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AN EMPIRICAL SCALING OF STRONG-MOTION SPECTRA WITH
APPLICATION TO ESTIMATE OF SOURCE SPECTRA

By Makoto KAMIYAMA* and Tadashi MATSUKAWA**

A new regression model of strong-motion spectra is derived by incorporating the con-
ception of the dummy variables to the conventional regression model. The dummy vari-
ables are available not only to obtain the amplification factors due to local soil condi-
tions of each observation site but also to estimate the non-linear dependences of spectral
amplitude on earthquake magnitude and hypocentral distance. The new regression model
is applied to 228 strong-motion spectra obtained in Japan. The regression results are
used to estimate the source spectra, as well as being discussed in detail, in particular,
from the view points of faulting and wave propagation mechanisms. It is finally con-
cluded that the specific barrier model is more connected with the present statistical
source spectra than the stochastic w-square model.
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1. INTRODUCTION

In order to estimate strong motions incident to structures, statistical analyses of strong-motion spectra
have been performed so far by many researchers throughout the world”= . Most of these works were based
on the multiple regression technique in terms of simple parameters such as earthquake magnitude,
source-to-station distance and so on, even though some additional parameters reflecting the effects due to
local site conditions are included or not. As well known, earthquake ground motions are caused by the
three principal factors of source, propagation path of waves and local soil layers, so it is necessary to take
the effects resulting from these factors into account for the purpose of statistical analyses of strong
motions. Above simple parameters such as earthquake magnitude which have been usually employed in
engineering field were introduced into statistical analyses as convenient variables for expressing these
factors. The source characteristics of earthquake, however, are too complicated to be expressed merely
by earthquake magnitude. Similarly, it would be insufficient to represent the complex propagation path of
waves only by the source-to-station distance,

There may be several ways to overcome these difficulties, for instance, an effective way would be to
introduce more physical parameters based on the faulting source model of earthquake, instead of using
convenient variables like earthquake magnitude. Motivated by such idea, one of the authors tried to make a
preliminary statistical analysis of strong-motion spectra using the faulting source parameters of seismic
moment and fault length?. However, such a kind of statistical analysis has its limit at present because
faulting parameters are not known about small earthquakes, although it has a bright future when data will
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become more abundant. Another way to achieve the above goal is to work on the regression model of
statistical analysis, while using the conventional variables of earthquake magnitude and source-to-station
distance, Even such simplified variables would make it possible to follow the effects owing to complicated
source characteristics and compound propagation path of waves when some skillful ideas were added to the
regression model,

As an attempt of the latter way, this paper deals with a new type of regression model of strong-motion
spectra and derives an empirical scaling law of spectra by introducing the conception of the dummy
variable. The source spectra statistically derived by the model is also examined in comparison with the
theoretical source spectra proposed so far,

2. SOME PROBLEMS RELATING TO THE CONVENTIONAL REGRESSION MODELS
OF STRONG-MOTION SPECTRA

In analyzing statistically strong-motion data such as spectra, most workers have assumed the following
type of regression model to fit the data,

10810 V(T)=G(T)M + b(T)10 10 7+ C(T), +rerreremmmomeoeieeeoeeie oot (1)
where V(T) ! strong-motion spectra, }f : earthquake magnitude, r . epicentral distance or hypocentral
distance, o(T), b(T) and ¢(T) : regression coefficients, and T : period.

Although the reason leading to Eq. (1) is rather unclear, the definition of earthquake magnitude proposed
by Richter? may be used in it, namely, the expression of defining earthquake magnitude by Richter can
produce Eq. (1) by replacing the maximum amplitude of displacement with the spectral amplitudes.

Eq. (1) includes several unfavorable problems for following actual strong-motion data whereas it is
useful in engineering practice because of its simplicity. The first problem is that it is not due to physical
mechanism of earthquake, and therefore it may give little reliability when being applied beyond its original
data band. The second is that Eq. (1) is a kind of linear model against the variables M and 7, that is, it
takes a prior assumption that the dependence of the objective variable V(T') on the explanatory variables M
and 7 is constant irrespective of their amplitudes, as shown schematically in Fig. 1. And, the third is that
rﬁeasuring of 7 needs careful consideration, especially, when faults of large earthquakes are in question,
Among the above problems, Takemura et al.® discussed the first problem theoretically from a view point of
earthquake fault model and provided a little different regression expression in terms of seismic moment.
Even though their regression analysis is based on a physical understanding, it is a kind of linear expression
because of the derivation limited to a uniform fault model. On the other hand, the second problem may be
particularly important from engineering standpoint because it directly controls the scaling law of spectra,
In addition, there is a possibility to overcome the first and third problems by resolving the second one,
considering that the complexities of earthquake mechanism and propagation manner of waves would result
in some non-linear relationships between strong motions and earthquake parameters. In this paper we
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Fig.1 Schematic diagram for the dependence of the objective

variable on the explanatory variables in the conventional

regression model.

Fig.2 Conception of the present regression model.
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mainly discuss a method of attacking the second problem.
One of the easiest method to reach a goal for the problem is to reform the coefficients q(7T) and b(T) in
Eq. (1) so that they depend on the variables M and log,, r, as follows,
a(T)=a'(T-)M+a”(T)logm e R CE R R R L ST R LR T LT LIS TR LR RTEEREREEPRRRT (2)
B(T)= b (T)M~+ b"(T)10G, 74+ e Ot (3)
Such a method means to introduce higher power terms of explanatory variables into the regression model,
as being seen by substituting Egs. (2) and (3) into Eq. (1). Therefore we can construct unlimitedly
complex regression models by use of such ideas, in particular, by using power terms as high as possible.
This idea has been already employed for the statistical analyses of strong motions by several researchers?
The authors also made statistical analysis of strong-motion spectra on the basis of the regression model of
power terms® . Even though this method is effective to some extent to follow rather complicated variation of
the objective variable, its main drawback is that it restricts the variation by its specific functional form.
Another method different from the above is to join several linear functions together so as to follow the
complicated variation, The conception of the method is schematically shown in Fig. 2, as an example of one
explanatory variable }/. This method stipulates for a linear variation in each local region of the variable,
but it has an advantage to simulate appropriately the overall non-linear variation of variables. In addition
to such an advantage, the method can not only make clear some points where the objective variable begins to
vary remarkably in accordance with the explanatory one, but also fit efficiently to data whose numbers are
uneven in their each region. The problem peculiar to the method, however, is how to determine the
transition points and gradients of each linear function. Such determinations are explained in the following

section,
3. MULTIPLE REGRESSION MODEL USING THE DUMMY VARIABLES

(1) Idea of the present regression model

In an attempt to make the explanation clear; we first confine ourselves to the simplest case provided with
one objective variable V(T) and one explanatory variable Mf which are assumed to be spectral amplitude
and earthquake magnitude, respectively. The scatter diagram of the case is modeled in Fig, 3. This may be
fitted by several combinations of various linear functions, but the simplest combination of two linear
functions would be enough to explain the principle for fitting. So we explain the method for determining the
boundary point and gradients of the two linear functions using the model in Fig. 3.

Now suppose that the data were divided into two groups by setting an arbitrary value M., as shown in
Fig.3. Then we build the following regression model in which the conception of the dummy variable is

included,
logw V(T)——"al(T)Mﬁ- az(T)Mz+a3(T)M3+ ad(T), ......................................................... ( 4 )
where the explanatory variables M, M, and M, are given as
Mo M (M<M) _ |0 (M<M,) Moe 0 (MsM)
M. M>M) T IM—-M. (M>M)T T 1 (M>M)
and a,(T), as(T), as(T)and a,(T) are regression coefficients in which @,(T) has minus sign in the case of
Fig. 3.

By applying the least square technique to Eq. (4 ), we can estimate the coefficients a,(T), a,(T), as(T)
and @ T), and then the target value M, is obtained, as follows, using these coefficients
M0=MC+as(T)/(ax(T)—az(T)). ................................................................................ (5)
The relations between these coefficients and the boundary value J, are indicated in Fig,3. After one
boundary value M, was obtained as stated above, we retry the regression analysis by using the value as a
new value of M,. Thus we finally can obtain the most suitable regression model of two linear functions when
such iteration leads to some convergent regression coefficients. Fig. 3 is an example of the conjunction of

two linear functions for two variables, but it is easily extended to more multiple linear functions as well as
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Fig.3 A model of scatter diagram of data where V(7T) and M

mean, respectively, spectral amplitude and earthquake Fig.4 Model of multiple linear functions for
magnitude, The model is fitted by the combination of two the regression analysis.

linear functions.

more numerous variables. Referring to Fig. 4, for instance, the regression model consisting of 7 linear
functions for one explanatory variable M is written as )

loglo V(T):Z?g'; ai(T)Mﬁ- am(T), .............................................................................. ( 6 )

where we give the variables M, in the following manner.

0 (M<MTY

<M! . . . A
MFJ% Eﬁ;%; M={M—-M:" (MI'<M=MY (i=2~n—1),
¢ ¢ Mi~MSY (M>MY)
0 (M<=M?) 0 (MsMY .
== s neiT ; =l~n—1),
M KM——M’C‘“ wm>pry M= sy T

in which M. (;=1~n—1) are preliminary boundary values for classifying M. The target boundary values
M§ (i=1,2,+, n—2) are given by the same manner as Eq. (5). This method is hereafter called “dummy
variable regression” in short.

(2) Regression model used in the present study

1t may depend principally on the number of the used data and their physical background how many linear
functions should be built in the above type of regression analysis. In our regression analysis of
strong-motion spectra, on the other hand, we use earthquake magnitude M and hypocentral distance r as
the explanatory variables for the objective variable of spectral amplitude V(T) according to Eq. (1).
Furthermore, we add other explanatory variables for estimating the amplification factors due to local site
conditions of each observation site. That is, on the condition that the observation sites are N in total, we
use the model

10gm V(T)z a(T)M + b(T}logm r+ C(T).;_ig Aj(T)Sj, ................................................. ( 7 )

where A,(T) are regression coefficients for §;.

In Eq. (7), S, (j=1,2,--,N—1) are the additional explanatory variables which are treated by the
conception of the dummy variables as well as M, in Eq. (4 ). The treatment of S, was fully explained in our
previous paper® and it was also shown in the paper that the introduction of such variables is quite fruitful to
estimate the local site effects of each observation site. Next we apply the “dummy variable regression” to
both of the explanatory variables M and 7 in Eq. (7). The selection of the number of linear functions
applied to both variables is important to derive some detailed scaling of strong-motion spectra, but in order
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to obtain reasonable scaling, it is restricted by the physical background causing strong motions, the
number of data, the requirement from practical use and so on. We here determined the number of linear
functions for both variables in the following consideration,

The attenuation characteristics of earthquake ground motions may result from various factors, for
example, source fault behavior, geometrical spreading due to body waves and surface waves, and inelastic
effects of propagation media, Of these factors, the fault behavior exerts an influence on the area relatively
close to the source, and the second and third factors have greater effects on the area far from the source.
As for the distant area from the source, moreover, it would be distinguished by two parts which are
exclusively affected by body waves or surface waves, respectively. Thus the attenuation manner of
earthquake motions according to hypocentral distance 7 may be divided into three parts. Meanwhile, there
seems to be no clear criteria for classifying earthquake magnitude M based on the physical consideration,
We here classify earthquake magnitude M into three parts in a similar way to hypocentral distance, partly
making reference to the Japanese Meteorological Agency criteria for earthquake magnitude in which
earthquakes of magnitudes greater than or equal to 7 are called the “large earthquake”, ones of 7> M =5
called the “intermediate earthquake”, and ones of 5> M =3 called the “small earthquake”. In reference to
the above consideration, we divide both variables of M and 7 into three parts and we finally build the

following regression model,

5 5 N—1
10€1 V(T):i:I ai(T)Mi+Z_,; bi(T)Ri+C(T)+jZ:=1 Aj(T)Sj, ............................................... (8)
where
0 MMy
M (M<M}) ¢ 0 (M=M?)
M= , M,= N V3t 1 < 12: —_ =i
el P =AM—M: (M<M=M?Y, M MMt (MM’

Mi—M: (M>M?)
0 (M=MY) :{0 (M<M?)
T M>My Tl (M>Myy

r_ [logur  (r=rY Bk o (r=r)
T llogurt (r>pyr BT |loBwr—logere  (ri<rsrd,
log ri—logw ¢ (r>7r?)

Rs= 0 (r=7?) 4:{0 (r=rd) |0 (r=7Y)

logi 7—logw 7c (r>rY)’ U o(r>r) L (>

4. REGRESSION ANALYSIS FOR
STRONG-MOTION SPECTRA OB-

M=

® OBSERVATION SITE

1 KUSHIRO 14 TATRA
2 CHIYODA 15 SHIN-TONEG.
TAINED lN JAPAN 3 TOKACHL 16 KASHIHAJI—-QWA
g }S!C'lRONAN 17 KASHIMA(PWRI)
. . v HIN-TSHIKARI 18 TONEGAWA~
(1) Conditions for the regression: analysis 6 TowRoAL 19 owicaiA
h X 1 E 1 d Z} }A(gKgR?N 20 CHIBA
MOR! 21 i ~HEN
The regression model of Eq. ( 8 ) was applied to 13 ;f;gnmoas 22 mﬁigﬂ? e
. . AZAK -
the strong-motion records observed in Japan. The 11 M1AKD 2 Kok
. 12 OFURATO 25 ITAJIMA
data are the same as the ones in the study of 13 SHIOGAMA 26 HOSOSHINA
Ref.9), that is, they consist of 228 horizontal
accelerograms of maximum amplitude greater than o e me 59 8
.. ) 0 > g.0< M < 7.0 O
20 gal. The earthquake origins for these accelero 24 4 505 M < 50 O
grams are shown in Fig,5 together with the total R4 ) M < 5.0 2

observation sites of 26. These accelerograms were
observed on the conditions of JMA magnitudes 0 300 km

ranging from 4.1 to 7.9, focal depths from 0 to Fig.5 Map of the earthquake origions and observation sites
130 km, and epicentral distances from 3 to 350 km. for the strong-motion records.
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The earthquake magnitude, focal depth and epicentral distance peculiar to each accelerogram are shown in
Table 1 of Ref.9). We computed velocity response spectra with no damping from these strong-motion
accelerograms and applied them to V(7)in Eq. (8). The main reason for using velocity response spectra
with no damping is that they are nearly equivalent to Fourier acceleration spectra, which are most suited
for the discussion of source spectra, even though they are easy to compute.

InEq. (8), we are required to allot one site among all the observation sites to a reference site by which
the amplification factors specific to each site can be estimated with enough physical implication. We here
adopted Ofunato site labelled 12 in Fig, 5 as the reference site for the same reason described in Ref. 8) .
That is, Ofunato site consists of the hardest rock among all the observation sites and is rigid enough to
constitute the bed rock for the other sites. The outcrop of the site is a hard slate whose S wave velocity is
supposed to be 1~2 km/sec. Accordingly the “bed rock” implied in this paper is a rock having such a
rigidity.

About the initial boundary values ML, M2 rland r2in Eq. (8), meanwhile, we employed tentatively
as M=5.5, M:=7.0, r:=30km and r}=100 km considering the distribution of the data, and then
almost convergent regression coefficients were gained after three iterations of analysis. The regression
coefficients given in the following are the results based on the three iterations of analysis.

(2) Results of the regression analysis

We carried out the regression analysis of Eq. (8) using the above data and conditions, and compared the
results with that of the regression model for Ref. 9). The correlation coefficients obtained by Eq. (8)
were found to become better for all the periods in comparison with the correlation results of Ref. 9), for
example, showing a change of the multiple correlation coefficient and standard deviation, respectively,
from (). 81 to 0. 87 and from (. 26 to (. 25 for the period of 1. ( sec. In the following, the analyzed results are
shown for each regression coefficient,

First we show the results of the coefficients A4,(T) in Eq. (8) which are given by 2-10“7 so as to
express amplification factors of each site against the bed rock. Fig.6 is the amplification factors
determined for representative observation sites as a function of period. It is seen in Fig. 6 that the
amplification factors are quite peculiar to each site and are strongly period-dependent. The amplification
factors shown in Fig, 6 are almost the same as the ones which were obtained from the regression models of
Refs. 8) and 9) different from the present model in treating earthquake factors, This means that such
regression model as Eq. (8) is efficient to make clear the effects due to local site conditions since
amplification factors are similarly obtained irrespective of the treatments of earthquake factors,

The results of the regression coefficients a,(T), a,(T) and a,(T) in Eq. (8) are shown in Fig.7 as a
period function. As shown in Fig, 7, these coefficients stand for the gradients of each linear function with
regard to the explanatory variable /. On the other hand, the transition values M} and MZ of the linear
functions which were obtained from the coefficients q,(T)~ as(T) are plotted in Fig. 8. We can see from
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Fig.6 Amplification factors at the representative observation sites estimated from the regression analysis,
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Figs. 7 and 8 that the dependence of V(T) on M varies remarkably relying on the absolute value of M as
well as on period, For instance, the dependency is greater in all the periods for larger magnitudes than

about 7.0 and it is conversely smaller for magnitudes less than 7.(), particularly, in both regions of the

periods greater than about (). 5 sec for the magnitudes from about 5 to 7 and of the periods shorter than

about (.5 sec for the magnitudes less than about 5.(. These results show that spectral amplitude of

earthquake motions responds complicatedly to the variation of magnitude M being different from the

conventional simple regression models., This may reflect the difference in faulting mechanism of

earthquake varied according to earthquake magnitude. At least Figs. 7 and 8 suggest that there is a marked

difference in earthquake faulting mechanism between below and above around M =6.5.

Next the regression coefficients b,(T), b.(T)and b,(T) and the transition values of hypocentral distance

r are shown in Figs. 9 and 10. In this case, the transition value rj became asympotic almost to zero in all
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the periods after the three iterated regression 109, 4VIT) : b(T)log,gr

analyses, so only the coefficients b,(T), b4(T) and - :z ’;:

the second transition value 7 are given in Figs,9 _ =" i r=150 Km

and 10. As described in the preceding section, the _g_? I~

coefficients b,(T) and b,(T) mean the attenuation 2 o BODY WAVE
characteristics of earthquake motions which in- 3

clude geometrical spreading due to body waves and ;3; o3 SURFACE AVE
surface waves, inelastic effects of propagation ¢

media and so on. It is seen in Figs, 9 and 10 that the s |

attenuation is stronger in the areas less than 7 in og b el bl e

all the periods even though it fluctuates depending o Periodisec) e

on period, and that the transition value 72 has a  Fig.11 Attenuation coefficients §(T) due to hypocentral dis.
general tendency to increase with decreasing tance r derived from the regression analysis. The
period. In order to compare the attenuation charac- hypocentral distance 7 is set to be 50, 80 and 150 km.
teristics in accordance with hypocentral distance

7, Fig. 11 was produced from Figs, 9 and 10 so that

the coefficients b(T') of log,, r are plotted at the
three representative distances. As well known, the E
attenuations caused by the spreading distance 7 ; =
are r~'and r~%° respectively, for body waves and F
Q .
surface waves. Although strong period-dependence 8 Period
L . .. . 0.2
is visible, it seems that the coefficient 5(T) in ~ e
. . . . . Er 0.8 sec
Fig. 11 is generally consistent with the geometrical >
. S 2.0
spreading due to body waves and surface waves, e e
R . - 4.0
indicating that prominences of both sorts of waves = L e
10 50 100 500

vary in response to distance and period, It may be
suggested from the values of H(T) in Fig. 11 that
body waves are mainly predominant in the periods

r (Hypocentral Distance km)

Fig.12 A model diagram for the attenuation of spectral ampli-

] tude according to hypocentral distance # and period T'.
shorter than around 3 sec at the distance 7 equal to

The vertical axis is taken as a arbitrary scale of
50 km while surface waves dominate in all the 10850 V(T) where V(T) means spectral amplitude. The
periods at r=150 km, and at =80 km there is a attenuation manners 7' and 7% correspond each to
cross-over period of about (). 5 sec above and below body waves and surface waves.

which surface waves and body waves each prevail.

Disregarding the fine fluctuation of 5(T) with period T, ‘we constructed a model diagram of attenuation
which was drawn by emphasizing the general trend of 5(T), as shown in Fig. 12. Fig. 12 reveals that there
would exist a cross-over distance ranging from about 50 km to 100 km over which dominant waves change
from body waves to surface waves, and the cross-over distance is dependent on period so that it becomes
greater with shorter period. Although the effect due to focal depth was not considered in the above
discussion, the attenuation manner shown in Fig. 12 would be acceptable in reference to our previous
' study” in which the explanatory variable of focal depth was already found to exert little practical effect on

spectral amplitudes,
5. SCALING OF STRONG-MOTION SPECTRA INCLUDING SOURCE SPECTRA

Using the regression coefficients stated above, we can scale strong-motion spectra in terms of
earthquake magnitude }, hypocentral distance r and local site effects, In this paper we focus our
attention on the spectra only due to M and 7 in consideration of their characteristic coefficients obtained in
the above section. Such spectra are here referred to as “rock site spectra” since they are not covered by
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the effects owing to local soil layers. 500 —
Fig. 13 shows an example of rock site spectra - r =80 km

scaled with M while keeping 7 equal to 80 km 100 ;

which is the averaged hypocentral distance in the =

original strong-motion data. The spectra were 505‘ - M=8.0

estimated according to Eq. (8) except for the last g - «~M=7.5

summation term in the right side. It is clear in § 10 — ~M=7.0

Fig. 13 that each spectrum tends to have nearly flat § 2 L N AT EMig:g

configurations between two corner periods %_ B _ﬂ«ﬂ:i:g

although long-period components become more pre- £ A ~ :miﬁﬁ

dominant relative to short-period ones with in- =

creasing magnitude M. The overall scaling manner -

of spectra in Fig.13 1s'comparat‘1vely similar to | ’HH‘ ol ]””l L

that based on the regression model in Ref. 8) | but it 0.1 0.5 1.0 5.0 10.0

is emphasized in Fig. 13 that spectral amplitudes Period(sec)

have less variation between M =6. () and M =6.5. Fig. 13 Rock site spectra statistically scaled with earthquake
magnitude M while keeping hypocentral distance 7 equal

Anyway, the scaling manner of spectra obtained
here is relatively compatible to the strong-motion to 80 km.

spectra observed in the Guerrero’s rock site

array'? in the point of how the dependence of spectral amplitudes on earthquake magnitude varies according
to periods. ‘

As a significant contribution, on the other hand, such rock site spectra as Fig. 13 make it possible to
estimate the so-called source spectra. Since Gusev’s discussion'”, the source spectra of acceleration
motions have been investigated by several workers on account of their importance from engineering
standpoint, particularly, there has been a hot debate between the two schools of the “stochastic -square
model” by Hanks and McGuire'? and the “specific barrier model” by Papageorgiou and Aki'" over their
validities. We here discuss the source spectra of acceleration motions by use of the statistically scaled

rock site spectra.

Gusev'? defined the source spectra of acceleration motions as f2-M(f), where f and M, are,

respectively, frequency and seismic moment, and - and ~ mean each time derivative and Fourier
transform, because it is equivalent theoretically to acceleration spectra only due to source parameters, As
shown by Papageorgiou”, such source spectra can be derived in the following form on the condition that
acceleration motion spectra u(f, r) caused by body waves are available at a hypocentral distance r on a

homogeneous half space where the source exists,

fz.ﬁo(f):% (21,,)2\-/2'2—-u(f’ ), e (9)

where 8 : shear wave velocity, p : density of the space and F : radiation pattern coefficient peculiar to

the shear dislocation.

In our case, the rock site spectra like Fig, 13 would be regarded as u(f, 7) on the assumption that the
“bed rock” described in the preceding section is equivalent to the homogeneous half space of Eq. (9).
Such assumption may be rather rough judging from the rigidity of the bed rock whose S wave velocity is
supposed to be 1~2 km/sec, as shown above. However, our rock site spectra would be used as a
replacement of 3 (f, r) if being allowed to assume that an inelastic effect of the half space disregarded in
Eq. (9) is almost equal to an amplification effect between our bed rock and the half space.

When using Eq. (9) to estimate the source spectra, meanwhile, a careful selection of 7 is needed
because it results from only body waves, namely, we need u(f, r)and r related only to body waves. In this
point, the present regression model is useful to confirm whether or not to result from body waves. As
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Fig.14 Comparison between the theoretical source spectra due Fig. 15 Comparison between the theoretical source spectra due
to the “stochastic ¢-square model” by Hanks and to the “specific barrier model” by Papageorgiou and Aki
McGuire and the present statistical source spectra. The and the present statistical source spectra. The theore-
theoretical source spectra were estimated using the tical source spectra were estimated using the parameters
parameters given by Boore!® given by Papageorgioul?,

explained previously, the rock site spectra within the periods shorter than about 3. () sec estimated at r
less than 50 km according to Eq. (8) are due primarily to body waves rather than surface waves, In
reference to this, we obtained y(f, 7) as the rock site spectra at =30 km which is roughly intermediate
distance within the body waves zone. The other constants in Eq. (9 ) were set to be the same as the ones
employed in Ref.8), that is, #=3.5km/sec and Fy=(.63 for the same reason in the reference. In
addition, p=3.( g/cm’® was alloted in consideration of the averaged values of density of the crust arround
Japan,

By using the above constants and y(f, 7), we can estimate the source spectra f*- A?(G(f) according to Eq.
(9). These spectra may be called statistical source spectra because they are obtained based on the
statistical analyses. Different from such statistical method, the source spectra fz-jfdo(f) can be derived
from several faulting source models which are represented by the two schools stated above. Here the
statistical spectra are compared to the theoretical spectra due to both models in order to examine each
model’s validity. Fig. 14 and Fig. 15 show, respectively, the comparisons of the present statistical spectra
against the “stochastic g-square model” (called the HM model hereafter) and the “specific barrier model”
(the PA model). In both figures, the statistical spectra are scaled with seismic moment M, instead of
earthquake magnitude M by using the M,~M relations by Sato'

log Mom=1.5 M A L16.,2, ovreres et sttt (10)
Also the parameters of the HM model and the PA model in the figures were borrowed, respectively, from
Boore'” and Papageorgiou'”. It is found in Fig. 14 that there is a remarkable difference between the HM
model and the statistical spectra, particularly, the spectral amplitudes due to the model are much smaller
than the statistical in shorter periods, although there seems to be the same level spectral amplitude in
longer periods for seismic moment M, greater than 10?. This may be caused by the reason that the HM
model includes hardly the proper heterogenuity of stress drop responsible for high-frequency motion
generation. In contrast to the difference, we can find a relatively good agreement between the PA model
and the statistical spectra in Fig.15 except for seismic moments less than 10®. Judging from the
comparisons shown in Figs, 14 and 15, it would be concluded that the specific barrier model, which contains
both of the local stress drop pertinent to the generation of high-frequency motions and the global stress
drop over the entire fault plane for low-frequency motions, is more suitable to estimate the spectral
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amplitudes for the large-earthquakes and short-periods which are primarily in question in engineering
analyses, Similar conclusion was also derived from our another study” which analyzed statistically
strong-motion spectra by using fault parameters,

Despite the above conclusion, it remains unsolved how we consider the difference between the statistical
and both models for small-earthquakes less than M,=10%. As for this difference there may be several
causes possibly coming from both of the models and the statistical results. For example, the fact that the
number of small-earthquakes constituting the present data is fewer in intermediate and long distances may
lead to the difference. Anyway, the discussion about such causes requires many pages, so in this paper we
confine ourselves to the above conclusion with regard to the large-earthquakes,

6. CONCLUDING REMARKS

In this paper, a regression analysis of strong-motion spectra was carried out by using the dummy
variables. The dummy variables were used not only to obtain the amplification factors due to local soil
conditions of each observation site but also to estimate non-linear dependence of the spectral amplitude on
earthquake magnitude M and hypocentral distance 7. In addition to being discussed in detail, the results of
regression analysis were applied to the estimate of the source spectra. The principal remarks concluded
from this study are :

(1) The introduction of the dummy variables to regression analysis of strong motion data is quite
effective for raising the reasonability of analysis. The variables make clear the site effects specific to each
observation site as amplification factors, and at the same time they provide reasonable variations of
strong-motion spectra with M and 7.

(2) The dependence of strong-motion spectra on M showed remarkable non-linearity depending on
period. In particular, there is a big difference in the dependence between above and below around M =6. 5.
This suggests that earthquake faulting mechanism differs in both bands of earthquake magnitude.

(3) The attenuation of strong-motion spectra according to hypocentral distance r also indicated
non-linear characteristics corresponding to the geometrical spreading of body waves and surface waves,
There is a cross-over distance ranging from about 50 km to 100 km below and above which body waves and
surface waves prevail, respectively, and the distance is so period-dependent that it increases as period
becomes shorter.

(4) The source spectra were empirically scaled by use of the regression analysis of spectra. We
compared the empirical source spectra with the theoretical ones due to the two stochastic source models,
and it was shown from the comparisons that the specific barrier model is more appropriate to estimate the
spectral amplitudes for the large-earthquakes and short-periods than the stochastic w-square model.

On account of space consideration, it has not been discussed in this paper how the present results are
related to other types of regression analyses, for example, the analysis by Katayama et al.? who employed
the so-called quantification method, Katayama et al. examined indirectly the non-linear dependence of
spectral amplitude on M and 7 through the quantification method, so it is of interest how their results are
related to the present study. In addition, the variations of the regression coefficients shown in Figs, 7 to 10
may reflect some physical phenomena of earthquake faulting and propagation manner of waves, and it is also
of interest how they are explained quantitatively by sophisticated physical models of earthquake. These
interests will be handled in our another paper.
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