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SENSITIVITIES OF PARAMETERS DUE TO MODEL ERRORS
AND MEASUREMENT NOISES IN STRUCTURAL
IDENTIFICATION PROBLEMS

By Kunihito MATSUI* and Teisushi KURITA**

This paper deals with the development of sensitivities of structural parameter esti-
mates with respect to model errors and measurement noises,

Structural identification algorithm is normally developed based on the concept of least
square method, Then the determination of parameters is treated as an optimization
problem and the parameter estimates are an optimum solution of the problem. Hence the
sensitivities of the parameters with respect to errors and noises can be formulated in
the manner similar to sensitivities of optimum solutions.

Numerical examples are presented to demonstrate an effectiveness of the method
proposed,

Keywords . structural identification, sensitivily, model error, input noise, response

noise

1. INTRODUCTION

In order to verify the seismic safety of structures or to obtain informations for aseismic design, attempts
have been made to measure the dynamic behavior of existing structures and to estimate their dynamic
characteristics by observing microtremors and earthquakes continuously or by conducting strong vibration
experiments” ™.

Using the concept of the non-linear least square method, Hanada et a/.? identified the stiffness and the
damping coefficient of a given structure on the condition that the residual of the characteristic equation of
the system be minimized. In a study aimed at identifying system parameters, Distefano and Rath”
introduced a method of identification on the basis of the non-linear filter and invariant imbedding, while
Simonian®-® adopted dynamic programming for the same purpose. The methods of invariant imbedding and
dynamic programming, although they differ in a conception, lead to identical governing equations. Shah
and Udwadia' identified the system constants based on the Gauss-Newton method together with the
concept of point matching and further referred to the optimum sensor locations. Hoshiya and Saito'? 1
and Maruyama et ol on the other hand, used the Kalman filter to estimate the system constants and
dynamic characteristics, Applying the Gauss-Newton method, Matsui and Kurita®® derived a method for
estimating the system constants using the data within an arbitrary time interval extracted from acceleration
records while simultaneously estimating the initial displacement and velocity of the system at the same
interval.

Although a number of methods for estimating the system constants and dynamic' characteristics of
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structures have been reported on, as explained above, few studies have been made on the effects of the
noise in the measured data and of the error in structural model on the estimation of unknown parameters,

This paper introduces a method of obtaining the sensitivities of parameters unknown or to be identified
with respect to the noise and error. Since the estimated values in structural identification are a solution of
optimization problem, the sensitivity of the parameters namely corresponds to the sensitivity of the
optimum solution'”, Calculated sensitivity values make it possible to determine the degree of accuracy
required of prescribed constants in a structural model, as well as the accuracy required of the measured
data. On the other hand, if the sensitivity of unknown parameters with respect to a noise is too large at a
measuring point, it may be said that the point is inappropriate location to place a sensor on. Hereunder,
the sensitivity formulas are theoretically developed and simple examples are presented for their
verification,

2. EVALUATION FUNCTION IN THE IDENTIFICATION PROBLEM

When a structure consisting of N degrees of freedom is excited by dynamic external force, its equation
of motion is given by

ME+CEHKz=QF) v cvvevtereanromeaanioiisiiiintiitiieeateeeeenaneennennennnennn, (1)
where the symbols signify respectively,

M : NXN mass matrix

C ! N XN damping matrix
K : NXN stiffness matrix
t) 1 NX1 dynamic external vector
z . N X1 acceleration response vector
2 . N X1 velocity response vector
z . NX1 displacement response vector

The initial conditions in Eq. (1) are given at ;=t¢, as,

z(to):a’ é(to)zb .................................................................. (2)
which represent the initial displacement and the initial velocity respectively. Let the unknown parameters
in Eq. (1) be X={X}} (j=1,-,M) and the known constants be Y=|Y, (I=1,--+,L). Then, the
response vectors z, Z and z are not only functions of time but are also dependent on X and ¥. When the
measured acceleration record at an observation point i is given by i, and the corresponding analyzed
acceleration by 2, considering noise &%) in i, the following relationship holds.

ﬁi(t)zéi(t)‘i‘ei(i) D B (3)
where 4 is a set of observation points. By employing the concept of the least square method, the evaluation
function J may be defined as,

138
J(X, Y):% é w,-(ili—éi)zdt ...................................................... ( 4 )

o
where 1, is the weight coefficient, Since there is no appropriate means of selecting w, at present, ,=1
(i€ A) is assumed in this paper.

Let the true value of the constant vector of ¥ be Y. The unknown parameter X can be determined from
aJ/2X;=0 (j=1,+-, M), which are necessary conditions for minimizing the value of Eq. (4). Let
values of X and J be X and J,,, respectively, when Eq. (4 ) takes a minimum value, Then, it follows,

Jmin:J(Y’?):% " D WU 2l oo (5)

0 icA
where 7, is the measured response from which a noise is completely removed by some means. When all
these conditions are satisfied, Ji;, assumes zero. Also, to distinguish noise contaminated input wave from
noiseless wave, the former is denoted by §, and the latter by To.

In the evaluation of sensitivity, 93/3X,, 9:/0X, and 3z/9X, (j=1, -+, M) are required, which are
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partial differentials of response vectors with respect to each unknown parameter X,. After differentiating
Eq. (1) by Xj, the following equation will be obtained?,

9z _0Q oM . oC oK

aX X, 8X aX oX, z__.aTz (]:1,“',M) .................. (6)
Initial condmons for the above equation are

i) when X, is neither initial displacement nor initial velocity :

Oz 0z

8X (t,)=10}, aX (Bg)m=l0) o v e (7)
ii) when X, is initial displacement :

az aé =)l o 6 e 20069 009 08 esss 060069 ee0 T s eSO e 0060000 N0
m) when X, is initial velocity :

az - az ==1T 1l 4 co o o002 0s 606036 se 50060055606 e050e6s060D50080e50060cs06080005s000

Egs. (8) and (9 ) are necessary to solve Eq. (6) when either the initial displacement or the initial
velocity is unknown. Egs. (7) denote the initial conditions when both initial conditions are prescribed. In
this case, both initial displacement and velocity are considered to be included in Y. i1} refers to an N X1

vector in which one element corresponding to unknown parameter is 1 and the rests are zero.
3. EFFECTS OF MODEL ERRORS

(1) Derivation of formulas

In the structural identification problem, some parameters among masses and stiffnesses are treated as
known and constant and all other unknown parameters are determined by minimizing the discrepancies
between measured and calculated values. In case there are errors in the parameters provided as known, the
value of X, the result of identification, inevitably reflects the errors. If the sensitivity of X with respect
to Y, is obtained and the amount of error in Y, is known, the effect of the error on X can be estimated.
Conversely, if a certain degree of accuracy is required for the estimation of X, the accuracy necessary for
the known parameters can be evaluated. When an error AY, exists in Y,, for which Y, is a true value, its
effect on TX~j may be written as (8X,/2Y,)AY,. Namely

:% wngwi [ﬂ <X+a§’( AY1,7Z+AY1>}2dt .................................... (10)

where 7, is the measured but noiseless data referred to in the previous section. If AY, is small enough in
magnitude, its effect on X will also be small. Hence, Eq. (10) will be written in the first order
approximation as

n . 933X, 8zL
o éw"[“i—zim JZ; 2%, oY,

Since 7;; agrees with 3/X), the first two terms in 1 | disappears. 9X,/9Y, is the sensitivity of unknown

AYL} G e (11)

parameters with respect to the model error, which implies that the estimated values of the unknown
parameters are larger than their true values by 9X,/9Y, when there is a unit error in Y,. Letting A;,;=
9X,/aY;, Eq. (11) can be rewritten as

=3 mmgwi{_é%,\ﬂ g’;‘] (AT EAE = v vwvrvrrrosnoresescesestoneatinuaeenens (12)
Since (AY,)?, the square of the error, in Eq. (12) is arbitrary, the necessary condition to minimize Eq.
(12) irrespective of the value of (AY,’ is 8J/0An=0; that is

aail:(AYl)thlgwi[_é_g%/\ﬂ,g’%;}< §§k>dt——o .............................. (13)
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After some manipulations, Eq. (13) reduces to

M 3 9z, 9%, n 22, 92,

E{A ieZAwi 3%, aX; dt})&”=— . ;’;wiaYl andt (=1, M)«-ve-- e ceee (14)
The above formula gives a set of linear simultaneous equations for Aj;, which can be solved easily.
(2) An example
To verify the theory introduced in the foregoing section, a two-degrees-of-freedom system, as shown in

Fig.1, is adopted, to which the El Centro wave (EI Centro 1940 NS Imperial Valley Earthquake), 7,(#),

was applied as the input wave with a time increment A#=0. (2 seconds. The dynamic responses of the

masses ] and 2 are calculated by Newmark’s 8 method for a time period from  to 20 seconds, the effect of
the errors in these masses on damping coefficients ¢, and ¢,, and stiffnesses ki, and k,, is examined, The

results are given in Table 1, where dc,/dm,=1. 8453, for example, implies that the estimated value of c

becomes 1.8453 tf-sec/m larger if the value of m, used in the identification is 1 tf-sec’/m larger. The

table shows that an increase of m, will make the estimates of ¢,, k, and k, greater than the respective true
values, while it makes the estimate of ¢, smaller than its true value, The table also shows that an increase
of m,, on the other hand, makes all the estimates of ¢, c,, ky and k, larger than their respective true
values. The effect on ¢, is very small, however, To study the accuracy of sensitivities in Table 1, the
results from the sensitivity analyses are compared with those obtained by the method of identification in

reference 15), assuming that the latter is correct. Also assuming that either of m, and m, contains 5 9,

10 % and 20 % error, the values of ¢,, c,, k; and k, are computed by the method of sensitivity which is

developed in the previous section and the method described in reference 15). The results are presented in

Table 2. ‘Estimated’ in  Table 2 implies that the values are obtained using the sensitivities in Table 1 and

‘Identified’ means the results calculated by the method in reference 15). Since the difference between the

values from two methods is relatively small, it can be stated that the method based on sensitivity analysis

provide good estimates to the effect of error involved.

The effect of errors existing in the initial values will be examined next. Dynamic identification, in
general, is made for an arbitrary time interval chosen from the measured response acceleration, but
neither the value of the initial displacement nor the value of the initial velocity is known. Table 3 gives the
sensitivities of identified parameters with respect to errors in the initial values, which are calculated by
the proposed method. It shows that the effect of the error in the initial velocity is very small, while the
error in the initial displacement produces comparatively large effects on the estimated values of
parameters. Assuming three different magnitudes of errors on initial conditions, whichare5 %, 10 % and
20 % of respective absolute maximums of relative velocity and displacement, the parameters are estimated

Table1 Sensitivities with respect to error in masses,

v, | 2 bdc. | ok, gk,
m, =50/9.8 (tf-sec?/m) 0%, | 8Y, | 8Y, | 8Y,
W, | 1.8453 | -1.6455 | 75.895 | 930,08
M, =50/9.8 (5f-sec/m) m | 017466 3.6055 | s12.10 | 197.92

units: S50 (1/sec), S (1sec?)
ci=10  (tf-sec/m)

c.=10 (t£-sec/n) Table 2 Estimates based on sensitivities and identified results,

5% 10% 20%
kK1=3000 (tf/m) Estimated | Identified | Estimated | Identified | Estimated | ldentified

= ¢, | 10.47 10,403 10,911 10.716 11.883 11.213

k2=3000 (tf/m) = | . | 95802 | 9.6926 | 9.1605 | 9.5400 | 8.5208 | 94656

2 5 K | 90194 3020.8 | 3038.7 | 3045.0 | 3077.4 | 3103.7
& | ke | 3099.5 | 3100.9 | 3199.0 | 3202.2 | 3398.0 | 3398.7

Fig.1 Two degrees-of-freedom S e, 9.9708 | 99316 | 9.9415 |  9.5996 | 9.8830 |  7.7830
= |c. | 10.9%20 11,081 11.840° | 12.595 13.679 17.628

model. s [k, | 31306 3131.3 3261.3 32615 3522.6 35014
S Lk ] a5 | a0s36 | 81010 | 31171 3202.0 | 32961

units: ¢, (tf-sec/m), kK, (Lf/m)
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Table 3 Sensitivities with respect to error in initial values.

Go | boe | ki | Bk
8Y, 3 Y, 5Y, BY, | F
a, | -24.416 124.30 9056.7 | -24141 ag : initial displacement of mass 2
a, | 100.06 | -107.14 |-5207.2 12671 by : initial velocity of mass 1
b, |-2.4514 | 9.7793 113.80 | -218.12 by : initial velocily of mass 2
b, | 4.3891 | -5.1787 | 25.568 64.596

units: 4G (tf-sec/n?), SEier/ne), GG (- sec?/n?), %%}(tfsec/rﬂ?)

Yy initial displacement of mass 1

Table 4 Estimates from the sensitivities and identified results,

5% 10% 20%
Estimated | Identified | Estimated | Identified | Estimated | Identified

g L& 9.9753 9.6311 9.9505 8.5217 9.9011 4.3799
= | Ce 10.126 11.003 10.252 13.773 10.504 23.771
= |k, 3009.2 3010.8 3018.3 3022.9 3036.7 3029.5
é:: ke 2975.8 2971.3 2951.1 2938.3 2902.2 2895.0
S Les 10.160 9.8433 10.321 9.0184 10.642 5.1636
= | Ce 9.8282 10.687 9.6565 13.169 9.3130 23.695
s |k, 2991.7 2995.4 2983.3 2997.1 2966.6 3004.3
L‘E ks 3020.3 3010.5 3040.6 3003.1 3081.3 2958.9

Cy 9.9649 9.9170 '9.9298 9.7390 9.8596 9.0923

2 Cs 10.140 10.267 10.280 10.785 10.560 12.570
8 K, 3001.6 3001.8 3003.2 3003.9 3006.5 3008.4
ElRe 2996.9 2996.4 2993.8 2992.0 2987.5 2981.6
S LS 10.098 10.065 10.196 10.063 10.393 9.8360
5 |ce 9.8833 9.9867 9.7667 10.187 9.5334 11.265
5 Ky 3000.6 3000.8 3001.2 3001.9 3002.3 3004.9
= 3001.5 3000.9 3002.9 3000.7 3005.8 2998.3

units: ¢, (tf-sec/m), k, (tf/m)

by the sensitivity approach and the method of identification. Both results are tarbulated in Table 4. The
table shows that the approach presented here is applicable when the errors in the initial displacement and
velocity are comparatively small, but the accuracy worsens as the errors become larger, presumably
because the effects of the initial displacement and velocity attenuate quickly during the time period of 20
seconds and thus have little influence on the evaluation function. In reference 15), the initial displacement
and the initial velocity are also identified more precisely when the shorter duration of response records is
used. This also endorses the discussion presented above,

4. EFFECTS OF THE NOISE IN THE MEASURED RESPONSE

(1) Derivation of formulas

It is assumed that there are no errors in the structural model ¥, and no noises in the measured input
value 7, and in measured response values 7,(2) (i€ A, i=[) except the response at the measuring point /.
Though measured response accelerations are, in general, the absolute accelerations, the relative
accelerations, subtracting the input acceleration from the absolute response accelerations, is used for
theoretical development, since the measured input values are considered to be the true values without noise
here. When the measured response at measuring point [ is denoted by ii,, the response i, can be expressed
by the sum of true response 7, and noise Ail,=g,(t); that is @&,=u,+Ad,.

() is a normalized noise having a maximum (absolute) value of 1, and ¢, is a scalar which represents the
magnitude of the maximum value, When the noise A}, in measurement exists only at the point [, the
identified parameter may be written as X-+AX®, where AX"is defined as the subtraction of the true value
X from the identified result X which reflects the noise Ai;,. Then, Eq. (4) can be prescribed as,
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f{ Zuh U— (X-l-AX")}-i— Wi T+ Adl,— Zz(./_\’—"f-AX”’)}Z]dt ...... e eeeeeaaa.. (15)

It is reasonable to assume that X varies continuously with ¢, in A}, and that the magnitude of AX" is
small when ¢, is small. Therefore,

. (v o = o & 92 90X

Z2(X+AX )“Zi(X)+Z oX, oil,

¥ 9%, 90X, Og

b 3
T EBX, se, ou, A%

A,

=Z2{X

~

. TR M OZ;
zz‘(X)+j§é-X;Ij‘€’.'. ......................... tececeencecanenenan (16)

where I';,=0X,/8¢, Substituting Eq. (16) into Eq. (15) and using the relationship 2{X)=7, the
followmg equation is obtained after rearranging terms,
o0z, 2 el rn M 2
J___ A lEZAw‘{ JZ‘iaXJ sz} dt+?L we{ JZ‘{SX Faz+771(t)} AT oerreerei i (17)
From the necessary condition for Eq. (17) to be minimum irrespective of the value of ¢2, with respect to
the unknown variable I, one obtains

o] 22 o1 L 0%,
B 2<2 Wi3X, 3Xx ) Tadt EZL wenlty 5y, di=0

¥ pn 02, 02, o oz, B

Y {L <,§4 wigy an> di} pje_f WenlEhgy @b (R=1, e, M) worseoeersssnens (18)

where 7, is the sensitivity with respect to the noise in measured response ii,. The above equation gives a
set of linear simultaneous equations with respect to the unknown variable I";,, which can be solved easily.

(2) An example

To verify the method introduced in the above section, the model in Fig.1 is used together with a
normalized noise shown in Fig, 2, which is a band-limited white noise in the range of 0. 1 Hz to 25 Hz and is
adjusted to have an absolute maximum value 1. Fig. 3 shows the response accelerations of masses 1 and 2
due to 7, (El Centro wave treated as true excitation) when the noise in Fig. 2 is superimposed on these
responses, the identified parameters are expected to differ from their true values. Sensitivities of the
parameters with respect to the noise are tarbulated in Table 5. Table 6 compares damping coefficients and

1.0 ¢ Tabie 5 Sensitivities with respect to noise in
0.5 | measured response,
0.0 S - =
o <, gC 9EC2 ERS Bk
-8.5 ¥ &, 3 &, 8 &, e,

€.1-0.00824 | 0.13871] 4.8032 [-11.393
&, -0.13882 | 0.05514] 7.0382 | -16.385

0.0 40 B0 120 160 200 units: §F: (uf-seci/me), $Ki(tf-sect/ne)
TIME  (SEQ)
Fig.2 Band-limited white noise.

-10

g 10.0 g 3.0
2 50 % 15
= E
= 0.0 0.0
. -5.0 . -15
o e
Z-10.0 = -3.0
0.0 40 80 12.0 16.0 20.0 0.0 40 8.0 120 160 20.0 0.0 4.0 8.0 120 16.0 20.0
TIME  (SED) TIME (SEC) TIME  (SEC)

a) Response acceleration of mass 1 b) Response acceleration of mass 2 ¢) Input acceleration

Fig.3 Response and input acceleration waves,
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Table 6 Estimates from the sensitivities and the identified results.

K, 3002.5 3001.8 3005.0 3003.6 3010.1 3007.5
K. 2994.1 2995.5 2988.3 2990.9 2976.5 2981.5
units: ¢ (tf-sec/m), k (tf/m)

5% 10% 20%

Estimated | Identified | Estimated | Identified | Estimated | Identified
5| ¢y 9.9977 9.9904 9.9955 9.9808 9.9910 9.9615
= | Cce 10.038 10.048 10.076 10.097 10.152 10.193
5 Kk, 3001.3 3001.0 3002.6 3001.9 3005.3 3003.9
& |k, 2996.9 2997.9 2993.8 2995.9 2987.5 2991.5
S Lo 9.9503 9.9060 9.9006 9.8117 9.8013 9.6219
= | Ce 10.020 10.128 10.039 10.255 10.079 10.508
g
(==}

stiffnesses by using the sensitivities and those by the identification method in reference 15) for three
different magnitudes of errors which are chosen to be 5 %, 10 % and 20 % of maximum of corresponding
responses, It may be said that the effect of noise is very small as long as it is given by white noise.

5. EFFECT OF INPUT NOISE

(1) Derivation of formulas

An earthquake acceleration record with A#=0.02 sec is adopted as the input. The true value of the
earthquake acceleration §,() is designated by 7,, and the measurement noise by A#,(%)=¢&,7(%), a noise
contaminated input acceleration is expressed as {,(2)=7,+A7d(1). (%) is a normalized noise whose
absolute maximum value is 1. It is assumed that no error exists in the model or no noise is involved in the
measured responses. Since analysis is performed by using the input acceleration, computed response
reflects this noise and differs from the true response. Therefore, the identified values of unknown
parameters X cannot be free from errors either. Thus, X can be written as X=X-+AX" and the
analyzed acceleration is denoted as Z,(7,+ A%, X+AX®. Thus, the evaluation function, Eq. (4)

becomes

J= / [ Zi w; = 2o+ Ao, X+ AX“”)}Z]dt e (19)
Since Ajj, is noise, its effect will be presumed small. Hence Taylor series expansion of 2, in Eq. (19)
leads to
. — . 9z, 0z, oX;

5 (55 5 N i
2{To+ Ao, X + AX )= 2(Y0, X)+ En Ayo+2 X, 2ij, Al

e T 82L aeo M 8z,~ aX] aﬁo

_zi(yO, X)+ a a 507]0+§-8—Ax'—j 860 ayo &7

W =, 9%
:Zz(yo,X)“"a 504.2 Tiogg <osvvecenenees B RN ¢//1)]

where I";,,=09X,;/3e¢, is the sensitivity with respect to the input noise.
Substitution of Eq. (20) into Eq. (19) results in

_f”{ zAw{u i("go,f)—%%ao—;i%rmeoﬂdt
f{ éw,l ?;0 )}igj{ w&]}dt““""'” .............................. (21)

In Eq. (21), %, the square of the maximum value of the noise, is positive and arbitrary. Therefore, as
minimizing Eq. (21) is equivalent to minimizing Eq. (19), I can be determined from the necessary
condition for Eq. (21) to be minimum. By taking differentiation of Eq. (21) with respect to Iy, the

necessary condition is given as
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Table7 Sensitivities with respect to noise Table 8 Estimates from the sensitivities and the identified results.
in input acceleration, 5% 10% 0%
e, 8¢ca 8K, 8K, Estimated | ldentificd | Bstimated | Identified | Bstimated | Identified
0 %8 8€a 3¢&o 3 €0 £l 9.7338 9.7453 9.4675 9.5195 8.9351 9.1720
217749 | 059407 ] -66.060 | 64.423 s lc. | 10089 | 10.13¢ | 1078 | 10.351 | 10.356 | 10,997
units: B (bf-sec?/n?), g—léé(tf-sece/m?) 5 |k, | 29901 2989.9 2980.2 2979.5 2980..4 2957.7
& 3009.7 3009.7 3019.3 3019.4 3038.7 3038.0

units: ¢, (tf-sec/m), K, (tf/m)

%xeg Zw{_gz 2 8% w}( §§;>dt_o ...................... e (22)

Rearrangement of the above equatlon yields

;:[sz<£wl§% g;;) dt] Te= L (g w; gz‘ gj{h)dt (BT, vee, M) cooeeeeeeereeeenennns (23)

0%,/ e, in the right hand side of Eq. (23) can be computed in the following manner. The response of the

structure due to the noise contaminated input i, =7%,+en(1) is

M2+C2+Kz:f(i7o+soﬂg) ........................................... cereeeiiiieaean, (24)
where f is an N X1 vector. When compared with Eq. (1), f(s+ eome). Partial differentiation of
Eq. (24) with respect to ¢, gives

az T=F7), ¢ * e v e e e0 000 s 4 8 e 20 0000606609000 0 ® 5 0 0 8 0 0006 600006060 e 068 C 50 s O

nE 56, +c——+K§~fno (25)

By solving the above equation, 92,/9e, on the right side of Eq. (23) can be obtained. Eq. (23) is a set of
linear simultaneous equations with respect to the unknown variable I, which can be solved without so
much difficulty.

(2) An example

To verify the theory induced in the preceding section, the model in Fig. 1 is used again together with the
normalized band-limited white noise 7,(Z) in Fig.2. Table7 gives the sensitivity of the identified
parameters with respect to the noise in the input wave. The El Centro wave is superimposed by three
different levels of white noise to generate noise contaminated data. The magnitude of noise ¢, are 5 9%,
10 %, and 20 % of maximum of the El Centro wave, Table 8§ compares the estimated values of X obtained
by the sensitivity analysis and those by the identification method in reference 15). Comparatively good
agreements between these data suggest that the sensitivity of unknown pafameters with respect to the input
noise is highly precise. Identified values which are very close to the true values also imply that the effect of
the white noise on the identification is very small.

6. CONCLUSIONS

The formulas have been developed, which determine the effects (sensitivities) of model error and
measurement noise on the parameter estimation in structural identification problems. This problem is a
sort of optimization, in which the sensitivity of a parameter with respect to error or noise is fundamentally
the same as sensitivity of the optimum solution,

From the example problems, one can conclude the following.

(1) Compared with noise in measurements, model error has larger effect on the estimated value of a
parameter. Using the sensitivity, the effect of an error on the estimated value of the parameter can be
calculated with considerable accuracy.

(2) Errorin the initial velocity has little effect on the estimated value of a parameter, while the effect
of an error in the initial displacement is not necessarily small, Though the same calculation is made on
different models, the same tendency is also observed. Given the fact that both the initial displacement and
the initial velocity attenuate in a short period of time due to the damping characteristic of the system in the

270s



Sensitivities of Parameters Due to Model Errors and Measurement Noises in Structural Identification Problems 153

response analysis, the reason for the difference between the effects of the displacement and velocity is not
clear. ‘

(3) Noise involved in the response and input measurements has little effect on the estimated value of a
parameter. It may be due to the reason that the white noise does not have dominant frequency
characteristics.

(4) Inall examples, the existence of an error or noise is assumed at only one point. If there are model
errors and noises at more than one place, the estimated values may deviate more from the true values due to
the interaction of these errors. There are also a few contradictory cases where on estimated value from
sensitivity analysis is larger than the true value while the corresponding identified result is smaller than it
This contradiction occurs, when the sensitivity is extremely small, presumably as a result of calculation
error including the effect of trapezoidal integration. The reason that an estimate of the damping coefficient
is less accurate, is among others, due to the substantially smaller order of the parameter compared with
that of the stiffness. This is expected to improve, however, if magnitudes of parameters are balanced or
the technique of variable transformation is introduced, as is considered in structural optimization'®,

It is also confirmed that the accuracy of estimation improves when an identification is performed with the
measured and calculated displacement in stead of using measured and calculated accelerations. Only one
example of white noise is used in this paper, but there are no consipiquous differences even if the
sensitivity is calculated using other forms of white noise as long as the system has two degrees of freedom.
Though no discussion is made on noise with dominant frequency characteristics, the methods proposed here
are applicable whether the noise has a particular feature or not. It has been further confirmed that the
effect of an white noise on the identification is small enough from the engineering point of view, even if it
has an SN ratio of 100 %. The methods developed above can provide a good estimate of the effect with
considerable accuracy.

In this study, the response 3, is expanded around, the true value of the unknown parameter, to obtain its
sensitivity with respect to noise or error. Though the true value is usually unknown, all the theoretical
formulas introduced above can be still utilized by adopting the estimated value X based on data containing
error or noise as the true value,
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