary eigenvalue analysis
for a non-trivial solution of b,,’s determines the
critical moment.
(2) Critical stresses

From the critical moment obtained in the
preceding section, one can define the critical
normal stress by the maximum value of o, as

_6M)., _6D
O'Zm':-bz—;[_—b‘;;/z%r ....................... (11)
Let o,,* denote the critical stress in pure bending,
and from Egs. (6) and (11)
O = igxnr (T:szo) ................ (12)

In the next section, the buckling strength will be
examined in terms of the non-dimensional critical
stress using Eq. (12) ; i.e. 0u/ 00,

It may be straightforward to define the critical
shear stress by the critical value of 7, from Eq. (6) ;
ie.

(My)er=

(za) 67:% ; /ZZM WOy

b2
However, Eq. (13) does not take the effect of non-
uniform bending moment into account. As is clear
from substitution of Eq. (5) into Eq. (2-¢), the
shear stress distributes parabolically in the y-
direction. This represents the shear component
induced by the different end moments in a beam
theory. Since the shear stress distribution in plate
girder structures is calculated including this effect
of non-uniform bending moment, it is reasonable
to define the critical shear stress not by Eq. (13) but
by the average shear stress acting along the y-axis
as

(o= (3 [ vaty) =D [LT+52) 2,

b*t
.......................................... ( 14 )
While the second term of Eq. (14) coincides with
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Fig.2 Interactive buckling strength diagram.

Eq. (13) and corresponds to the pure shearing part
of the shear stress, the first term is the component
which is in balance with non-uniform bending
moment. Similarly to the normal critical stress, the
shear stress is expressed in non-dimensional form
by using the pure shear critical stress 7.,* defined
by
e = () er

2
(M2=O, W% or wx?zcr-*“—b tG(E)N>

in the next section.

(3) Interactive buckling strength diagram

The buckling analysis of Eq. (9) is carried out for
extensive combination of parameters. In the
calculations, only the first 4 terms of each series are
used basing on the examination of the convergency
check. Fig.2 (a) ~(d) show typical interactive
buckling strength diagrams. In these figures,
coordinates are the non-dimensional critical stres-
ses defined in the preceding section. As is clear
from definitions in Eq. (6), 7 is the ratio of end
moments, and @ denotes the ratio of the applied
shear stress and the bending fiber stress.

In Fig.2 (a), when 7 0.0, interaction curves
become almost straight in both diagrams in terms
of 7, and 7,,. This tendency holds for other values
of aspect ratio @, because the shear force governs
the buckling strength most in this range of 7. It can
be also seen from the figures that the curve for y=

0.0 lies in the conservative side of all the critical
states for y <0, if the interaction curves are plotted
in terms of 7,. Therefore, in the following
discussions, 7 is limited within the range of 0.0=y
=1.0. As a matter of fact, the actual range of
parameters in the real plate girder structures may
be 0.0=7=1.0 and 0.0=w=27, when a=0.5.

In the figures using (7,)c,, for smaller w, namely
the bending moment is relatively dominant, the
larger buckling strength is obtained. Moreover, the
larger the difference of end moments becomes, the
higher the interactive buckling strength becomes.
Therefore, the conventional equation” ™ shown
by a dashed curve in the figures leads to a much
more conservative design if the bending is larger
than shear. On the contrary, for larger w, namely
when the shear force is relatively dominant, the
interactive buckling strength becomes lower than
the cases of the equal end moments owing to the
secondary shear stresses induced by the increase of
moment gradient. The larger difference of end
moments yields the lower interactive buckling
strength than the conventional equation. There-
fore, we can not express the actual interactive
buckling strength by the conventional equation
using (7a)er.

On the other hand, if the critical shear stress is
adjusted by 7, including the effect of unequal
moments, the conventional circular curve almost
liés in the conservative side of the critical buckling
strength. The effect of unequal moments is taken

L
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Fig.3 Relationships between buckling coefficients Ko
and aspect ratio a.

into account by the first term of Eq. (14). This
result strongly suggests that the critical shear stress
in design should be evaluated by 7, rather than 7,
for the interactive buckling strength, and supports
the validity of shear force calculated in Ref. 20).
(4) Buckling coefficient

Fig.3 shows the relation between the aspect ratio
a and the buckling coefficient ks, defined by

_6 M)

kn=="51 (16)
As @ becomes small, the buckling coefficient is
likely to be influenced by the higher-order buckling
modes of bending type. This effect can be clearly
recognized especially when @=0.0 and 7=1.0. As
 becomes larger, the smooth and monotonically
decreasing curves are obtained. This indicates that
the shear buckling mode becomes dominant in the
interactive buckling phenomena. The conventional
loading of pure bending and pure shear yields the
most conservative buckling strength. This fact
stands by the validity of conventional calculation of
the interactive buckling strength in the engineering
sense.

From a practical point of view, it is quite useful
to express the buckling coefficient kg, explicitly in
terms of a, 7 and w. By the analogy with the
conventional formulas to predict the pure shear
and pure bending buckling strength, we choose the
following expression :

/Cazzg‘l“*‘dz .................................... (17)

aZ
At first, the original curves in Fig.3 are redrawn
approximately by the smooth envelopes. These
envelopes are then regressed in the form of Eq.
(17) to obtain the coefficients a; and g as tabulated
in Table 1. Next, these coefficients are again
regressed in terms of 7 and w. If a cubic polynomial
is chosen for 7 and w, the obtained expressions for
a; and a, are given by
for 0.0=w=0.5 :

a1=2.240—1.5677+5.929w—2.4487*
+8.890w?+3.0797w+1.9627*—4.1057%w
+8.1367w?—30.051w* [0.995],

a,=29.750—0.4797—53.595w—4.0107*
—25.653w?+28.587rw—1.4647°
+12.2207%w—54.79170*+107.976 w*
[0.999] .............................. (18-a,b)

~ for 0.5<w=4.0 :

a1=4.817—2.011w—0.9677%+0.274w*
+0.7247w+0.28272w—0.1887w?* [0.997],

a,=18.205+1.474w—21.442w+0.2337*
+9.3360*—1.18670w—0.1527+0.201 yo?
—1.259® [0.999] +ereeeeeeee (18-c,d)

in which @120 and @,=0 must be kept in both
cases. The numerals in [ ] give the correlation
coefficients. The effective range of 7, w and « in
the above equations are 0<7=1.0,0=w=4.0 and
0.5=a=3.0, respectively. The estimated buckling
coefficients ks by Egs. (17) and (18) are also
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Table 1 Regression coefficients @; and a,.

w 0.0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 2.0 4.0
Y=0.0 ay 2.249 2.463 2.935 3.583 3.903 3.999 3.854 3.714 3.376 3.049 1.969 1.124
a, 29.746 27.303 23.973 18.509 14.506 11.577 9.726 8.261 6.307 5.076 2.529 1.248
v¥=0.2 a, 1.937 2.029 2.654 3.591 3.857 3.981 3.906 3.785 3.456 3.125 2.010 1.140
a, 29.389 27.608 24.422 18,622 14.946 11.983 9.965 8.440 6.413 5.144 2,542 1.250
Y=0.4 ay 1.467 1.517 1.985 3.098 3.598 3.835 3.853 3.774 3.487 3.170 2,046 1.154
a, 28.328 27.250 24.624 19.281 15,419 12.357 10.215 8.633 6.533 5.221 2,557 T.252
¥=0.6 ay 0.958 0.974 1.445 2.583 3.275 3.570 3.695 3.679 3.464 3.180 2.075 1.168
a, 27.126 26.551 24.490 19.524 15.509 12.690 10.462 8.836 6.664 5.309 2.575 1.255
¥=0.8 a, 0.528 0.590 1.044 1.975 2.865 3.255 3.450 3.507 3.388 3.153 2.097 1.181
a, 25.615 25.150 23.432 19.305 15.593 12.860 10.686 9.034 6.805 5.405 2.596 1.258
Y=1.0 ay 0.315 0.435 0.776 1.588 2.381 2.898 3.136 3.277 3.262 3.090 2.111 1.192
a, 23.623 23,201 21.966 18.739 15.495 12.803 10.833 9.213 6.947 5.510 2.619 1.261
Remarks : koo = Z% ta, Oer = kGZ TE%;%ij(%)z
[k ,]: Duckling coefficients, [a]: aspect ratio of a panelja/b, [B]: depth-thickness
ratlo;b/t, [y]l: ratio of unequal end moments;M1/M2, [wl: ratio of applied bending

stress and shear stress;T /0 ..
a’ xR

shown in F'ig.3 by the dashed curves. These curves
can estimate the actual buckling coefficients fairly
well, but unconservative estimation occurs in some
cases. However, these errors can be diminished by
the choice of the higher-order polynomials.

Furthermore, Fig.4 shows the relationships
between the normalized buckling mode by, and .
The case of w= o0 corresponds to the pure shear
condition, and the case of @=0 to the bending with
no external shear forces. Each mode approaches
rapidly to that of pure shear buckling mode as w
becomes large. Therefore, the interactive buckling
phenomena is governed mostly by the shear even
when the bending moments are acting.

3. POST-BUCKLING BEHAVIOR OF A
PANEL UNDER COMBINED LOADING

(1) Analytical solution of Marguerre’s equa-
tion
Marguerre’s equations®™ for the plate bending

(et + 2 5

Since the four edges are simply supported, the
deflections can be expressed in the same manner as
Eq. (3) by

o oo

we= tmaglamsm(mnx) sm(%) s
w=t§: ibmsin(mmc) sm(w)

m=1n=1

(20-a,b)
where an.’s are given quantities of the initial
deflection, and b,.’s are the unknown coefficients
to be determined. In this case, the expression of F
can be obtained by addition of the homogeneous
solution Eq. (5) and a particular solution corres-
ponding to the right-hand-side of Eq. (19-b) using
Eq. (20) as

with relatively large deflection are expressed in (24°—3by?) P
terms of the out-of-plane deflection w (x, y), initial F=t - xy— b3 {Ml+ (MZ_Ml)E}
deflection wo (x, y) and stress function F (x, y) as )
N prx qry
wo=L[O°F 0*wtu) | O°F 0wt w) TEL 2 ?@qc"s( a )COS( L)
Viw=s|—"——""""+—"""—"" p=0g=0
Dl gy 0x* Ox®  OY® (21)
_, 92F 62(w+wo)] It should be noted that a mechanical boundary
0z0y Dby dition of Eq. (4-d) is here relaxed to [ o,dz=
....................................... (19-a) condition of Eq. (4-d) is here relaxed to | o,dr=
PAF= E{[az(erwo)]Z_ 0*(wtwy) 0*(wtwy) 0. Then, Eq. (21) satisfies all the boundary
00y ox? oy’ conditions of Eq. (4) in this sense. The elongation’
in the z-direction results in a linear function of y as
L
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“0u
0 ox

= [ {Eevo—5(5) - (5) (52
= ——lﬂga(;b; b (v, +My)

[#]sa— (] z=0= dx

2.2 0 o

8(1 m=1n=1
Substituting Egs. (20) and (21) into Eq. (19-b), we
obtain the expression of ¢, in terms of @y and
by aS

b2 2q? 2 @ mew
B ( +A;0( ) Ppe= 2 2 2 2 @mnbii+ bunttis
24 m=1n=1i=1j=1

+ Bnbiz) (2mnii = (w22 +n*%}

or ,
p=Im—il and ¢g=1In—jl/2
p=Im—il and ¢g=m+j5/2

or
p=m+i and g=1n—jl/2

where p and ¢ are positive integers. Final equation
to be solved with Eq. (22) can be obtained by direct
substitution of Egs. (20) and (21) into Eq. (19-a),
but becomes too complicated. Therefore, Galer-
kin’s method'? ™2 is applied to Eq. (19-a) as

f e

LO°F 0wt wy) _, 0°F az(w-l—wo)”

1 p=m+i and q=m+j/2

+

>

ox? ayz c axay ax(')‘y
sm(ﬂf}) sin(ﬁ%ﬁdxdy:o, rs=123,....
......................................... (23)

By substituting Eqs. (20) and (21) into Eq. (23) and
integrating it, we obtain the following fundamental
equations :
7{4
4a?

(r*+a®s?)b,s

6t A Z (@t b L[ (=5 —1]
n*Ss (n —32)2

+—§Z%<xz—zo 33 (Gt ) -

MEYNFS
mnrs (rs*—m’n’+3n’r>—3m’s?) |
(7.2__7}42)2(52"_”2)3

[(—D"7=11[(— D" —1]
+2a'/23 Z Z (amn+bmn)

MEYRFS

mnrs .
(rZ“mZ) (SZ___nZ)

[(=D)™r—11[(=D"*~1]

_“2_(1 - ))2) 7t Zl Z} (amn+ bnm) .

{Im (nt+s) —n m+11Pparnts

—[m (n+s) —n =11 Pnr2ss

—[m (n+35) +n (r—m) > Gromzts

—[m (n—5) =n (m+11Pprr 2z

+Im (n—9) —n (m—1)1*Ppn-rs=s

+m (n—s)+n (r—m) > ¢romn=s

—Im (s—m) +n (m+1) 1 Pnirss2

+Im (s—n)+n =11 ¢n-rs52

+Im (s—n) —n (r—m)1*Gr-ms32}

=0, 7,5=1’2’3’ .............................. (24)
where ¢,,’s are zero when p<0 or ¢<0, and the
following non-dimensional expressions are intro-
duced :

2
212%, ]25_‘%&’ zsgf%j_ .......... (25_a)
Then the parameters in Eq. (6) can be rewritten as
T:%’ w:—6i;;- ............................ (ZS“b)

Eq. (24) results in a set of third-order simultaneous
algebraic equations of bun, and the Newton-
Raphson method is employed to solve. Substitution
of obtained b, into Eq. (20-b) yields the out-of-
plane deflection in the post-buckling state.

(2) Post-buckling behavior

In the series above, the first five terms are used
in this iterative calculation. This choice yields less
than 1 % difference in deflection and 9 % error
locally in maximum stress from those results
obtained by using seven terms. Load increment is
set 1.0 X M,/D in order to avoid the numerical
instability and adjusted to be 0.5X M,/D if neces-
sary.

Fig.5 shows typical load-deflection curves after
buckling when w,=0. The deflection is calculated
at a point, z=0.35a and y=0.70b, indicated by a
dot in the inset of the figure. After buckling, the
out-of-plane deformation begins to develop, but
the deflection paths are smooth. Fig.6 also shows
similar curves for a different set of parameters, but
a jump is observed when w=0.1333. There exists
an instability point™ on this path beyond the
buckling load, and further investigations are
required for complete understanding.

Typical deformed configurations are shown in
Fig.7 with those in the case of the pure bending
and pure shear loading. In the case of combined
loading, deformed configuration is composed of
the mixed mode of bending and shear, and is
greatly affected by the parameters @, 7 and ®.

Fig.8 depicts the distributions of the stress
components 0z, 0y and 7y along the several
sections inside the panel. These stresses are
normalized by the tensile yield stress oy =235
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Fig.5 Typical load-deflection curves
after buckling for given @.

{a) pure bending state
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Fig.7 Deformed configurations of a panel after
buckling.
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Fig.6 Typical load-deflection curves
after buckling for given 7.
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Fig.8 Stress distributions of a panel after
buckling.

MN/m’ to evaluate what extent the nonlinearity of
stress distribution appear before the yielding of
material. The bending stress ¢, no longer distri-
butes linearly after buckling, and the stress
redistribution occurs in the upper half depth of the
section where the compressive stresses are acting in
advance of the yielding. Since this analysis is
limited for a web panel, the effect of flanges may
cause somewhat different stress distribution in the
actual plate girders.

The transverse stress component ¢, becomes
larger after buckling, and becomes in the same
order of magnitude of the other stress components.
The shear stress 7, always satisfies the mechanical

boundary condition, but varies inside the panel as
shown in Fig.8 (¢).

Fig.9 shows the development of the principal
stresses at the center of a panel (x=0.5a, y=0.5b).
While the tensile principal stresses increase mono-
tonically, the compressive principal stresses in-
crease up to the buckling load and then decreases
its slope. In both cases of a=0.75 and w=0.133 or
a=1.25 and w=0.5, somewhat different behavior
is observed ; i.e. the curve is non-smooth when the
larger bending moment is applied. There again
might exist an instability point like in Fig.8.

The principal stress distribution for the case of o
=1.25, y=0.6, @=0.5 and M,/D=50 is repre-
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Fig.9 Development of principal stresses.

Fig.10 Principal stress distribution.

sented in Fig.10. Since the compressive principal
stresses are concentrated near the joint region
between the compressive flange and the web plate
due to the stress redistribution after buckling, the
yielding will generally be initiated at this portion.
Furthermore, the so-called gusset plate action is
observed in the upper corner region of the left-
hand-side on which the smaller end moment M; is
applied. Namely, larger compressive principal
stresses co-exist with the tensile ones in this corner.

4. CONCLUSION

In order to examine the realistic behavior of a
panel subjected to the combined unequal bending
and shear in the actual plate girder structures, an
Airy’s stress function is derived, and the buckling
strength and post-buckling behavior is investigated
semi-analytically.

(1) When the applied shear stress is correctly
evaluated by 74 including the effect of unequal
moments, the conventional interaction formula
almost gives the conservative buckling strength.
Therefore, it is suggested that the applied shear
stress should be always defined by 7, for the
interactive buckling strength. Moreover, a simple-
form formula to predict more exact buckling
cocfficients under combined unequal bending and
shear is presented.

(2) In the most interactive buckling phe-
nomena, the shear mode is dominant. Each mode
approaches rapidly to the pure shear buckling
mode as @ becomes large. The out-of-plane
deflection after such a buckling is composed of the
mixed mode of bending and shear.

(3) After buckling, the bending stress distribu-
tions o, show the lack of compressive stresses in the
upper part of the panel depth due to the

redistribution effect. The shear stress 7z, always
satisfies the mechanical boundary conditions at the
boundary and shows a little disturbed distributions
inside the panel. On the other hand, the transverse
stress 0, emerges after buckling and can not be
neglected any more.

(4) The principal stress distribution shows the
stress concentration near the joint region between
the compressive flange and the web plate, which
will cause the initiation of yielding. The gusset
plate action is also recognized in the corner region.
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