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EFFECT OF SPATIAL RANDOMNESS OF RESPONSE
CHARACTERISTICS ON SEISMIC STABILITY OF EARTH DAMS

By Kazuta HIRATA* and Masanobu SHINOZUKA**

A practical method for the stochastic analysis of the effect of spatial randomness of
earth dams on the seismic stability is proposed, where attention is paid particularly to
the shear strain in the horizontal cross-section due to relative displacement of the dam
along its longitudinal axis, The method takes into consideration both spatial variabilities
in the dam material and geometry and randomness of the earthquake motion. The prop-
osed method is used to determine the depth-wise distribution of shear stress in the hori-
zontal cross-section of the dam as well as that in the transverse cross-section, Such a
distribution of a shear stress is in turn used to examine their effect on the seismic sta-
bility of the dam.

Keywords . earth dam, seismic stability, spatial randomness

1. INTRODUCTION

The stability analysis of earth dams during earthquake is usually performed utilizing a two-dimensional
model consisting of representative transverse cross-section under plane strain condition. However, when
the cross-section is not uniform as in the case where the dam is constructed in a narrow canyon and bounded
by sloping canyon walls, the effect of the three-dimensional shape of the dam can be significant. The
three-dimensional effect of the earth dam has been investigated by comparing the result of two-dimensional
analysis with that of three-dimensional one, and its effect on the response characteristics is indicated to be
significant in the case where the dam is bounded by sloping canyon walls"~".

On the other hand, regarding the seismic design of buried pipeline structures, method of stochastic
estimation of ground deformation during earthquake is proposed by Harada and Shinozuka”?, where the
horizontal ground is modeled with the assembly of shear column and the two-dimensional effect of the
eround is taken into account by introducing the correlation of response characteristics of each shear column
represented as one-dimensional homogeneous random field, and the spatial distribution of relative
displacement of the ground is estimated,

In this paper, a method of estimating the effect of spatial randomness of response characteristics of the
earth dam on its seismic stability is presented where above mentioned method for the estimation of the
relative displacement of the ground is expanded for inhomogeneous random field. The results are given in
terms of the (a) variance of the relative displacement, (b) expected maximum value of the strain and (c)
expected value of local safety factor during earthquake.

* Member of JSCE, M. Eng.. Central Res. Inst. of Electric Power Industry (Abiko-shi, Chiba, JAPAN)
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2. EQUATION OF MOTION

Consider an earth dam constructed in a triangular canyon as shown in Fig, 1. Input earthquake motion is
considered to be vertically incident SH wave with its amplitude in the upstream-downstream direction. The
arrival time of the wave at the base varies according to its elevation. Here the dam is modeled as an
assembly of shear wedges as also shown in Fig, 1. From the equilibrium of shear element in the wedge, the
equation of motion is given as follows?®,

,OB (y, Z) (ayatz)[ub(y, ZH‘ ur(y’ z, t)}:(a/az)[B (y, Z)sz] .......................................... ( 1 )
where p is the mass density, B is half the width of the wedge, 7, is the shear stress in the x-2 plane of the
wedge, and u, is the displacement at the base of the wedge and 1, is the relative displacement to the base.
Relative displacement y, of the wedge is expressed as a sum of the modal shape function multiplied by
normal coordinate x; as follows.

.y, 2, t)zg Jo A2 L (Y)) s (B) ++eeremeemreee oo (2)

where J, is Bessel function of the first kind of order (), A, is the j~th root satisfying J, (\)=0 and L (y)is
the height of the dam in the transverse cross section at . The normal coordinate g, is given as a solution of
the equation below,

:f,-(tH‘Z hiwX (t)+ ngi (t):““,@i'ilb(i) (L':L 2 ) ...................................................... ( 3 )
where - means time derivative, h, and o, are modal damping ratio and natural angular frequency for j-th
mode, and ¢, is given from the equation below

sz/CSD:/\i (i=1,2"') .......................................................................................... (4)
where Cg, is the shear wave velocity of the dam and 4, is the modal participation factor expressed as
L L
BL:[ ZJD(AL,Z/L)Q:Z/[ 2 [ Jy (A2 L) 2z - veeeerevreee e (5)

3. SPATIAL VARIABILITY OF RESPONSE

(1) Spatial distribution of natural frequency and damping

Response characteristics of the shear wedge represented by the resonance frequency and modal damping
ratio are dependent on the wedge location specified by y. The spatial variability of resonance angular
frequency of (y) and the modal damping ratio A¥(y) are expressed as follows? ¥,

W W)=w (W IHL ()], hF @) =R ()14 R ()] erverremeeoee e (6)
where «, (y) and h,(y) are the mean values of o (y) and A¥(y), and f (y) and h (y) are homogeneous
stochastic fields which are considered resulting from the randomness of material properties and geometry.
It should be noted that although f (y) and A (y) are homogeneous stochastic fields, wf (y) and A¥ (y) are
non-homogeneous because the mean values o, (y) and A, (y) are dependent on . In Eq. (6), it is assumed
that ‘

E[fz(y)]<<1, E[hz(y)}<<1 ..................................................................................... (7)

where E [ - ] means expectation operator, Relationships between the coefficient of variation 8 wf of w¥(y)

Fig.1 Three-dimensional View of Earth Dam in Triangular Canyon and Modeling of the Dam.
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and the standard deviation ¢, of f(y), and between the coefficient of variation &% of A¥ (y) and the
standard deviation ¢, of h(y) are

Bw* =y,  BET Gpp orveereeee e e e e i e (8)

(2) Time-space correlation of displacement

In the estimation of seismic stability of earth structures such as fill dams, effect of the first mode is
predominant as indicated from amplification function of the dam obtained from 3-D FEM analysis?? hence
the first mode is considered and the subscript 1 in ¢ and A is omitted hereafter. Input acceleratlon motion
at the base of the dam considering phase lag is given as

’ub:’ub(t_ﬂ(y)/csx) ................................................................................................ (9)
where 7 (y) is the elevation of the base of the wedge measured from the lowest elevation of the bottom of the
dam as shown in Fig. 1, and Cg, is the shear wave velocity of the foundation. Taking the first term of Eq.
(2), relative displacement g, of the dam to the ground considering spatial variability is obtained as
follows.

u’f(y, z, t)‘”—BJo(/\;Z/L f I* y’ )ub(t—r— (y)/CSR)dz .................................... (10)

where [* (y, 7) is the impulse response function considering spatial variability, and expressed as

I*(0)=01/*Vv1—h*)exp(—h*o*r)sin(o* v1—h* ) for :>0

:O for Tgo ................................ (11)
The total displacement of the dam is given as
WYy 2, B)=UE (Y, 2, B)F U (E— 1 ()] Cgp)ererererereeremmememmenmntat e, 12)
Time-space correlation function of y (y, z, t) denoted by @Q,, is defined by
Quuly, 2, 1, & T)=E[u(y, 2, 1) u(y+E, 2, A g)] e, (13)

where ¢ and ¢ are spatial and time separations. Assuming the stationarity of ¢ with respect to time, Q,, is
independent of time. Temporally spectral and spatially correlational function P,, of y is defined as

Puu(y' z, g’ w):(l/z ”)[:exp(— szv) Quu(yy z, gv 'l")dl' ............................................. (14)
and inversely

Quu(y‘ z, 5, T):[:expu'wz-) Puu(y' z, g’ cu)dcu ......................................................... (15)
Spatial correlation function R,, of ¢ is defined as

Ruuly, 2, =Quuly, 2, & 0):[: Puw(y, 2, €, @)y ewemrerereemenosssieeen 16)

Stochastic estimation of the relative displacement of the horizontal ground during earthquake is proposed
by Harada and Shinozuka®?  here the method is applied to the case of the earth dam where the height
varies at each transverse cross-section. Asshown in Eq. (11) impulse response function includes nonlinear
term with respect to * and h*, and to make linear operation possible, the impulse response function is
expanded into Taylor series with respect to * and A* around their mean values , and h,. And truncating
higher terms beyond the second on the assumption that the variations of * and A* around ¢, and h, are
small as shown in Eq. (7), the total displacement in Eq. (12) is expressed as follows.

uly, 2 D=—h(hz/Lly f I{wo(®), hely), )it (t= =7 (5)/ Csde
’—[ﬂJo /\12/L wo [ Iw CUo 0( ) )ilb(t"*r*“??(y)/CSR)dr]f(y)

~[8% 2/ L) ho(w) [ T lon(9), ho(9), o) i (t= =1 (5)/ Codelh(y)

+ub(t— ( )/CSR) ................................................................................... (17)
where [~ and [}- are derivatives with respect to * and A*. Substituting Eq. (17) into Eq. (13) and
further into Eq. (14) and assuming independence between f (y) and h (y), and neglecting terms of the
second order with respect to f(y) and A(y), Pu, is given as
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Puu(y, 2, §, @)= Siyi, (w) €xp (= iw/Csln (y+€)—7(y)])

X[1/ @' +8J(Mz/L(y) H (= w, 9)I[1/o*+p)(Mhz/L(y+€) H (—w, y+&)]

T4B° R (6) o (Mz/L(y) Jo (Mz/L(y+ &) H* (—w, y) H (0, y+£)

X i () wi (Y +€) Sii (w) €xp (— i/ Csaln (y+ E)—n (y)])

X[1+iw%ho(y+$)/wo (y+$)—ho(y)/wo(y)§] .......................................... (18)
where S3,;, (w) is the power spectral density of input ground acceleration and H (w, y) is the first modal
frequency response function for relative displacement given as

H(w, y):“l/(wg_w2+i2 ho(y)wo(y) ) F7 T e (19)
and R, (&) is the correlation function of f (y). In the derivation of Eq. (18), correlation function Run(8)

and the mean h,(y) of 4 are assumed to be small and terms of the second order with respect to these
quantities are neglected.

4. ESTIMATION OF SHEAR STRAIN

(1) Shear strain in horizontal cross-section

Shear strain of the dam in the horizontal cross-section along the longitudinal axis can be estimated from
the relative displacement of adjacent wedges as shown in Fig. 2. First, consider relative displacement 1,
along the longitudinal (y) axis between two points specified by y and y-+D at a depth z from the crest.

up(y, z, D, t)=u(y+D, z, t)-—u(y, z, t) ................................................................. (20)
Then time-space correlation function Qup.p of u, is given by
QuDuD(y, z, D, 5‘ Z'):E [uu(y, z, D’ t) uD(y—*-S‘ z, D! t+T)] ....................................... (21)

Substituting Eq. (20) into Eq. (21), and using the relationship shown in Eq. (13), then substituting r=0,
the spatial correlation function R, of u, is derived as
Rul)ul)(yv z, D, g):QuDuD(yy z, D, ¢, 0)
:Ruu(y+D» z, §)+Ruu(yv z, §)_Ruu(y, zZ, D’|‘§)
—Ruu(y+D, z, g:’ MD) ....................................... (22)
Variance ¢%p,, of wu, is given using Eq. (16) as
04w Rupuwn (Y, 2, D, 0)

:f Puuy+D. z. 0, w)dw+f° Puuly. 2. 0, w)d(rzf Puuly, 2. D. w)dw e 23)

y
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\
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!

Fig.2 Definition of Shear Strain 7, and 7.
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As for the shear strain, consider the local average 7, of shear strain y,, defined by

Y+ D
7D(y)=(1/p)j; e (D) QY= (1) DYty () eeeeemeermseemereemseree s (24)
And the variance ¢%,,, of 7,(y) is given by Eqs. (23) and (24)
U%'DyD:(l/Dzﬁzpuo .......................................................................... e (25)‘

After the variance of shear strain is obtained, one can estimate expected maximum value of shear strain
using peak factor, PFA, derived from probability distribution for extreme values as follows”®
(Y)max=PF A" 0,7,
PFA=/2TI0 2 0T ) 4+ 7 /20 (2 yT) reerrverrerme et (26)
where y is the apparent frequency of the process, T is the duration of the process and y is the Euler’s

constant (=(.5772---). The apparent frequency y of the process is defined as

v=(1/2 ”)(mz/mo)l/z ................................................................................................. (27)
where m, and m, are spectral moment of order of zero and 2 and defined as
m(,:/:w S(wdw, mg;[“’ QRS (@)@ - evreresess e (28)

with S (w) being the power spectral density of the process.

(2) Shear strain in transverse cross-section

Shear strain in the transverse cross-section can be estimated from the relative displacement along the
vertical axis in the shear wedge at each section in the similar way to the case of horizontal cross-section.
However, as to the shear strain y,, in the transverse cross-section, the relationship between displacement
and shear strain can be made use of given as

Vo= OU (y, z, t)/az ................................................................................................. (29)
Substituting Eq. (17) into Eq. (29) one can obtain

Yez(y, 2, 1)=(BA/L(y) Jy (Mz/L(y))

U enlg), Aoy sl =) Cad

+an () £ @) [ L (en @), holy), ©) (b= =7 1)/ Caldr
+h0 f Ih, wo 0( ) )ub(t"T"U(y)/CSR)dTit ........................ (30)
where the relationshlp below is used.
S/BZ[JO AIZ/L ]—“[&/L )]JI(/MZ/L(Z/)) ............................................................. (31)

where J, is the Bessel function of the first kind of order 1.

The variance of the shear strain 7,. is obtained as

a%,nyxz:[ Py (Y, 2, @) eeeerremme s (32)

where P, . is the power spectral density function of 7. which is given as
vazvrz(y, Z, w)
:Sﬁbﬁb(w)[{(ﬁ/ll/l;( ))Jo()xlz/L }2|H w, )|2
—@2 BN/ L(y) i {hz/L (y))wi ( |H w, y)[z]
+4 8°R1+(0) w5 () Siiin () A/ L (y)) J1 Mz/L YN TH (@, g)| e (33)

5. INPUT EARTHQUAKE MOTION

As the power spectrum Sj,;, (w) of input acceleration motion, the filtered Kanai-Tajimi spectrum® given

below is used in which singularity at =0 is removed to make the estimation of displacement variance

possible.

Sinin (@)= Sa (/@) T/ w4 E5(a] V] weeeeesmessssmsssseic (34)
with SA( w) being the Kanai-Tajimi spectrum!®-"V given as

SA SO [1+4 é—g (U/wg 2]/[{ w/wg) } {2 ;g((()/(l)g)}z] .................................................. (35)
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(Filtered and Non-filtered Kanai-Tajimi Spectrum).
where S, is the intensity of white noise, ¢, and w, are damping ratio and natural frequency when the ground
is considered as a SDOF system, and ¢, and w, are damping and frequency parameters determined to give
desired filter characteristics.

Fig. 3 shows both filtered and unfiltered Kanai-Tajimi spectrum. The former one is used in the numerical
calculations afterwards. Parameters used are w,=8 n (rad/sec), ¢,=0.6, which are so selected to
represent earthquake accelerograms observed on the bedrock or stiff soil'?, and w, and {, are given as w,

=y /2 (rad/sec), &=0.6.
6. ESTIMATION OF LOCAL SAFETY FACTOR

The local safety factor is defined as the ratio of the available shear strength to the shear stress acting at
each portion of the dam as shown in Fig,4. Spatial distribution of the local safety factor gives the
information as to the occurrence of the local fracture in the dam, and is made use of in the assumption of the
potential sliding surface. Before earthquake, static ¢, o, and g,, o, are acting in the x-y and x-z plane,
and from the assumption of isotropic stress condition, ¢,=0, (i.e., z;,=0). During earthquake,
additional dynamic shear stresses (7,,) 4 and (z,) ; are generated in each section. The local safety factors
(Fs) zy and (F) ., in the x—y plane (horizontal cross-section) and x-z plane (transverse cross-section)
are defined as the ratio of the distance from the center of Mohr's stress circle to the fracture surface to the
radius of Mohr's circle®, and given as

(Fs) 2s=(C cos ¢+ Koo 5in ¢)/(tae)a

(F9) 22=(C cos ¢+{1+Ko)/2l a.8in ¢1/[(02/2)2(1— Ko) A (i) Feeeeeeeererooeiiiiiii (36)
where ¢, is the normal stress in z-direction and other normal stress components g, and ¢, are evaluated
using coefficient of lateral stress at rest K, defined as the ratio of horizontal normal stress to that of
vertical normal stress, and Mohr-Coulomb’s failure criterion for the dam material given below is made use
of.

= C+otan ¢ ....................................................................................................... (37)
where z, is the shear strength, C is the cohesion, ¢ is the normal stress on the shear surface and ¢ is the
friction angle.

7. NUMERICAL RESULTS

(1) Spatial distribution of shear strain
According to the method presented in the previous chapters stochastic estimation of the earth dam during
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earthquake is made. The variance of the shear strain is evaluated by the numerical integration of the power
spectral density given by Eq. (23) and (33). Spatial correlation function R,,(£) of A (y) is assumed as a
function of negative exponential one as

Rff(f): OifeXp (‘.(S/by) .......................................................................................... (38)

Schematic view of the spatial distribution of the shear strain due to earthquake is shown in Fig, 5 where
the spatial distributions of the shear strain both in the transverse cross-section and horizontal
cross-section are shown with dotted line and solid line respectively.

Figs. 6 and 7 show the spatial distribution of the expected maximum shear strain (7;,)nax in the horizontal
cross-section with c.0.v. §w* (=o,, from Eq. (8)) and correlation distance b of natural angular
frequency of the shear wedges being parameters. As for the effect of §¢* shown in Fig, 6, the shear strain
Yoy increases as Jw* increases indicating that as the randomness with respect to the response
characteristics of shear wedge increases the relative displacement between the wedges increases, As for
the effect of correlation distance b shown in Fig, 7, the shear strain (7,,)mnax decreases as b increases, and
in the case p=o0, i.e., under the condition of full coherence of f (y), the strain becomes smallest, which
gives the lower bound of the expected maximum shear strain, In these cases the shear strain increases as
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Safety Factor (Canyon Slope H/W=1/2, b=10m, Safety Factor (Canyon Slope H/W=1/1, b=10m,
Sw*=0.1). daw*=0.1).

the level becomes higher and as the height of the crest from the base increases. The former trend is wholly
contrary to the spatial distribution pattern of the shear strain in the transverse cross-section as will be
shown afterwards,

Fig. 8 shows the spatial distribution of the expected maximum shear strain (y,.)nax in the transverse
cross-section with ¢. 0. v. of natural frequency of the shear wedges as a parameter. In this case shear
strain becomes zero at the crest level from the boundary condition of zero stress there, and shear strain
increases as the level decreases. This trend of the shear strain distribution can usually be observed in the
two-dimensional response analysis, where the shear strain distribution in the horizontal cross-section
cannot be taken into account. The effect of the parameter, c.o.v. of the natural frequency, is not so
conspicuous as that for the strain in the horizontal cross-section. Fig. 9 shows the spatial distribution of
the expected maximum shear strain both in the horizontal and transverse cross-sections with different
canyon slope. As the canyon slope becomes steeper, (7;,)max in the horizontal cross-section increases,
whereas (¥,,)Jnax in the transverse cross-section is not affected by the canyon slope.

(2) Spatial distribution of local safety factor

In the estimation of the local safety factor, K, of (.5, cohesion C of 10.0 (tonf/m?) and friction angle ¢
of 40 deg are used in Eq. (36). Fig. 10 shows spatial distribution of the expected minimum local safety
factors in both horizontal and transverse cross-sections for the case of the canyon slope equal to 1/2. In
the region of 10 m and 20 m deep from the surface, local safety factor in the horizontal cross-section
(Fs| zy)min is smaller than that in the transverse cross-section (Fy| .Jmn, especially in the region near the
crest, And as the depth from the surface increases, the difference of the local safety factor between both
cross-sections decreases, and at a depth of 40 m from the surface (Fy| ohmn exceeds (Fg|.)mn.

Fig. 11 shows spatial distribution of the expected minimum local safety factors for the case of the canyon
slope equal to 1/1. In this case even at a depth of 40 m from the surface, (F| y)mn is smaller than
(Fs

by sloping walls, the local safety factor in the horizontal cross-section, which is not taken into account in

zz)min. Lhese results indicate that when the earth dam is constructed in a narrow canyon and bounded

the usual seismic analysis, can become an important item to estimate, Considering that in the static state
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shear stress is small in the horizontal cross-section and the gravity effect does not work during and after

the earthquake, shear failure of the dam material in this cross-section may not lead to the collapse of the
dam, although there still remains possibility that it is responsible for the material fracture which causes

surface crack or land slide of the dam in the shallow region. Hence, evaluation of y,, and (Fy), in the
horizontal cross section as well as those in the transverse cross-section should be required in the seismic
analysis of earth dams especially when the dam is located in a narrow canyon and bounded sloping canyon

walls.

8. CONCLUSIONS

A method of estimating the effect of spatial randomness of response characteristics on the seismic
stability of earth dam was proposed. With this method spatial distribution of the expected maximum shear
strain both in the horizontal and transverse cross-sections and also the distribution of the expected
minimum local safety factor in the both cross-sections can be evaluated.

From the numerical estimation of the earth dam in the triangular canyon, it was made clear that the
spatial randomness of the response characteristics of the earth dam has a considerable effect on shear
strain in the horizontal cross-section during earthquake, especially in the case where the dam is
constructed in a narrow canyon and surrounded by steep canyon walls. The proposed method, with its
simplicity in the modeling and the calculation considering the randomness of both the response
characteristics and the input earthquake motion, will be an effective tool for the preparatory estimation on
the seismic stability of earth dams to be constructed in the narrow canyon and also in the assessment of
seismic risk of the dam where the randomness associated with the response characteristics of the dam and

the earthquake input motion are taken into account.
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