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ADVANCED PERIODIC GALERKIN FINITE ELEMENT METHOD
FOR SHALLOW WATER EQUATION

By Noriyoshi KANEKO* and Mutsuto KAWAHARA**

The advanced periodic Galerkin method for the shallow water equation is presented
using the exponential function for the constituents decomposition including the conjugate
complex function, The steady flow which is caused due to the existance of periodic flow
can be solved by the present method. To verify the effectiveness of the present method,
the numerical calculation in one-dimensional problem of which the analytical solution is
known is performed, The numerical results are well in agreement with the analytical
solution. The residual flow analyses both in the model basin and in Tokyo Bay are car-
ried out, The numerical solutions are well in agreement with the experimental data and
measurements, Accordingly, the present method is shown to be adaptable for the analy-
sis of the combined problem between the steady and harmonic flows,
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1. INTRODUCTION

Commonly, the shallow water equation is applied to coastal sea problems such as tidal current, tsunami
propagation, storm surge, etc. The tidal flow is usually calculated by the shallow water equation with
bottom friction, Coriolis force, etc. In the numerical analysis of the tidal flow, two approaches are usually
used, one is the time stepping method and the other is the periodic method. The time stepping method?-?
can be easily applied to the calculation of non-linear problems. The residual flow due to the nonlinearlity
can be expressed by averaging the flow over one period”. But the calculation of this method should continue
from zero to final quasi-steady periodic state. It is rather difficult to decide when the time stepping method
can attain the periodic state. The stability condition of the time stepping method is relatively sensitive. In
the case of tidal analysis in the nearshore flow, the determination of time increment is essential, because
the number of iterations becomes large. Another method of tidal analysis is the periodic method. The
periodic method is suitable for tidal analysis in the nearshore region because this method does not need to
use time-wise calculation, The variables in the periodic method are separated to time and space. The flow
is assumed to be quasi-steady.

Kawahara and Hasegawa® applied the Galerkin method for the shallow water equation in both of the space
and time domain. This periodic Galerkin method is able to solve the interaction of the various frequency
components due to nonlinearlity. The tidal analysis of Katsurashima channel is carried out” by this
method, However the steady flow which is occurred by periodic flow due to nonlinearity such as tidal
residual flow can not be calculated by this method. The several calculation methods of interaction between
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the steady and harmonic components are proposed by Provost et al.?, Westerink et al. ¥, Walters® or
Kouno et /.’ and among others, Provost et al.® and Westerink et al.”¥ proposed an iterative method
based on the periodic method employing the equation that the nonlinear term is transformed into the right
side of the shallow water equation. Walters® proposed another iterative method. The velocity and water
elevation are separated into the steady and harmonic components, in which the harmonic component has a
pair of conjugate complex. A pair of the shallow water equation is calculated in an indirect way. The water
elevation is calculated and then the velocity is calculated in a separate manner. The water elevation and
velocity are calculated using the values of the previous step, This iterative procedure is also repeated until
the convergence is obtained. The same shape function is chosen for velocity and water elevation. Kouno et
al." also tried the nonlinear analysis, in which the velocity and water elevation are separated into the
steady and periodic components. The calculation of the steady flow is carried out by the time stepping
method. The useful calculation method of interaction between the steady and harmonic components is not
established yet.

In this paper the Galerkin method is applied in both the space and time domain like a conventional
periodic Galerkin method”. The steady component induced by the harmonic component and also the
interaction among the harmonic components can be calculated by the present method. The exponential
function is adopted for the trial function in time and the expansion of harmonic components has a pair of
conjugate complex. Quadratic and linear function are adopted for the shape function of velocity and water
elevation respectively. The final simultaneous equation is a set of nonlinear equations. Newton-Raphson
method is applied to solve the equation system is a direct manner,

To verify the effectiveness of the present method, one dimensional wave propagation considering the
interaction between the steady and harmonic components is performed and is compared with the analytical
solution. Both components of the steady and harmonic flow are well matched with the analytical solution,
The residual flow induced by the tidal flow in the model basin is carried out. Both numerical and
experimental results'” show the counterclockwise flows. Both amplitudes of velocity are in good
agreement. The residual flow in Tokyo Bay is calculated to verify the possibility of application. The
numerical results also show good agreement with the measurements. The numerical examples show that
the present method is adaptable for practical computation,

2. GOVERNING EQUATION

The governing equation is the shallow water equation which is derived by integrating the Navier-Stokes
equation vertically over the water depth and is expressed as :

5 .
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%+(huk),kzo ......................................................................................................... (2)

where i, u, ¢, h, g and v denote time, depth-averaged components of velocity in x, y coordinate
directions, water elevation from mean sea level (MSL), water depth to MSL., acceleration due to gravity
and eddy viscosity, and ( ), denotes the partial differentiation with respect to coordinate x;. In the
continuity equation ( 2 ) the amplitude of the water elevation can be assumed to be negligible compared with
the water depth. The boundary conditions are prescribed on each boundary :

the velocity y, is specified on boundary §,

WrT= Al M Sy v oo eeemmemt ettt ettt e (3)
the velocity gradient g, is specified on boundary S,

Qk:(uk,j+ Uj,k)nj:@k 103 4 B P T (4)
and the water elavation ¢ is specified on boundary S,
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where the notation hat denotes given value on the boundary, n; represents the unit normal vector.
3.  FINITE ELEMENT EQUATION

Following the conventional finite element Galerkin method, the weighted residual variational equation
are formulated. Let y¥* be the weighting function, the values of which are arbitrary except on the
boundaries where they take zero. Multiplying both sides of equation (1) by u¥, integrating over the whole
domain V and using Green’s theorem lead to the variational equation as follows :

[(ur 2%V av + [tuwav+y [wtuav+y [wiuddv+ [ (utgtdv
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Multiplying both sides of equation (2) by the weighting function £* and integrating over the whole domain

V, the variational form of the continuity equation is derived as :

f<§* )dV'f‘f{é”k huk }dV (I REEETRRPRRRERPRRRRRR
Both trial and weighting functions of velocity and water A A
elevation are expressed in the form :
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where 14 and &, are the nodal values of velocity at the ¢th node in the kth direction and water elevation at
the Ath node respectively. The interpolation function ¥, for water elevation is linear function which is
chosen for the reason that this is the lowest order function with three nodal unknown values. The
interpolation function @, for velocity is chosen as the quadratic function. This is based on the fact that the
interpolation function for velocity should be heigher than that for water elevation in case of periodic
shallow water analysis or imcompressible viscous flow analysis. This fact is already detected by author’s
group'. Substituting equations (8) and (9) into equations (6) and (7) and considering the
arbitrariness of %, and ¥ yield a set of finite element equation :

QUs; -
For=Myns; a; Kooyt lynt HarpCut Sansstbes— Qapm0 rrrerermemsssrs (10)
¢
GA=Aru at“ B sl s 7= 0o r e s (11)
where

Mosss= 0 [[(0a )0V, Kosri= [0, 0,0V, Huni=3 [ (0 T.00dV
Sere =8 [ (un®an)dV+v [ (0, 0:02V, Bor= [ »(22d)dS
A= [(B0IAV, By~ [(00,,020dV+ [ (0.3,05)aV

4. ADVANCED PERIODIC GALERKIN METHOD

To solve equations (10) and (11), the periodic Galerkin method is applied in time based on the fact that
the long wave such as tidal flow is periodic motion. Kawahara and Hasegawa® succeeded in analyzing the
non-linear shallow water equation to solve the interaction with the various harmonic component by the
periodic Galerkin method. But the steady flow induced by the harmonic flow can not be considered. The
advanced periodic Galerkin method is capable of solving the steady component induced by the harmonic
component and the interaction between the steady and harmonic components. The dependent variables,
velocity and water elevation, are represented by the Fourier series expansion in terms of integer values of

a base frequency w.
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where 7 is the index for harmonic components, superseript ( refers to the steady component, ¢ is angular
frequency and 7 is the imaginary unit. The harmonic components have a pair of conjugate complex which are
superscripted 7 and — 7. This is the main point in the advanced periodic Galerkin method. The weighting
function in time is expressed in the following form

N ; o g 1l & ; —n - .
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Where, w9, uk® w}~7 ¢* £*7and £*-7 are the arbitrary weighting values, Multiplying equation
(10) and (11) by weighting function (13), integrating over one period [0, T=2 7/ )], rearrenging the
terms using the arbitrariness of the weighting values, a set of weighted residual equations can be obtained.
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( 0
Substituting equation (12) into equation (14) and (15) and manipulating using orthogonality condition of
exponential function, the discrete nonlinear simultaneous equation system can be derived in the following
form, steady state from equations (14)-1 and (15)-1
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harmonic component from equation (14)-2 and (15)-2 (r=I,2,3, ) :
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and conjugate harmonic component from equation (14)-3 and (15)-3 (r=1,2,3,---00) .
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where
1 if o=
D I

0 otherwise

Compared with the conventional periodic method and the present method, the steady formulation (16) and
(17) are quite different. The steady equation of the present method has the harmonic term which consists
of conjugate harmonic components. Therefore, the steady component induced by the harmonic component
can be calculated by the present method. These sets of non-linear equation systems can be solved by the

Newton Raphson method.

5. NUMERICAL CALCULATION

The steady component which is occurred by the harmonic component can not be calculated by the
conventional periodic Galerkin method. This steady component can be calculated by the present method.

276s



Advanced Periodic Galerkin Finite Element Method for Shallow Water Equation 159

Considering the steady component induced by the harmonic component, it is convenient to assume that index
r in expansion of the series in equation (12) is chosen as r=1. Thus for practical computation, the
following three equation systems are derived.

The steady equation is obtained from equation (16) and (17) as:

1
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harmonic component from equation (18) and (19) as .
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and conjugate harmonic component is obtained from equation (20) and (21) as:
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(1) One-dimensional numerical calculation

The numerical calculation in one-dimensional flow is carried out. These results are compared with the
analytical solution which are introduced in appendix.

a) Periodic flow coupled with the steady flow

The numerical calculations are carried out using the mesh idealization as shown in Fig.2 and the
boundary condition in Table 1. The length of analytical domain, gravity acceleration and water depth are
given 32 km, 10 m/sec? and 10 m. The numerical calculation is carried out for various values of steady flow
U whichis 0.25, 0.5, 0.75 and 1.0 m/sec from the top respectively in Fig. 3. The amplification factor is
compared with the numerical and the analytical solutions in Fig. 3.

Both solutions show reasonable agreement as shown in Fig. 3. The distribution of water elevation is

Table1 The condition for one-dimensional numerical calculation.

- — — T — — —
Steady Normal velocity = 0 on AB and CD = ik -
component kel O present method

Normal velocity = Um/sec on AD and BC analytical
< L
o
Water elevation = 0 on AD e} real part
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Harmonic | Normal velocity = 0 on AB, BC and & @
component p” °
periodic velocity=le m/sec on AD M R
3 imaginary part
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Fig.4 Comparison of the water elevation
Fig.2 Mesh idealization for one-dimensional shallow water flow. in harmonic component.
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Fig.3 "Variation of the amplification factor due to steady flow. Fig.5 Comparison of the water elevation in steady component,
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compared and is shown in Fig. 4. For this calcula-
tion, gravity acceleration, water depth, eddy
viscosity vy, steady flow {J and angular frequency
are used 10 m/sec?, 10 m, 100 m*/sec, 5 m/sec and
0.0005/sec, respectively,

b) One-dimensional steady flow analysis

The numerical calculation of the steady flow is
performed. The computed condition is the same as
in section a). The numerical result is well in
agreement with the analytical solution as shown in
Fig.5. The water elevation of steady flow is
smaller than that of harmonic flow for the order of
2.

(2) Numerical simulation of tidal circulation

The two numerical examples of tidal circulation
are performed. One is the simulation of ex-
perimental tidal circulation in the model basin and
another is the tidal circulation in Tokyo Bay,

a) Tidal circulation in model basin

The experiment of residual current induced by
the tidal flow with the use of a hydraulic model was
carried out by Yanagi'?, The right half of the basin
is a model bay, which is a square of 5 m sides with a
one sided mouth of 1 m and the water depth of
0.1m. In the experiment, the period of tide was
6 minutes and the tidal range 1 cm at the plunger.
The steady residual flow was obtained in 6 tidal
periods after the start of tide generation, Water
elevation and velocity were measured during the
periods from the 6 th period to the 10th period. The
numerical computation is performed to simulate the
phenomena of the experimental results., The cal-
culation conditions and mesh idealization are listed
in Table 2 and shown in Fig. 6. The residual flow is
compared with the experimental data in Fig. 7. The
two cases of numerical calculation are carried out,
Eddy viscosity is assumed as 10 cm?/sec and
100 em?/sec. The former is in good agreement with
the experimental result, but in the case of eddy
viscosity=100 cm®/sec the velocity of the circula-
tion is very smaller than the experimental result,
The periodic flow in both cases is obtained as in
almost the same pattern. The computational
aspects of the harmonic flow is significantly influ-
enced by the frequency. The steady flow is
sensitive to the viscosity. The viscosity effect is
more significant for the steady flow analysis,
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Table2 The calculation condition of tidal circulation

in model basin.

Steady Normal velocity = 0 on AB, BE, CD, DBE,
P FG. GH and HA
Water elevation = O on HA
Harmonic | Normal velocity = 0 on ZXB, BC, €D, DE,
component. EF, FG, GE
Periodic iwt on HE
water elevation = 0.5 e o¢m
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Fig.6 Mesh idealization for tidal circulation in model basin.
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Fig.7 Comparison of the residual flow in the model basin.
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b) The simulation of residual circulation in Tokyo Bay

The residual circulation analysis in Tokyo Bay is performed to verify the possibility of application, The
configulation of Tokyo Bay is modeled with reference to the Maritime chart of Tokyo datum™ (see in
Fig.9). The finite element idealization is shown in Fig. 8. Total numbers of nodes and elements are
1360 and 637 respectively. For the boundary condition, the amplitude of the water elevation on the
entrance of the bay is given (. 42 cm which is obtained by combined the amplitude of M, and S, tide near the
entrance? and the normal velocity is set at zero on the other boundary in harmonic component, With the
boundary condition in steady component the normal velocity is zero on all the boundaries and the water
elevation is given as zero on the entrance of the bay. The period of tide is set 12 hours and eddy viscosity is
assumed 50 m?/sec. For periodi¢ flow the numerical results are compared with the measurements in the
Chart of Tidal Streams in Maritime Safety Agency' which is shown in Fig, 10. Both data shows to be well
in agreement. In numerical results near Futtsu, the relatively large velocities are obtained. These are
computed due to the characteristics of the land configulation, namely, the region is straitened by the Cape

Ic}uka.wa. Q\jﬁ{ Fu]\aba,shl
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0 10km'|
== = =
Kawasaki’ 3 )
B Ichihara.
“Yokohama Banzu Hana
' Kisarazu
Yokosuka. RCK Futtso
Uraga,
) >
Miur
X y

Entrance of bay

Fig.8 Mesh idealization in Tokyo Bay.
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(a) Measurements!¥) (b) Present method

Fig.10 Comparison of maximum North West stream in Tokyo Bay.
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Fig. 11 Comparison of the residual current in Tokyo Bay.

of Futtsu, the water depth in the area is significantly shallow compared with other area and the gradient of
water depth is quite steep, etc. To overcome these discrepancies the finer finite element mesh idealization
should be used,

For the residual flow, the numerical results are compared with the measurements in Fig.11. The
numerical results and measurements have a clockwise circulation which is located from Kawasaki to Banzu.
The area off Kawasaki through Miura has current toward the south. The flow pattern of the computed and
measured results show quite good agreemenf, but the absolute value shows a slight discrepancy. This is
because the present computation include several approximations, i.e., 1) the computation does not
consider the wind effect, 2) the discharge from the river is not considered, 3) the effects of periodic flow
longer than a one-day period are not included, 4) the eddy viscosity is taken as a constant over the flow
domain, 5) the mesh idealization used is rather coarse, etc. Taking those effects into consideration, it is
seen that a reasonably good computation can be performed.

6. CONCLUSION

This paper has presented the finite element method of discretizing space and time functions using the
Galerkin method, To discretize the space function the conventional finite element method has been used,
The quadratic interpolation function is used for velocity and the linear is used for water elevation. For the
time integration, the conventional periodic Galerkin method” has been improved to be able to calculate the
steady flow which is occurred by the harmonic flow. The interpolation function is taken as a pair of
conjugate complex exponential functions of the periodic motion. The numerical solutions in one-
dimensional shallow water equation show quite good correspondence with the analytical Galerkin solutions.
The residual flow can also be computed by the present method. The counterclockwise circulation in right
side of the model basin can be computed which is reasonably well suited to the experimental consideration.
In the residual circulation in Tokyo Bay, the clockwise circulation is obtained but the absolute value of
velocity in the residual flow is not matched by the measurement data. This is due to the several other
origins. The advanced periodic Galerkin method has shown to enlarge the application field of the periodic
method,

APPENDIX ONE-DIMENSIONAL ANALYSIS

One-dimensional analysis is suitable to clarify the adaptability of the present method. The analytical
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solution of one-dimensional shallow water equation is introduced.
(1) One-dimensional periodic flow
The one-dimensional shallow water equation is :

ou ou, 9t , ou O L U
St U or T I 5y Vo =0, 8t+h (28)

Eliminating the water elevation ¢ from equations (28), the non-linear wave equation with y variable can be
derived as :

o'u o' 9 (32u>+ Eaat(gz),{,%% () reeeeere e (29)

atr Mot “Vat
The velocity can be assumed as :

u:U+% uﬂ)eithr% ul—l)e—iwt .................................................................................... (30)

where U is constant steady flow and 4/ and ¢/~ " are a pair of conjugate harmonic components, Substituting
equation (30) into equation (29) multiplying e "¢ both side of the resulting equation and integrating over
the one period, the analytical solution can be obtained as follows :

= A @B UHNPFINT | B o R U-{TRTEIZ L (31)

Substituting (31) into equation (28)-2, the water elevation ¢ is derived.
= —h 1‘4—— U+ U4 x)e i vn® +4W+B “" (U—=vU+4x)e NHWHW} .................. (32)

where x:gh—i—z iw, A and B are determined by the boundary condition, The variation of response which
is the ratio of the water elevation at the wall to that at the entrance versus frequency is shown in Fig. 3.
The ratio of water elevdtion has several peak values corresponding to the frequency of resonance, The
larger the steady flow, the lower the peak values. At high frequency domain the steady flow gives strong
significance to the characteristics of periodic flow.

(2) One-dimensional steady flow

One-dimensional shallow water equation is described as in equation (28). The velocity and water

elevation are assumed to be expressed as :
u= U+% u(Ueiwq—% ylemr §:§<°1+% gmeiwt_;_%_ FVETIOt (33)

Substituting equation (33) into (28), the Galerkin method is applied in time domain. The steady component
is obtained by integration over one period as follows :

@_ ag(o) a aul—l) 1 au(n}

ox O ax:Z'g'{“ o T ax

The steady velocity gradient is zero. That means the velocity of steady flow U is constant in the whole
domain. The water elevation of steady flow can be calculated by numerical integration starting from {=0 at

x=0.
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