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A SIMPLIFIED 3-D FINITE ELEMENT METHOD APPLIED TO
MODAL ANALYSES OF AN ELASTIC SURFACE LAYER

By Takumi TOSHINAWA* and Taisuo OHMACHI**

A simplified 3-D finite element method is newly proposed in order to simulate seismic
wave propagation in a vast sedimentary basin. Eigenvalue analyses for 2-D and 3-D
ground models with Poisson’s ratio (. 25 or (). 40 are carried out to check validity of the
method, The 2-D analyses demonstrate that Love wave modes can be accurately calcu-
lated in both cases. Rayleigh wave modes can also be calculated satisfactorily except for
those with shorter wavelength and Poisson’s ratio (.40. In 3-D eigenvalue analyses by
the present method, computational time is reduced to 1/170 of the similar analyses by a
conventional method.
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1. INTRODUCTION

For the sake of mitigation of earthquake disaster in urban area on a sedimentary layer, prediction of
ground motion induced by surface wave propagation is indispensable. This is because surface waves are
easily generated and amplified in a soft sedimentary basin on which many metropolises are located. In
addition, predominant periods of these waves are sometimes comparable to natural periods of large scale
structures such as skyscrapers and long-span bridges.

To achieve the reliable prediction, numerical analysis using the finite element method” and the finite
~ difference method? have been recently used as a result of great progress in execution speed and storage
capacity of electronic computers. Regarding analysis of vast ground, however, there still remains
practical restriction because its analytical medel will require a large number of degrees of freedom. To
cope with this restriction, a simplified 2-D finite element method has been proposed for simulating Love
wave propagation”, By extending this method, a simplified 3-D finite element has been formulated with a
successful application to an eigenvalue analysis and an impulsive response analysis?.

As for the southern part of the Kanto plain, Japan, the P and S wave velocities are respectively 1.8 km
and 0.7 km for the surficial layer, and 5.6 km and 3.0 km for the seismic bedrock?, The corresponding
Poisson’s ratio ranges from 0. 25 to 0. 40. On this basis, this paper deals with 2-D off plane, in plane, and
3-D eigenvalue analyses using Poisson’s ratio (.25 and (. 40.

* Member of JSCE, M. Eng., Research Associate, Tokyo Institute of Technology (4259, Nagatsuta, Midori-ku, Yokohama)
** Member of JSCE, Dr. Eng., Professor, Tokyo Institute of Technology (Ditto)

323s



206 T. TosHINAWA and T, OHMACHI

2. FORMULATION OF ELEMENT MATRICES

(1) Finite element modeling ,

In this method, the ground is idealized as a single layer underlain by a half space. The finite element
modeling of the ground is done by using triangular prismatic elements as shown in Fig. 1. Fig, 2 shows one
of the elements whose six nodal points are numbered counterclockwise, The prismatic element in a global
Cartesian co-ordinate can be simply expressed by a local co-ordinate shown in Fig. 3. In terms of the local
co-ordinates and interpolation functions, displacements in the elements are expressed as follows ;

6 6 6
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u, v, and w represent displacements in the x, y, and z co-ordinates, and SE, g(2), and h(¢) are
interpolation functions for y, p, and  along the z axis. These interpolation functions are normalized to
satisfy the following conditions ;

S(U)=g(1)=h(1)=1, f(=1)=g(—1)mh(—1)=0-rceeeeremrrmreammiriiiiii e, (3)

Then shape functions for strain and displacement can respectively be expressed in the following matrix

forms
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Finally, we have the stiffness and mass matrices ;
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Fig.3 A Prismatic Element in
Fig.1 Finite Element Modeling of 3-D Ground. = Fig.2 A Triangular Prismatic Element. a Local Co-ordinate,
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where D indicates the three dimensional elasticity matrix, Although a consistent mass matrix is obtained
from Eq. (7), we adopted a lumped mass matrix for the sake of computational convenience. Diagonal
terms of this matrix are set proportional to corresponding diagonal terms of the consistent matrix. The
proportional constant was determined from conditions for preserving total mass of the element. By trial
and error, we found this matrix being superior to the lumped matrix obtained by adding off-diagonal terms
to diagonal ones of the consistent matrix. The integrals in Egs. (6) and (7) are readily evaluated by the
Gaussian quadrature, the integral points of which are three points in the §-§-§ plane and four points
along the ¢ axis. The number of integral points along the { axis was determined by checking accuracy of
integrations of sinusoidal functions such as sin ¢ /2 and sin 37¢/2. By assembling the element matrices,
total mass and stiffness matrices can be obtained.

3. TWO DIMENSIONAL EIGENVALUE ANALYSES

(1) 2-D ground model

To check the validity of this method, the computational program was tested through 2-D eigenvalue
analyses. Fig. 4 shows ground model employed for the analyses. This model is 1 km deep, 8 km long, and
1/6 km wide, and is devided into 48 pseudo elements along the x-axis (a pseudo element is made of two
prismatic elements) . Shear wave velocity, mass density, and Poisson’s ratio are 0.7 km/s, 1.9 t/m*, and
0.25 or (.40, respectively. Two types of anlyses were conducted; that is, the Love wave case and
Rayleigh wave case. In the Love wave case, all motions are perpendicular to the x-z plane, and in the
Rayleigh wave case, all displacements occur in the x-z plane. Boundary conditions for both cases are
tabulated in Table 1. Regarding Rayleigh waves, horizontal motion has /2 difference in phase from
vertical one. This is why only horizontal displacement is allowed at the edge in the Rayleigh wave case.
Therefore, the number of degrees of freedom in the Love wave case is 94, and that in the Rayleigh wave
case is 192. As more than eight elements are necessary for any wavelength to secure accuracy of the
solution”, modal vectors expressing wavelength shorter than 4/3 km are considered less accurate. Despite
Poisson’s ratio, the mode shapes of Rayleigh waves in an elastic medium on a rigid half space are almost
similar, when the dimensionless wavelength which is defined as a ratio of wavelength to thickness of the
layer is longer than 6%, Besides, the mode shapes for horizontal motion of Rayleigh waves are similar to
those of Love waves. On this basis, the Rayleigh wave mode shapes at the dimensionless wavelength of 10
are employed for the interpolation functions. As shown in Fig.5 in which the lateral lines denote the
Gaussian integral points, these functions satisfy the boundary conditions in Eq. (3). Ground motions
made up of many modes can be obtained by superposing each modal motion separately calculated with a set
of three shape functions, '

(2) Love wave case

Fig. 6 shows analytical examples whose dimensionless wavelengths are 16/3. From eigensolutions, phase
velocity are obtained by?

c=AS
Table1 Boundary Conditions of the 2-Dimensional Model.
v, N N
\ / “““““““‘““‘“‘_“‘“““““.“n“ —_— Love wave case y:fized y:fized y:fized
[Ty e
Rayleigh wave case  y:fized yfized yfized
Fig.4 2-D Ground Model. zfiwed  sifized zfree
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Fig.5 Interpolation Functions Employed for Analyses.

Fig.6 Eigenvectors in Love Wave Case (A/H=5.33).
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Fig.7 Characteristics of Phase Velocity Dispersion in Love Wave Case.
in which ¢, A, and f are phase velocity, wave- (a) v=025 (b) v=1040
length, and natural frequency, respectively. Di- i | e _
’ ’ 7 T
mensionless quantities \/H and C/Vs are ob- 3 (('"'W Ta
tained by referring to the shear wave velocity Vs Ir J)}}////////////////W ;))))}///////./////“ “

and thickness of the layer H. Fig.7 shows the
‘analytical results of the Love wave case expressed
in terms of dimensionless phase velocity against dimensionless wavelength, Hollow squares and triangles in
these figures indicate those resulting from functions | and [| in Fig.5, respectively. For the sake of
comparison, dispersion curves for fundamental and first higer mode Love waves are also drawn in these
figures by solid and broken lines. A set of functions I is found to give good agreement with theoretical
values. This is because the functions employed for f (£) and g (¢) are almost coincident with eigenfunctions
for the fundamental mode shapes of Love waves, A set of functions || causes a little discrepancy because of
their slight difference from eigenfunctions for the first higer mode shapes of Love waves.
(3) Rayleigh wave case
Fig. 8 shows some examples in the Rayleigh wave case. The phase velocity dispersion characteristics are
shown in Fig. 9. Hollow squares and triangles in the figure were resulted from two sets of functions 1 and
Il shown in Fig.5. Solid and broken lines in Fig. 9 are M,, and M,, Rayleigh wave dispersion curves,
respectively. Fig. 10 shows the ratios UU/W of the horizontal amplitude to the vertical one at the free

Fig.8 Eigenvectors in Rayleigh wave case (A/H=5.33).

326s



A Simplified 3-D Finite Element Method Applied to Modal Analyses of an Elastic Surface Layer 209

O I o B B BB Bt o mee e ne e o w e e S A s e e e TR [ o e e e
A

r

" —— Mjywave b " e Myjwave . y
e« Myywave -e. My wave .

o o I-(a) v=025 L o o I-()v=040 - .
A Il —(a) v=20.25 4 A IT-(b)v=040 °

- ’A’ o 3 ” P

6 e e L -

Dinensionless Phase Veloeity G/Vs

gt | HETT NOR S BN T NN DUR TUE I T DTN AT Py - P boe b s b o a B oo B s 8 2 B o B 4
(4] z 4 & 8 o 12 14 16 18 20 g 2 4 & L} 1o 12 14 16 18 20
Dingnsionless Wave Length AH Dinensionless Wave Length AH
(¢) v=0.25 (b) v=0.40
Fig.9 Characteristics of Phase Velocity Dispersion in Rayleigh Wave Case.
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Fig. 10 Amplitude Ratio in Rayleigh Wave Case.

surface, and solid and broken lines show theoretical curves. Rotational direction of the particle motion can
be found from these values ; that is, progressive for the positive values, and retrograde for the negative
ones® The direction of the motion can also be seen from the calculated modal vectors because the vectors
are equivalent to stationary waves consisting of a pair of waves traveling in the positive x and negative x
directions. It is evident that the calculated characteristics such as phase velocity dispersion and

displacement ratio are different from the theoretical ones only when dimensionless wavelength is shorter
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than 5 in case of Poisson’s ratio (. 40. The results

show that the present procedure is better adopted 0:1.9t/m?

Vs:700m/s
v:0,25,0.40
H:lkm

to the analyses with Poisson’s ratio (. 25. y

4. THREE DIMENSIONAL EIGENVAL-
UE ANALYSES

(1) 3-D ground model
The above-mentioned 2-D eigenvalue analysis

has demonstrated validity of the present method in Fig.11 3-D Ground Model,

the SH and the P-SV fields, separately. In order

to investigate the applicability to 3-D field, 3-D eigenvalue analysis is performed using a simple 3-D model
which is obtained by expanding the width of the 2-D model in the y direction. No displacement is allowed at
the side walls and at the bottom, whereas diplacement in three directions are allowed inside the walls,
Material properties of the model are the same with those of the 2-D model. The interpolation functions
used here are those of T~(a) and T-(b) in Fig.5. To compare the accuracy and advantage of this method, a
conventional 3-D finite element method which uses the tetrahedral elements” is applied to the same
eigenvalue analysis, because in our thinking, the tetrahedral element has been most popular in 3-D finite

element analyses,

conventional method present method conventional method present method

a =(), 2! b =0.40
(2) v > Fig. 12 Comparison of 3-D Eigenvectors. (b) v

Table 2 Comparison of Analytical Qualities.

A: Conventional Method B: Present Method B/A

Number of nodes 567 162 1/3.5
N.D.O.F. 882 147 1/6
Elapsed cpu time 1000 s 6 s 1/167
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(2)  Comparison with results from a conventional method

a) Eigenvectors and eigenvalues

The lowest four modes obtained by the analysis are shown in Fig. 12. In the first and second modes,
horizontal motion toward the outside directions is predominant with a little vertical motion. The next higer
mode is the torsional mode, and the fourth mode is the dilatational mode in the diagonal direction. In the
analysis with Poisson’s ratio (). 40, the directions of motion in the first and second modes calculated by the
present method are of a little difference from those of the conventional method, whereas the shapes in the
third and fourth modes are much similar to each other. In the analysis with Poisson’s ratio (.25, the
eigenmodes look coincident with each other. The‘present procedure tends to give natural periods longer
than those by the conventional FEM. The difference in period is 2 % for the first and second mode, and
6 9% for the third and fourth mode.

b) Computational time

Number of nodes, N. D, O F. (number of degrees of freedom) and the elapsed cpu time to calculate the
lowest 3() modes are tabulated in Table 2. It is evident that the computational task can be much reduced by
this method in comparison with the conventional one.

5. CONCLUSIONS

The finite element matrices have been formulated by using the modal shape functions of Rayleigh waves
for the interpolation functions, The matrices enable us to reduce the number of degrees of freedom to a
great extent, As far as a series of eigenvalue analyses demonstrated here is concerned, the following
conclusions can be drawn with respect to the present method.

(1) Dispersion characteristics of fundamental Loove wave can be accurately calculated.

(2) When Poisson’s ratio is (0. 25, Rayleigh wave characteristics such as phase velocity dispersion
and amplitude ratio can be calculated to a satisfactory level of accuracy in the full range of wavelength.

(3) When Poisson’s ratio is (. 40, the calculated Rayleigh wave characteristics are reliable except in
a shorter wavelength range.

(4) Computational time can be reduced to 1/170 with sufficient accuracy in 3-D eigenvalue analysis,

In this study, a rigid half space was assumed for the second layer. We are planning to analyze seismic
wave propagation in more generalized ground models by extending this method.
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