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ANALYSIS OF STRESS WAVE PROPAGATION IN COMPOSITE
RECTANGULAR BEAM IN THE CASE OF
ULTRASONIC PULSE METHOD

By Toshiyuki OSHIMA*, Shuichi MIKAMI** and Sumio G. NOMACHI***

Elastodynamic behavior of a two-dimensional composite rectangular beam, Wwhich has
regularly-spaced fibers, is formulated by a couple of finite difference equation based on
FEM formulation of rectangular element. Making use of modal analysis and Duhamel
integral equation, the impulse response of the composite rectangular beam is obtained. The
transient response from the first incident wave through the whole oscillation of the beam is
found by the series of simulation analysis. The effects of coupling oscillation of the
transducer and the beam on the impulse response of incident stress wave are obtained in
experiments of the ultrasonic pulse method. In addition, the effect of internal friction of
the beam and the frequency dependence of damping coefficient are discussed.
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1. INTRODUCTION

The recent demand for more reliable diagnosis of structural integrity needs to improve analyzing
methods for stress wave propagation, diffraction, and reflection measured by an ultrasonic pulse method.
Setting up the accurate diagnosis of structural integrity, we are able to estimate the practical remaining
life time of the structure.

The stress wave, which propagates in a beam of rectangular section, disperses on account of its finite
size of section, Reinforcing fibers in an elastic matrix also cause the dispersion of stress wave on another
account. The aim of the present paper is to find how these dispersion effects are associated with the
impulse response of the composite beam of rectangular section and more specially is to clarify how the stress
wave propagates in the rectangular composite beam in case of ultrasonic pulse method. Studies in respect
to the analysis of stress wave propagation in the structure may be classified in two parts; the one is the
study on ultrasonic flaw detection and the other on acoustic emission (AE) method. The former is mainly
applied to the flaw detection of welding and debonding detection in fiber reinforced composite, and the
latter plays an important role in the field of nondestructive inspection” ™. Equipments recently developed
make it possible to measure the detail scattering of stress wave in the structure, and that much work has
been published by many researchers?-?. First of all, the transmitting response from the initial impulse at
the surface of the structure has to be found out as well as accompanying damping effects on it. Formulating
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a couple of finite difference equations for a two-dimensional beam and analyzing ultrasonic response due to
impulsive pulse by means of the modal analysis, we well find the process of transient response from the
first incident time through the remainder portion by series of simulation analysis.

Characteristics of the incident wave induced by ultrasonic pulse at the surface of the beam are related
with the impedance ratio between a transducer and a beam, the modal trait of the transducer, and the contact
pressure from transducer to beam. Inaddition, the shape of stress wave may change during the propagating
process due to the internal friction of the beam., The above all aspects are clarified in the following
analysis,

2. DYNAMIC RESPONSE OF COMPOSITE RECTANGULAR BEAM

A two dimensional composite rectangular beam is shown in Fig. 1. The beam has regularly-spaced fibers
perpendicular to x-y plane, namely in the z direction. The effect of the fibers in the z direction can be
neglected in the case of taking into account stress wave propagating only in the xy plane.

The span of the beam ] is devided into M elements of A, in the horizontal direction and the depth 4, into N
elements of A, in the vertical direction,

FEM formulation for two dimensional rectangular element is obtained by means of Galerkin’s method,
employing the displacement distribution with linear variation in the element,
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where I, and L, are the shape function of rectangular element and A is the area of the element.
Considering the equilibrium at the node (x, y) and the mass forces of the fiber in two directions of 1 and
y, we obtain simultaneous difference equations,
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where y and A are Lame’s elastic constants, and notations as follow;

Arfr=fle+)—2f(x)+ flx—1), A.fr=[fx+])—flx—1), Aifr=ALfx+6fx, f'= af

o is density of matrix, p, and A, are the density and the sectional area of fiber, respectlvely_

Making use of Finite Integration Transform (FIT)9? with respect to regularly-spaced discrete
coordinate, Fgs. (3) and (4) are transformed into the matrix expression,

In order to compare the results by using FIT with the equations of Finite Strip Method (FSM)® for the
layered beam as shown Fig.2, the matrix elements concerning to y-th layer are obtained as follows ;
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Un and 7, are Fourier coefficients of the displacements y and p, respectively? .

Superposing the equations like Eq. (5) for all elements of the beam and the effect of point mass forces
of the fibers, we obtain the following dynamic equation of composite rectangular beam,

TR NS MU= F g e (6)
where [ K] =stiffness matrix, [M]=mass matrix, {§,} =displacement vector, and {F,} =external force
vector for the whole structure of the beam shown in Fig. 1, respectively. And adding the damping matrix
[C]. Eq.(6) yields

[IMUSEF [CHE e LK UBsth = F g eeemee e (7)
Making use of modal analysis and Duhamel integral equation for Eq. (7), the impulse response of the
composite rectangular beam is obtained.

3. CHARACTERISTICS OF INCIDENT WAVE INDUCED BY PIEZOELECTRIC TRANS-
DUCER

To analyze accurately the impulse response of the beam and the effect of inclusion and damping in
oscillating beam by using the ultrasonic pulse method, first we need to know the incident waveform driven
into the beam. Then, the deformation process of the incident wave by the inclusion and damping during the
propagation has to be analyzed. In the theoretical analysis the incident wave applied is taken into account as
the input data for the external force to calculate Duhamel integral equation given by modal analysis of Eq.
(7). by which we can estimate the effects of inclusion and internal damping on the waveform. For this
purpose we detect incident impulsive waves by using the experimental equipments and analyze the effects of
(1) impedance ratio between a transducer and a solid body, (2 ) natural frequencies of the transducer,
and ( 3) the contact pressure of the transducer to the body, respectively. The experimental equipments as
shown in Fig. 3 are used to obtain the surface response at an induced point of the body. In this experiment,
the stress wave is obtained passing through the filter of each equipment, Therefore, we, in advance, need
to obtain the characteristics of frequency response of the filter and then make some corrections on the
received stress wave if it is necessary. To record the incident wave just at an applied location we employ a
set of transducers consisting of a hollow-type and a solid-cylinder, as shown in Fig. 4.

(1) Comparison of incident wave characteristics in steel and mortar

Using steel and mortar specimens, the coupling oscillation with the piezoelectric transducer on the
surface of the body is measured., By putting the set of transducer and receiver on the body as shown in
Fig. 4, the impulses with different duration are induced through the transducer. The natural frequency of
hollow type transducer is around 50 kHz and it generates the incident surface dilatational wave of different
peak frequencies by changing the duration time of the step pulse. The induced oscillation is formulated as
dynamic force applied in a half infinite body at the hollow type transducer. Thus the peak frequencies in the
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spectrum are coincident with the frequency of the coupling oscillation and its natural frequency of the
transducer. In Fig.5 and Fig.6 the incident waves detected and their spectra on the steel and mortar
specimens are shown,

(2) Analysis of oscillation of transducer ;

Experimental results obtained by different natural frequencies of the transducer are discussed.
Although the transducer has own natural frequencies and damping coefficients, the coupling effect between
the transducer and the beam also provide another oscillation. To know the coupling effect between the
transducer and the beam including its damping effect at the resonance frequencies, we analyzed the
experimental results of dynamic response. That is, we analyzed the responses of a simple system of
transducers. This system is made of two transducers with natural frequencies of arround 150 kHz which
are put face to face and one is used for transducer and another for receiver. We call here this system as
“sensor-to-sensor” model., One of the response of sensor-to-sensor model is shown in Fig, 7. From the
figures it is observed that the frequency at the highest peak in the spectrum coincides with the own natural
frequency of sensors, We find if we take the sensor with 150 kHz as a transducer, the response of the
coupling oscillation appeares arround at 75 kHz as a total response of the model. As we can formulate the
response of this model as a combination of the systems of one-degree of freedom and determine its modal
parameters, the transient coupling oscillation induced by impulsive electric step pulse of duration time
AT and its total pressures F=FEA ¢ (where ¢ : piezoelectric strain), will be numerically obtained by
comparing with the experimental results,

(3) Effect of contact pressure between transducer and beam

The effect of the contact area and the contact pressure of transducer to the solid body is not neglectable
in the coupling oscillation at the surface of the body. Before analyzing the dynamic response of incident
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Fig.8 Comparison of surface response at induced point with three cases of contact pressure.

stress wave propagating in a composite rectangular beam, we have to pay our attention to the effect of
loading area on the upper side of the beam. The dynamic reSponses of displacement and velocity at the span
center of the upper side in the uniform rectangular beam as shown in Fig. 1 are compared among three cases
of the ratio 2¢ /[ of loaded length and total span length; 0, 2/70, 4/70. The duration time of incident step
pulse is taken as 50 ys. From the numerical results we find that the effect of contact area on the surface
response will be small in the comparison between theoretical and experimental results;

In order to analyze the effect of contact pressure of the transducer to the surface of the body, special
sensing devices of a transducer and a receiver are used for the measurement of the contact pressure and the
dynamic responses of the body in several cases are obtained. In this experiment, the mortar specimen is
used as a oscillating solid and the contact pressure is measured through highly sensitive transducer and put
in digital memory together with the incident and received stress waves in the solid. The pressures of
transducer and receiver are taken as nearly equal in every measurement. In Fig, 8 the surface responses of
the mortar at the induced point and their spectra are compared among three cases of contact pressure;
1.768 kgf/cm?, 5.305 kgf/em? and 8. 842 kgf/em®>. Thus the higher the contact pressure becomes, the
larger the maximum amplitude of the response becomes, decreasing the response of higher frequency
component,

Then in order to compare between theoretical and experimental responses including the higher frequency

component, it is important for contact pressure to take to be constant in every experiment,
4. DAMPING CHARACTERISTICS OF STRESS WAVE BY INTERNAL FRICTION

There is, on another account, a damping effect of the internal friction on the waveform analysis in the
case of ultrasonic pulse method. That is, how to determine the damping coefficient in the calculation of
modal analysis,

As elastic strain energy always change at a certain amount due to heat energy during the stress wave
propagation, this behavior should be expressed by a damping effect due to internal friction, The damping
effect by internal friction depends upon the amplitude and frequency of the oscillation. The amplitude of
the stress wave in the ultrasonic pulse method is so small that the discussion is focused on the frequency
dependence of the damping effect. A general aspect of the frequency dependence is possiblly shown in
Fig. 9”. The dynamic response of granular materials like concrete, which consists of sand, cement, void,
and water, is always anisotropic and complicated in the analytical aspects, As for the temperature over
each constituent the small amount of heat may flow across the boundary of the element. The frequency
dependence of damping effect by heat conduction during the oscillation has a lower bound as shown in
Fig.9. The deformation occurs slowly around this lower bound frequency, the volume may change
isothermally, and then little energy loss takes place, This case is in much lower frequency?.

On the other hand there is an upper bound frequency. At this frequency the deformation oceurs so fast
that there is no time for the heat to flow during the oscillation, and then little energy loss takes place. Thus
the maximum energy loss may occur in the frequency between these two bounds. The bounds depend upon
the size of the element of granular materials and other surrounding environment?,
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Table 1 Mortar models with different
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Fig.9 General aspect of frequency Fig.10 Three element
dependence of logarithmic viscoelastic model,

damping coefficient.

(1) Consideration of the internal friction®'®

As the frequency dependence aspect of logarithmic damping is shown in Fig.9, the same type of
frequency dependence can be obtained analytically by using a viscoelastic model of three elements as shown
in Fig.10. The equilibrium of stress and strain in Fig. 10 becomes,

cates=e, 0=FEe+Ei1cq [ream ey - errreermoreooreaemeeai it (8)
and we assume

e=¢sin wt

ea=2asin(wt+a) ...................................................................................................... (9)

ev=¢p,Sin(wt+a)
where ¢ is the induced frequency of stress wave and

tan a= ——éa/—gb: wnl/El ............................................................................................ (10)
On the other hand, we have the relationship between logarithmic damping & and tan ¢”, as follows;
tan a:é\/ﬂ'ZZhr(I)/}’r .............................................................................................. (11)

where 7, is the real part of damping natural frequency, and h, is damping coefficient, respectively.
Thus, we have a relationship between stress and strain,

o=¢(E+E, cos’e)sin wt+%eElsin2acos OF e e (12)

The phase shift in Eq. (12) (and then the internal damping) is obtained as follows;

K:tan e
1+K+tan’a’ "

(2) Experiment relating to internal friction

In order to investigate the phase shift by internal friction we made three rectangular beam models of
mortar, These mix proportions are shown in Table 1. The dimension of the beam is of 70 cm length, 40 cm
height, and 3 cm thickness. The water cement ratios w/c are 35 % (Model O), 50 % (Model L), and
65 % (Model P), respectively. The upper numbers in Table 1 indicate the weight ratios of the mix and the
lower numbers are the volume ratios. The ratio of sand in this case becomes greater in order O, L., and P.
The experimental equipment is same as shown in Fig. 3 and the responses of stress wave are measured at
the same point of the side of each beam model. The comparison of received stress wave among three models
are shown in Fig. 11. We can find out that when w/ ¢ becomes larger and then the ratio of sand and water
becomes larger comparing with the ratio of cement, the phase shift of the stress wave becomes larger,

(3) Experimental results of frequency dependence on damping coefficient

In order to investigate the frequency dependence on damping coefficient, experimental results are
obtained for three models as shown in Table 1 by using different transducers of different resonance

tan o=

frequencies. We determined the damping coefficient A, by half-power method” applied to the detected
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stress wave which have approximately only one peak of frequency in spectrum. The results of frequency
dependence on damping coefficient in the cases of three models O, L and P are shown in Fig. 12. Although
this figure does not show the peak value, we can obtain the frequency dependence characteristics of the
damping coefficient which is used to simulate by modal analysis as follows;

bw,

where ¢=13935 and b=15.52.

5. NUMERICAL RESULTS OF IMPULSIVE RESPONSE AND SIMULATION

(1) Comparision with the equations of FSM

The effect of mesh number in the vertical direction y on the phase velocity is already known”. The phase
velocity depends on the parameter ¢=h/[; (h, l;=height of the beam and length of the traveling stress
wave) . Thus it is better to take division number with o. There are, however, many adjacent values of
natural frequency in each wave mode, it is not always necessary to take a small division length A; to
calculate the dynamic response of the beam. The concerning numerical results of the response will be
shown later. It is also necessary to determine the division length A, in the longitudinal direction for the
accurate results, which are obviously related to the ratio between A, and stress wave length /.. In order to
compare the result obtained by FIT using Eq. (5) with the results of Finite Strip Method (FSM)®, the
matrix elements for y-th finite strip layer in Fig. 2, as similar to Eq. (5), are given as follow;

e MR (0] o, (B ot

_ﬂ+A<m7z> a :”2u+k_yj§<mn> _

a14_ 2 AZ M 22 /‘\3 GAZ M ) a23_ al4v

e _2utA /1/13<m7r> Gn=a _ _ b_ﬁ/\_a

247 X 3\ M 33— Qi1 A3s= A1z, Q4™ Ao, =g
oA,

bu="50u=03=by=2b,+ 2 A bis=024=10b,

Taking the expansion theorem
D=7 ) =155 ) + a0 ()

sm<mM”>,—(%”>——%<%z> +~1—§6<1%;—>5—— ................................................... (15)

we can see that the consideration of division number M in case of FIT has the same meaning with the
convergence for m in FSM; In other words in case of small values of m /M, we can see this relationship

to check the accuracy of the results obtained by using FIT, comparing with the summation number M in
FSM as shown in next article.
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(2) Comparison of dynamic response with different division number

In order to compare the dynamic response of the beam in the case of different vertical division numbers,
the displacements and velocities of the beam in three cases of N=10, 20 and 40, are calculated, The beam
is a simply supported homogeneous deep beam with unit thickness, 70 cm length, and 40 cm height as shown
in Fig, 1 and is subjected to an impulsive step point load at the span center of the upper side with duration of
50 ws. Material constants are

£=128 200 kgf/cm® (12.82 GPa), A=52520 kgf/cm® (5.252 GPa), M =80, p=0.2347 g/cm®,

pr=A=0.

The dynamic responses of vertical displacement at the middle and quarter points of upper side are shown
in Fig. 13. The ordinate of this figure is normalized by the static displacement V; at the span center of
neutral axis subjected to static load P, and the abscissa is normalized by the time T, in which the shear
wave reflects at a half length of the span and returns back.

Vertical velocities V’ at the same points as in Fig, 13 are shown in Fig. 14 which is indicated by
momentum unit o V',

In Fig. 15, the vertical velocities at the [/2 and [/4 points of lower side are shown., Within the elapsed
time of 50 us of the impulse load (7 /T,<0.2), the small differences of velocity response at the upper side
of the beam are found among three different cases of vertical division. But the other results in Fig. 14 (b)
and Fig. 15 have no significant differences by the change of the vertical division number,

Next, to know the effect of longitudinal division number on the dynamic response, three different cases
of M=30, 50, 100 are considered. The other values are taken as the same as in the above and N=20. The
dynamic responses of vertical velocities at the [/2 and /4 points of upper side are shown in Fig, 16. The
effects of different longitudinal division number on the response in the elapse time of impulse load are found
somewhat like those we get in vertical division as shown in Fig. 14.

(3) Comparison of the response of composite rectangular beam between theoretical and

experimental results

To compare the impulse response of the composite rectangular beam between theoretical and
experimental results, we take the mortar specimen reinforced by the fibers of one layer, as shown in
Fig.17. The following values are used in theoretical calculation. Material constants are
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Fig.19 Numerical simulation of stress wave propagation.

©=85470 kgf/cm? (8.547 GPa), A=35012 kgf/cm® (3.5012 GPa),
0=0.2347 g/em’, p,=0.801 g/cm®, A,=2.835 cm’

The damping coefficient A, is taken as in Eq. (14), and @=2787 and »=9.0.
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As the external point load of impulse at the [/2 point of upper side of the beam, the result shown in Fig. 6
isused. The contact pressure between a sensor and a beam is taken around 3 kgf/cn?. Comparison between
theoretical and experimental results of the velocity is shown in Fig, 18 at the [/2 point of lower side. The
ordinate of the left hand side is taken for the theoretical result of velocity shown in Fig, 18 by solid line,
The experimental result of the velocity is obtained as a change of voltage as shown in Fig. 18 by the dotted
line and the ordinate of the right hand side is taken for this dotted line.

The abscissa means an actual passage time in microsecond. We can see the good agreemént between
theoretical and experimental results in Fig, 18.

(4) Numerical simulation of stress wave propagation

The impulsive incident wave applied at the span center of upper side propagates rapidly in the beam as
transient stress wave and then whole oscillation modes appear successively along with the reflected waves
from the beam boundary. These behaviors on the stress wave propagation are shown by the numerical
simulations in Fig,19. In this calculation the following values are utilized;

T,=50 us (duration of impulse), N=40, M =80, 2 C=6cm (loading length)
and the other values are taken as the same as in the above. The results shown in Fig, 19 are obtained by
combining vertical and longitudinal components of displacement as the time history of propagation.
In this case, the time in which dilatational wave returns back from the lower side of the beam is around
70 us after the incident. From these figures we can see that the stress wave propagates in the beam in the
elapsed time and the transient wave mode is gradually transformed into the whole oscillation mode. When
the elapsed time of the incident is longer than the natural oscillation period of the beam, the dynamic
response may take place as the history of whole oscillation of the beam just after the incident. From these
visual simulation we can investigate the diffraction behavior of the transient stress wave propagating in the
beam in which internal cracks or inclusions are involved.

6. CONCLUSION

Summarizing the above study on the stress wave propagation in the rectangular beam, we have come to
the conclusions as follow;

(1) Taking into account the effects of impedance ratio between the transducer and the beam, the
natural frequency of the transducer, and the contact pressure to the surface of the beam, the surface
responses due to the incident stress wave applied by a piezoelectric transducer are measured by the
ultrasonic pulse method,

(2) By dealing with the initial damping effect of the stress wave in the vicinity of impulse, the
characteristics of phase shift caused by internal friction and the frequency dependence on damping
coefficient are obtained by experiment.

(3) By the numerical models of the rectangular beam, the effects of mesh division of vertical and
longitudinal directions are presented on the impulse response,

(4) The good agreement on the impulse response of composite rectangular beam of the velocity by the
comparison between theoretical and experimental results is obtained as shown in Fig. 18.

(5) The transition process from the transient wave to the oscillation over the whole span of the beam
is simulated by the numerical analysis.

Although results are not yet sufficient to apply the stress wave analysis as the diagnosis of the structural
integrity, we wish to improve the accuracy of the diagnosis by continuing the study on the stress wave
scattering.
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