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OVERALL MODULI OF HETEROGENEOUS

ELASTIC MATERIALS

Muneo HORI* and Takashi MIURA**

The estimate of overall behaviors of heterogeneous or damaged materials has been one
of major concerns for engineers of various fields. From a micromechanical point of
view, identified are fundamental relations among the average field quantities from
which overall responses of the materials can be determined. A new estimate method
called the finite part approximation is proposed which may overcome deficiencies of
existing estimate methods. A solid damaged by microcracks is considered as an illustra-
tive example, and the overall moduli estimated by the proposed method are compared

with those predicted by the existing ones.
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1. INTRODUCTION

Estimate of overall or effective properties of
heterogeneous materials, such as composites,
concretes, rocks, or damaged solids, has been
investigated by a number of researchers ; see
Christensen® and Hashin? for literatures, and
reference® for civil engineering materials.
Although these materials consist of sets of
inhomogeneities in a micro-scopic length scale,
they can be regarded as homogeneous if viewed in
a macro-scopic length scale sufficiently larger, say,
10° or 10° times, than microconstituents ; see Fig.1
and Hill®. Hence, the overall material properties
can be determined by relations among the macro-
scopic behaviors which are represented by average
responses of microconstituents. In particular, if all
microconstituents are linearly elastic, the overall
(elastic) moduli can be defined.

From this physical observation, it is seen that a
reasonable estimate of the overall moduli requires
to analyze responses of each microconstituent and
to take volume average of them. Two kinds of
mathematical models for this purpose have been
studied, a representative volume element (RVE)
model and a periodic structure (PS) model. They
are summarized as follows:an RVE model consid-
ers a finite body with statistically random micro-
structures, and estimates the overall moduli in a
simple analytical expression with the aid of exact
solutions of elasticity ; on the other hand, a PS
model deals with a material with a periodic
microstructure, and computes the overall moduli
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Fig.1 Heterogeneous material and finite body.

using Fourier expansion, which requires tedious
numerical computational efforts.

In this paper, we consider averaging schemes
used in RVE modeling, which can be divided into
the following two categories:the one to estimate
exact values of the overall moduli and the other to
estimate bounds for the over moduli. The former
includes, for example, the law of mixture, the
dilute distribution assumption, or the self-consis-
tent method ; see Nemat-Nasser and Hori”. The
latter is represented by the Hashin-Shtrikman
variational principle ; see Willis®”. Although there
are plenty of minor modifications for these
averaging schemes, typical formulations are consi-
dered. ~

Recently, Benveniste” proposed a new averaging
scheme for composites, and Mori and Wakashima”
found a similar averaging scheme. It appears that
these two methods are based on a more reasonable
concept of averaging than conventional ones. We
generalize this concept to establish systematical
foundations for a nmew averaging scheme which
might cover the existing averaging schemes. To this
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end, first, basic exact relations among the average

field quantities are summarized in Sct. 2. Three
conventional averaging schemes are derived from
them in Sct. 3. Introducing the finite part concept,
from which the averaging scheme of Benveniste or
Mori and Tanaka can be derived in a transparent
manner, we formulate a new averaging scheme in
Sct. 4, and compare it with the existing ones in Sct.
5. Finally, in Sct. 6, a solid damaged by micro-
cracks is considered as a simple example to
demonstrate the effectiveness of the proposed
averaging scheme.

2. AVERAGE FIELD QUANTITIES
OF FINITE BODY

In this section, we derive exact volume averages
of physical field variables in a finite body V (There
have been found considerable misunderstandings
on them ; serious mistakes were made by even
Christensen® and Hashin”). Three-dimensional
Cartesian coordinate systems z; (i=1, 2, 3) are
taken in V. Strain, stress, and displacement fields
are denoted by e=¢ (%), 6=¢ (x), and u=u (x).
For brief expressions, a tensor is written in a bold
letter, and the first-, second-order contractions,
and tensor product are denoted by -, :, and ®,
respectively. Assuming small deformation, static
equilibrium, and linear elasticity, we have

e=%{V ®ut(Vew™, V-e=0, ¢=C"s,

e=%e:C’:s(=%a:e) .................... (1-a~d)

where €' =C'(x)and e=e¢(e, C’) are heter-
ogeneous elasticity of V and (elastic) strain energy
density, and V is defined by (V),=0/0x;.

The volume average of e, ¢, and ¢ is derived
from (1) with the use of Gauss theorem. Denoting
the volume average taken over Vby <-+->y, we have

<s>v=—1‘7favé—(v Qutu®y)ds,

<¢r>v=-%;fwt®x ds,

where v is the unit normal on the boundary surface
9V, and t=y-g. The following relations among
{&v, {@v, and {e)y are derived from (1~4):

<e>v—%<ar> : <s>v="1‘7j;v—%(t—v- {dy) -
(u—x-<{e>y)ds,
0 _

m<€>v-— <0'>V'

......................................... (5) 6)
where {e)y is now assumed to be function of <{&)y.

From (5) and (6), it is seen that the two overall
moduli, C, the ones defined through an average
stress-strain relation and the others defined
through an average strain energy relation, i.e.,

(@y=C:{edy, and <e>y5%<8>v:5:(s>v

may not coincide with each other (Note that (6)
guarantees that differentiation of (7-b) with respect
to <&’y yields <a>y).

If the right side of (5) vanishes, (7-a) and (7-b)
yield the same C'. There are two types of boundary
conditions on 0V satisfying this condition, linear
displacements, #=x"&°, and uniform tractions, =
v+ 6°, with constant ¢° and ¢°. It is often taken for
granted that € are uniquely determined whether
the linear displacements or the uniform tractions
are prescribed ; see Christensen” or Hashin?,
However, it is indeed the case that the relations
among the average field quantities depend on the
surface data. To illustrate this, compute the
difference of the average strain energy due to
various boundary conditions. Denoting field vari-
ables due to the uniform tractions, the linear
displacements, and other arbitrary general bound-
ary conditions by putting superscripts 2., E, and G,
respectively, on them, we have

(= (e =1 (5= 910" (P M)y 20
(for e y=1<e%y)
eS>y— <eE>V=—%~<(aG—0E) Ol

(6¢~6%))y20 (for <a®>y=<a®>)

see Nemat-Nasser and Hori”. Inequalities (8-a) and
(8-b) show the dependence of the average re-
sponses on the boundary conditions.

3. CONVENTIONAL AVERAGING
SCHEMES

For simplicity, we consider a two-phase material
consisting of matrix and inclusion phases to present
typical conventional averaging schemes ; microinc-
lusions with common elasticity C? are embedded in
the matrix with elasticity C¥. The overall moduli of
this material are evaluated by average field
relations for a finite body, V, which represents the
material microstructure in a statistical sense (RVE
modeling). Denoting the matrix and inclusion
phases in Vby M and I, we can decompose V into
M+1 and define the volume fraction of I by f=
I/V. Hence, the average stresses and strains over
V, M, and I must satisfy

{v=0—=pLodu+ Koy,
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y=(1—HLleout+e;
{du=C¥: &>y, o, Lo=C":{e>;

.................................... (9*&"d)
where -y and {-->; denote the volume average
taken over M and I. Note that unless it does not
make any confusion, a letter, say, V, can represent
region, volume, or typical geometry, depending on
the context.

As is seen from (9-a~d), only one relation
among the above six average field quantities is
required to estimate C defined by (7-a). An RVE
modeling seeks to obtain a relation of {e>; (or
{@))) to {e)v (or <@vy). The simplest approxima-
tion is that <{e>; or {@>; equals the average strain or
stress over the surrounding solid. For a more
sophisticated approximation, Eshelby>'” obtained
the following relation for an ellipsoidal in-
homogeneity £ with elasticity C? embedded in an
infinite uniform domain B~ with elasticity C': when
B is subjected to far-field strains &, the strain and
stress fields become constant in £, i.e.,

e=I+S:W:e”, o=C:(I+(S—D:W:e”, n 2

.................................... (10~a,b)
where I is the fourth-order identity tensor, S
Eshelby’s tensor, and

={C—(C—C9:8}1(C—C?) (10-c)

Since tensor 8 can be computed if the geometry of
2 is given, we write S=8(2;C) and ¥=W(2;C,
c9.

Although C depend on the surface data,
estimated are C when the linear displacements and
the uniform tractions are prescribed ; if the
estimated C under the two boundary conditions
coincide, they might be a good representative of all
possible overall moduli, since these two boundary
conditions give the extreme value for <e)v as
shown by (8-a,b). The three averaging schemes,
the law of mixture (LM), the dilute distribution
assumption (DD), and the self-consistent method
(SC), can be summarized in a unified manner using
(9) or (10) ; see Mura™ for detailed derivations.
Under the linear displacements of &°, which yield
{e)y=¢" from (2), LM, DD, and SC approximate
(ed; by &, (I+S:W"}:e’, and I+S: ¥ )¢,
respectively, and estimate

C=01—HC¥"+fCY,

C=CY"+AC'—C":.(I+S":¥7),

C=C"+ACT—=CM): [+ 871}

........................... (11-&,12—a,13)
where §7=S8(I;C¥) and ¥'=U(;C", C’), and
SI=8({;C)and ¥'=T¥U;C, C'). Under the
uniform tractions of ¢°, which yield <> y=¢" from
(3), approximating <¢>; in the same manner as

{e>;, LM and DD estimate

C={1—p (CHT+ACH,

C={(CMT+F(CH = (CM™H):C™:

I+ (8'—D:¥L(CM) -}~ (11-b, 12-b)
but SC estimates (13). Estimates (12-a,b) and (13)
are different. Nevertheless, they yield the same
asymptotic behavior of C as f goes to zero ; see
Nemat-Nasser and Hori”.

To clarify advantages and disadvantages of these
averaging schemes, we set the following three
requirements that are necessary (but not sufficient)
for an ideal averaging scheme: I C for /=0 and 1
equal C* and C’, respectively ; [I C depend on
the geometry and orientation of the inclusions ; i
C are the same under the two different boundary
conditions ( [ means that a solid with, say,
spherical inclusions does not behave in the same
manner as one with, say, aligned long fibers, even
though both have the same volume fraction, and Ill
is necessary for the estimated C to be a representa-
tive of all possible overall moduli). Table 1 shows
whether an averaging scheme satisfies (O) the
requirements or not (X) ; FP is the finite part
approximation which will be discussed in Sct. 5.
Although SC actually satisfies I, it may yield an
unrealistic estimate, say, C=C' for f*1 ; see
Hashin"™.

4. NEW AVERAGING SCHEME

In a conventional modeling, V is regarded as a
finite body subjected to certain boundary condi-
tions. However, it is possible to treat V as a finite
part in an infinite heterogeneous solid, V=, which
represents the material microstructure ; see Fig.2.
Compared with a conventional one, this definition
of V is more realistic to relate how the microstruc-
ture is viewed macro- or micro-scopically. When
V= is subjected to &”, field variables in the inside
and outside of V are not uniform, and simple
surface data, such as linear displacements or
uniform tractions, are not attained on dV. Under
this condition, however, we can estimate average
responses of V.

All exact equations (9-a~d) are still valid, even
if Vis the finite part of the infinite solid. Moreover,
the following relation is useful to consider the
average field quantities over the finite part:for the
infinite solid, B*, introduced in Sct. 3, an average
strain over an arbitrary ellipsoidal 2" which
contains £ within it is given by

<a>gr=(l+ Q“Q,S(.Q’;C):?If>:s°° ~~~~~~~~~~~~~ (14)

which is derived from the Tanaka-Mori theorem
(Tanaka and Mori').

_
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Table 1 Comparison of averaging schemes.

IM DD sc EP

requirement | O X X @]
i X O O O

i X X O O

finite part Vv

infinite body V™
Fig.2 Finite part.

Whereas £ corresponds to a single inclusion, £’
may correspond to the matrix surrounding the
inclusion. If £’ and £ are similar in shape and
coaxial, (14) leads to <&) g—g = &™. We may
approximate the average strains and stresses over
M and I'by {3 ~<{e)y-»=¢" and {(e);=<{edo=
I+S1T")e™, D u={@)g_o¢=C":e”, and (o),
=L@ o=C":{I+ (S'—D:¥"}:e~. Hence, C of V
are estimated by

C=C":AI+AS'—D: U (I+fS81: )~

.......................................... (15)
where {g?y and {¢>y are approximated by <{&)¢ =
I+ /8" g™ and (o) o = C¥: (I + f(§!
—D: ¥ e,

Benveniste” obtained (15) assuming that the
inclusion should be subjected to {&)y rather than
&”, while Mori and Wakashima® obtained (15)
computing infinite summation of (—fSL¥H”* or
(=f8"—=D:¥")" from n=0 to n=o. Both
regarded V as a conventional finite body, and
showed that the resulting C are the same under the
linear displacements and the uniform tractions.
However, boundary conditions on 9V are not
required in the above derivations for the finite part,
V. Note that (14) is exact whatever surface data on
Q" are (Depending on relative location of 2 to £/,
the surface data can vary, even though B* is
subjected to the same & or ¢%).

It is preferable to treat M in a more statistical
manner, since its geometry cannot be determined.
To this end, we use the following identities for
Eshelby’s tensor:for any ellipsoidal £ and for any
isotropic C, 8(2’, C) satisfies

S (Q';C) = 8;155(S;0),
Sijii(Q50) =S4 (S;C)erervvverevneen (16-a,b)
where § denotes a sphere. Ellipsoidal geometry of

£ can be specified by aspect ratios, g:=a,/a; and
0s=as/ai, and angles, cos¢,=e; by, and cosf,=
e b , and cos@g=e;s- by, of its major axes, where
a; and b; are the length and unit direction vector of
the ith major axis with e; being the unit vector in
the x,-direction ; see Fig.3. Then, (16-a) and (16-b)
yields
1
2zt

j:)”d¢l‘f::d61‘];0d¢zsl(pg, 03, 1, 01, ¢z ; €)

= S (S ; C) .................................... (16)
for any p, and ps. Identity (16-c) may suggest that a
sphere S of Q/S=/f is the most appropriate
representation of M in a statistical sense.

Now, a spherical finite part, S, is chosen for £’ in
(14). First, following DD, we set C=C™. The
average field quantities over V can be approxi-
mated by those over S, i.e., {&dy=<{eds= T+
f85: W) e and K@ y=Le)s= U+ f(SS—D:¥"}
:6”, and hence, C are estimated by

C=CY"AI+AS5 DU : I+ /5% W)~

.......................................... (17)

where §5=8(S5;C"). Next, following SC, we set C
= C, and render the average field quantities over S
—£2 and 2 to satisfy oD s_o=C%"9:{e)s_p and (@)
o= C¥:{e) g, which correspond to (9-c) and (9-d).
To this end, fields due to another constant
eigenstrain distributed in B, ¢*°, are superposed
onto Eshelby’s solution ; &* produces uniform
strain and stress fields satisfying o= C:(e—&*°).
This superposition does not change the average
strains due to &*, but subtracts C:e*° from the
average stresses due to &%, i.e., {e)s=&"+(2/5)
8%:e*, (edo=e"+ 8%*, (@ s=C:{e°—e* +
(2/9) (S°—D:e*}, and (oDo=C:{e>—e*+(8§?
—D):e%}. These average field quantities over S and
£ of B* are exact, and we can obtain £* and &*° to
be :

L
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(a) Geometry of ellipsoid

(b) Inclusion £ within S representing
finite part £’

Fig.3

C:e*={C—C*—(C—(C~C%:89:0)}:¢",

SR g™ et (18-a,b)

where
=lo—(c—c9: R/5) (r_s-ay.
o={c-(C- 957+ 75 5 (C— 59
) (Ss._SQ)}”I:(CS—g_CQ) .......... (18-¢)

Like S or ¥, we write @=0(2/5;S5,2;C,C°%,
C*) with the first and second arguments denoting a
volume fraction and geometry. From (18), {&s
and <@ s can be computed, and C are estimated by

O= " +AC:(55 =D -1~

(S5— §'));q‘>};<1+f§8: o)

_ e [RRRAEEER R e (19)
where §5=8(S;C) and @=&(f;S,I;C,C",CY).
We call estimates (17) and (19) the finite part
approximation (FP).

5. NEW AVERAGING SCHEME VS.
CONVENTIONAL AVERAGING
SCHEMES

Now, we compare the new averaging scheme,
FP, with the existing ones, LM, DD, and SC.
Estimates (17) and (19) due to FP satisfy all the
three requirements set in Sct. 3, although the three
methods cannot ; (17) and (19) yield C=C" for f
=0 and C=C' for /=1 (1) ; they do not depend
on the surface data on 8V (II) ; and they include
effects of inclusion geometry through Eshelby’s
tensors ([[). As shown in Table 1, FP appears
more reasonable than the existing three methods.
This is because FP uses exact relations among
average field quantities over a finite part of an
infinite domain, with the aid of the solutions of
elasticity, (10) and (14). Hence, the conventional
finite body definition may not be advantageous (In
the author’s opinion, the conventional definition
may be made only to obtain another exact relation,

{eyy=e" or {6>y=0°" when the linear displace-
ments of &° or the uniform tractions of ¢° are
prescribed).

In Sct. 4, the average field quantities over V are
approximated by those over S, which represents all
possible ellipsoidal £ through integration (16-c). It
might be expected (but cannot be proved at this
moment) that similar integration of the right side of
(5) vanishes, since it can take on a plus or minus
value depending on relative location of £to £'. In
a statistical sense, therefore, FP might render the
overall moduli defined by (7-b) to coincide with
those defined by (7-a).

According to the finite part concept, estimate
(3.6) due to SC can be formulated if all tensors
involved in (3.6) and (19) are isotropic. In this case, .
S is replaced by an ellipsoidal domain £’ which is
similar in shape and coaxial with £2, as in the case of
deriving (15). Replacement of S with 2 in (19)
yields

C={C"+fC:(S'—D:W}:U+fS: @)

where ¥'={C—(C—CH:8}:(C"-CH=T:
(CT= C)71:(CM— 7). Multiply both sides of (20)
with (I+fS": @) from the right and express ¥” in
terms of S’, and we can rewrite (20) to be identical
with (13), taking advantage of that isotropic tensors
are comutable with each other. Hence, it is
suggested that as geometry of the inclusion phase
differs from a sphere, the estimate due to SC (and
(15)) becomes less accurate, since a sphere is the
most appropriate geometry that represents all
possible ellipsoids. As mentioned in Sct. 3, SC
yields unrealistic estimates of the overall moduli
when microinclusions are penny-shaped micro-
cracks ; see Hashin™.

We compare FP with the Hashin-Shtrikman
variational principle (HS), which was originally
proposed by Hashin and Shtrikman™'® ; see
Willis®” for neat generalization of the principle,

]
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(a) Solid damaged by microcracks

G =3
//’/ a ha \\\\
0

oblate spheroid

(b) Oblate spheroid

Fig.4

and Appendix presents a brief summary of HS (It
should be noted that computation of bounds due to
HS involves approximations and hence the bounds
may not be exact, although the variational principle
itself is mathematically correct without any under-
lying assumptions). From numerical computations,
Mori and Wakashima” showed that their overall
moduli, or FP with the assumption of C=C" and
£'=4, coincide with a bound due to HS. In fact,
this coincidence can be proved analytically, as
follows:for any, C Eshelby’s tensor § satisfies — 1
+{I+8(2;C):C:(C*— )} '=8:¥(C,C%S
(2;0)). And a bound of the overall moduli due to
HS, ¢ , given by (*) of Appendix, can be rewritten

as
C=CI+ S —D: W) : (I+/55: W)
.......................................... (21)
where ¥=W(C,C*;S%). If C is replaced by C¥
and all inclusions are set to be spherical in the right
side of (17), then, the resulting estimate becomes
identical with (21).

Coincidence of (17) with (21) leads the following
two remarks on FP:1) in HS of Willis’s derivation,
8% is determined from a statistical consideration of
the interaction effects among all inhomogeneities.
Hence, the coincidence supports the validity of
using the fact that a sphere is the geometry that
represents all possible ellipsoidal geometry in a
sense that the Eshelby tensor for the sphere
satisfies (16-c) ; and 2) as has been shown, the right
side of (17) is the exact linear coefficients between
6> o, and {&dg. For C=C¥, it can estimate the
interaction between one inclusion and the sur-
rounding matrix accurately. Hence, the coinci-
dence suggests that interactions among adjacent
inclusions always make a minus (or plus) contribu-
tion to the average strain energy of the material,
since HS gives an upper (or lower) bound of the
average strain energy ; sece APPENDIX.

6. EXAMPLE

Overall moduli of a solid damaged by micro-

cracks are studied as a simple example to
demonstrate the effectiveness of FP. To reduce
algebraic efforts to compute tensorial equations,
we use the following expression for a fourth-order
isotropic tensor, A:in terms of K" and E? which are
defined by

Elu 5%50‘5”,

El E%‘(5z‘k5jz+ 010 "‘%5;';@1 """ (22-a,b)

where J;; is Kronecker’s delta, A is expressed by A
=AE'+AE*. According to this expression, an
isotropic elasticity tensor, C, is given by C,E'+
C.E*=3 KE'+2 uE*? where K and g are bulk and
shear moduli. Since E*:E’=§;,E’ (j not summed),
a tensorial equation for isotropic tensors can be
transformed into the corresponding two scalar
equations for the coefficients with respect to E*
and E? ; see, for example, Hill”® or Budiansky™.

In the case that a solid is damaged by randomly
distributed microcracks, as shown in Fig.4 (a), the
resulting overall moduli become isotropic ; see
Sahasakmontri ef al.'® for a concise literature
survey of this problem. For simplicity, a micro-
crack, C, is assumed to be penny-shaped of radius
a with traction free surfaces, and we regard C as
‘the limit of an oblate spheroidal cavity, O, of radius
a and thickness ah (h<<1), as its thickness vanishes
; see Fig.4 (b). As h goes to zero, the correspond-
ing ¥=¥(0;C,0) diverges as fast as 1/h, but the
volume of C becomes zero as fast as . Hence, {&)¢
remains finite. Indeed, defining r from ¥(0;C,0)
by

r=r(C;S8° =]hjnéth(O;C,O) =1;'mh(I—S°)‘1

- 0
.......................................... (23)

with §°=8(0;C), we can obtain {&)¢ as the limit
of {edo, i.e., r:e=. It is assumed that the average
strain over the crack phase consisting of a random
distribution of microcracks can be given by taking
sum of (&> for cracks of various sizes and
orientations. Such summation results in relating the

L
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average strain over the crack phase to &” through a
certain isotropic temsor. This tensor, R, can be
constructed from r through Ri:;;=7;;; and Ryi=
Vijij, which yleld .

R=R(C;8°)=R.E'+R,E*

1 40-v) 1, 180—v) 6—) 1
7302wl Tz 15G-» T
.......................................... (Z4)
where v is the Poisson ratio of C, given by (3 K—2
W/ G6K+2u).

Using the above results, we substitute (24) into
(12-a), (12-b), or (13), respectively, and estimate
C due to DD and SC by

C=C".(I—-dR"™, C=C¥:(I+dR™™,

C’_:CM:(I—dR) ..................... (25‘a,b,26)
where RY = R(C";S(0;C*)) and R=R(C;S
(0;C)), and d is the crack density defined by
1/V2X 4rad/3 with summation being taken for all
cracks of radius aq in V ; see Budiansky and
O’Connell® or Horii and Nemat-Nasser™. It
should be noted that LM cannot be used to the
solid damaged by cracks, since the volume fraction
of cracks is zero.

We apply (23) and (24) to FP, and compare the
above estimates due to DD and SC. First,
according to (17), we consider a penny-shaped
crack, C, in B® with elasticity C= C", and choose
a spherical region, S, such that it contains C within
it. In terms of r, the average field quantities over S,
{e>s and {6)s, can be computed exactly for this
isolated crack. Summation of {&>s and {g>s for
cracks of various sizes and orientations yields 2
(eys={I+ 4 na’/3 S)85:RM} e and 2 {o>s=
CM:{I+ (4 7a®/3 S) (85—1I):R"}:e™. As is seen,
these sums are related to & through an isotropic
tensor. Approximation of <&y~ 2.{e>s and {@v
= > {e?s yields

C=C":{I+d(S5—D:R"}:{I+dS5:R") ™!

.......................................... (27)

Next, according to (19), we replace elasticity of
B>, C, from C¥ to C. In this setting, two
eigenstrains must be considered as explained in Sct.
5. The limiting procedure deriving (23) is applied to
obtain these eigenstrains, as follows:let two
constant eigenstrains, £*° and ¢*, be distributed in
B> and an oblate spheroid, O, respectively. As the
thickness of O vanishes and O approaches a crack
C, the following exact relation hold for the
averaging field quantities over S and C:

(& s=e"+ L 2143 lim (S5—89): (he*),

S3 =0
{&)c=g"+1im §%:¢%,
-0

<0>5=C:{e°°~e*°+% é—ms Eiré (85—D:
(hs*)}',
(oY c=C:{e”—e*+1lim (§°—1):e*}

h—0
................................... ( 28-a~d )
Provided that the average field relations, {@)s-c=
CM:{e>s_c and <o) =0, are enforced, s*° and &*
are obtained to be

g¥=g+lim (S°—1D:e*, lim he*=r"1e"

h—0 h—0
.................................... (29‘&, b)
where
=lim h{I—S°+%na3h(I— Com):
h—0
(§5=80)) et (29-c)

From r’, an isotropic tensor, R’, can be con-
structed in the same manner as R from r. Since r’ is
written as ¥’ =r"(C,C";8%,8°), we write R'=R’
(C,C™;85,8°). The average strain and stress over
V are approximated by (e)y=<{e)s=I+dS%:
R):e” and (@ y=<{@s=C":{I+d(S°—D:R}
:¢”, and hence C are estimated by

C=C":{I+d(S°—D:R}:(I+dS*:R)™!

e RERRIE (30).

where R'=R’(C,C¥; 8%, 8° with §°=8(0;C).

Fig.5 shows the variation of the overall moduli
estimated by DD, SC, and FP, ((25), (26), (27) and
(30)) with respect to the crack density 4 ; in terms
of the overall bulk and shear moduli, K and 7, C
are expressed by 3 KE'+2 g E”, and the ratio of
these moduli to the corresponding one of the
matrix, i.e., Ci/C¥=K/K¥ and C,/C{=p/u",
is plotted, with the matrix Poisson ratio, V™ being
0.3. Both K and 7 can be easily computed from
the scalar equations that are directly reduced from
the tensorial equation for C, as isotropic tensors
are expressed in terms of E' and E? defined by
(22). Fig.5 shows that K and 7 estimated by DD
and SC vanish at a certain crack density. As
explained in Sct. 5, we can view SC as FP with an
assumption of taking a finite part surrounding a
crack to be similar in shape to it and setting C=C.
Such a finite part may cause the unrealistic
estimates of € due to SC. The theoretical
predictions due to FP need to be compared with
accurate experimental data, in order to clarify the
effectiveness of this new averaging scheme in a
more transparent manner. However, it seems that
the results presented suggest that the proposed FP
can make more reasonable estimates of the overall
moduli, at least compared with those due to the
conventional averaging schemes.
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APPENDIX:HASHIN-SHTRIKMAN bound for C is given by &:C:e°/22 (or <)
VARIATIONAL PRINCIPLE e:C:e°/2, where

k)
According to Willis®”, the Hashin-Shtrikman = {{‘;f"C“:{H (SS-I):C*:(C“—O}‘I}:
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