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A FORMULATION OF MEMBRANE ELEMENTS WITH DRILLING
DEGREES OF FREEDOM

By Masashi IURA*

A new formulation of membrane elements with drilling degrees of freedom is presen-
ted. The Lagrange multiplier method is employed to obtain the modified functional.
Since the independent rotational field is used, the present formulation is applicable to
any shape of elements. The resulting stiffness matrix has negative diagonals associated
with drilling rotations. This deficiency is remedied by introducing a positive parameter,
It is shown that the numerical results are not affected by the value of the parameter,
The present element has no zero-energy mode, and no locking phenomena are observed.
Numerical results demonstrate an excellent performance of the membrane elements with
drilling rotations,
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1. INTRODUCTION

In-plane rotations about a normal to an element plane are referred to as drilling rotations. A key
advantage of using a membrane element with drilling degrees of freedom (d. o. f.) is that a flat shell
element consisting of the membrane and bending elements possesses six d. o. . per node ; the problem of
singularity can be avoided without difficulty., When a membrane element without drilling d. 0. f. is
combined with a bending element to form a flat shell element, we have a zero stiffness in the direction of
drilling rotations. In principle, there exist different approaches to avoid this singularity (see
Zienkiewicz") . In practice, however, these approaches lead to certain programming difficulties, Thus the
presence of drilling d. 0. f. is very attractive to engineers. The most commonly used approach to develop a
membrane element with drilling d. o. f. is the addition of a fictitious set of rotation stiffness coefficients,
as described by Zienkiewicz". Although the fictitious stiffness is widely used. there remain problems to be
improved. A number of work have been done to determine the real stiffness associated with the drilling
rotations. In spite of much effort, there have been few elements which possess a correct rank, have no
locking phenomena, and give satisfactory results,

Early attempts in the 1960’s and 70’s to develop membrane elements with drilling d.o. f. were
unsuccessful. According to Allman”, the early formulations impose quite severe restrictions on the
displacements in order to achieve compatibility; in particular. the drilling rotations of elements are
constrained from changing to accommodate constant states of strain, so that convergence to an exact
solution with mesh refinement is unassured. We refer to the references? for a comprehensive review of

these early papers. Allman” has developed a triangular element with drilling d. o. f. on the basis of the
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principle of minimum potential energy. Although a level of success has been achieved in the work?, the
element possesses the problem of zero-energy modes. Bergan and Felippa?, based on the free formulation,
have presented a triangular membrane element without having zero-energy modes. Since the above
elements are restricted to the triangular ones, Cook” has presented a quadrilateral element by introducing
the coordinate transformation approach. After their papers have been published, a variety of membrane
elements with drilling d. o. f. have been proposed”~? to improve the performance of membrane elements. In
these works, the displacement field is related to the rotational field. At first, the displacement field is
expressed in terms of corner and midside nodal displacements, Then the midside nodal displacements are
replaced by the corner nodal displacements and rotations. Finally, the corner nodal rotations are related
to the corner drilling rotations,

Hughes and Brezzi have presented variational principles employing independent rotational fields.
Their formulation is attributable to the work of Naghdi'¥ and Reissner' in which the symmetric condition
for shear stresses are relaxed. The elements developed by Hughes and Brezzi are proved to give the
converged solution, From numerical point of view, however, their elements are too stiff to give a
satisfactory result, Herrmann®, based on a couple-stress theory” has introduced a couple stress in
addition to an antisymmetric shear stress to develop a membrane element with drilling d. o. f.. Although his
formulation is straightforward, further research will be required to develop an efficient element which
gives a satisfactory result. Suzuki and Kaneko®, based on a micropolar theory have also developed a
membrane element possessing the in-plane rotation. The contribution of couple stresses are assumed to be
small and neglected in the total strain energy. Since they have not analyzed any in-plane problem, the
accuracy of their membrane element has not been confirmed. It will be shown in APPENDIX that the
membrane elements, developed by Hughes and Brezzi¥ and Suzuki and Kaneko  are too stiff to give a
satisfactory result,

In this paper, a new formulation of membrane elements with drilling d. o. f. is presented on the basis of
classical elasticity, in which the symmetric condition of shear stresses is employed. The Lagrange
multiplier method is used to obtain a new functional which leads to the definition of drilling rotations as the
Euler-Lagrange equation. The rotational field employed is independent on the displacement field.
Therefore, the present formulation is available for any shape of elements. The resulting stiffness matrix
may have the negative diagonals associated with the drilling rotations. This deficiency is remedied by
introducing a positive parameter. The numerical results are not affected by the value of the parameter.
The present elements possess a correct rank and exhibit no locking problem under severe geometric
distortion, Numerical examples demonstrate that the present element is usually more accurate than the
existing ones. We consider herein a linear isotropic plane-stress problem. It is needless to say that the
present formulation is applicable to a plane-strain problem with a slight modification.

2. FORMULATION

Let us consider a Cartesian system (x, y). The drilling rotation about a normal to the element plane is
defined by

6:_%(531; au>

oxr oY
where 1, and p are displacement components in the direction of x and y, respectively. The total potential
energy function for a linear isotropic plane-stress problem may be written as?

U= [ a2 (G + (50 w2 Ba Gy o en (35 52 ) Jaa

where E is Young’s modulus, G the shear modulus, y Poisson’s ratio, A the thickness of material, and f
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and g are the body force components in the direction of x and y, respectively; f and G denote the surface
force components. Introducing the definition of drilling rotation, expressed by Eq. (1), into Eq. (2)
with the use of the Lagrange multiplier method and rearranging the resulting equation, we have

e [ 2 3y e 2 By b on (e 2

2(1—v) N ox oy ox 9y oy ox/ oy
_M15_%(%-%S»)]}dA——f[fu—%—gv]dA—f&[fu_g_gvjdg ................................ (3)

where M is the Lagrange multiplier. The Euler-Lagrange equations of Eq. (3), derived from the
condition such that §U,=(), are written as

_Eh (2'u o'v o U, v\, 3 290, D*u\ 1M , .
(1—u2)<8x2+ axay>+ Gh( axay)“Lth(a ay2> 2 oy /70
_Eh (9% 2'u Jfu 1 20  du\,1oM
(1_u2)<ayz+V ax8y>+ Gh( axay)+2 Gh<8x+8xay)+2 ox 1970
1/0v Qu\_
=3 (55-55)=0
u , v ou e e A
Gh 3 <ay+ax>+“ay] M=0 (4-a~d)
Substituting Eq. (4- d) into Eq. (3) and eliminating the Lagrange multiplier }f, we obtain the following
functional :
(1 ou\_ (9v ou v ou v
Uz—f[zu—u?) Eh[(ax> +<ay> t2v o ay}+ Gh<8y+8x>
1 1 (ov_ou T P G 1d S s
35 wGh { 0“"2' <"§x‘"a‘y>} }dA"f[fU‘f'g’U]dA j;a[fu"‘g’l}]ds (5 )
where x,=1. When x=—1, the above functional takes the same form as that derived by Hughes and

Brezzi", while the functional of Suzuki and Kaneko™ is obtained by setting x,=—4. The Fuler-Lagrange

equations of Eq. (5) are the linear momentum balance conditions and the definition of drilling rotation.
Since it follows from Eq. (1) that §40u/0y=239v/3x—6, the underlined term in Eq. (3) can be

replaced by 0v/0x—8. The resulting functional gives the following Euler-Lagrange equations :

(f%(iﬁ*”@i&;%i Gh<au a?cgy%’Gh(aT/"aizay) %aM*J“f 0

T (v g 14 1 (3 g )2 On (G 5+ 5 T =0
(322}

Gh{ (gz+%>+e+%}+M*_o .................................................................... (6-a~d)

where M* is the Lagrange multiplier. The elimination of the Lagrange multiplier M*, in a same manner
described above, leads to the modified functional, the form of which is exactly the same as that expressed
by Eq. (5). Therefore, in this paper, the functional [, is utilized to develop a membrane element with
drilling rotations.

The functional U, might be regarded as the functional derived from the method of penalty functions (see
Reddy®) . However, there is a substantial difference between the present functional U, and the functional
derived from the penalty function method. When we use the penalty function method, the penalty function
or the constrain expressed by Eq. (1) should be introduced with a very large positive constant. And there
is no unique way to determine the value of this empirical constant. As discussed in shell analysis by
Kanok-Nukulchai®?, the introduction of a penalty function makes the element stiffer. As a result, a

selective integration has been often used to avoid an over-constrained situation. It will be shown later that
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there exist no over-constrained situation in the present element even if a full integration rule is employed to
the constrain term. ‘

Following the standard finite element method and using the functional U,, we obtain the relationships
between the generalized nodal displacements and nodal forces, The shape functions for displacements and
rotations will be discussed in the next section, After assembling all the equations, we have an equation in a
matrix form such as

Ao ul U] |Bo oo O Col 0

|4u Aul16] "By Bullel lca culle] Lo
where [A], [B] and [C] are matrices associated with the first, second and third terms, respectively, of the
first integral in EEq. (5); U and & denote the nodal displacements and rotations, respectively, and F
denotes the nodal forces. Since the nodal rotations @ do not appear in the first and second terms of the first
integral in Eq. (5), we have A,=A,=A4,=B,,=B,=B,=0. Then Eq. (7) is rewritten as
Kll O U Cll C12 1 U; . F}

0 0{9; Cu Cull 6] o
where K,,=A,,+ B,,. Equation (8) shows that the total stiffness matrix may have the negative diagonals

associated with nodal rotations. This deficiency may be remedied by modifying Eq. (8). In view of Eq.
(8), we have

Cll CIZ (] l G
c Co ij:{()l ........................................................................................... (9)
where
%G}:[KHJEU}__{F} ..................................................................................................... (10)
Using Eq. (9) and introducing the positive parameter ¢ (>(0), we can rewrite Eq. (8) into the form
K\] O U Cll C12 U F‘“OG
) 0{ o —(1+a) e clle - % R (11)
The nodal rotations @ are eliminated from Eq. (11) to yield the reduced form
[Kikl {U}:{FWQG} ................................................................................................... (12)

where Kﬁ:Kn —<1 + a’) (Cu - C]gC;z] Cz‘).
In order to develop the stiffness matrix with the degrees of freedom for drilling rotations, we rewrite
Eq. (12) into the form

Tx 0 U‘ o F—alz
l 0 oflel | o 13)
Substituting Eq. (9) into the right side of Eq. (13) and rearranging the resulting equation lead to
Kﬁ“}’acn aCi, U ¥
= f ................................................................................. (14)
G’Czl Qsz 8 0

Then we have the total stiffness matrix which has the positive diagonals,

The parameter o should be chosen so that the eigenvalues of coefficient matrix, represented by Eq.
(14) . are positive except the zero-eigenvalues associated with the rigid displacements and rotations, In
the present elements, there exist three zero-eigenvalues;two of them are associated with the rigid
displacements and the rest is associated with the rigid rotation. The numerical experiments show that the
parameter o can be taken in a wide range such that 107°<a<1(. Note, however, that the solutions of Eq.
(14), U and 8, are not affected by the value of . This is simply because Eq. (14) is equivalent to Eq.

(8).
3. ISOPARAMETRIC ELEMENTS

The present formulation is available for any shape of finite elements. In order to assess the performance
of the element derived from the functional J,, a 8-noded quadratic isoparametric element, as shown in
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Fig. 1, will be developed and tested, In the case of solving a shell problem in H
Sect. 4. (6) and a thick cantilever beam in APPENDIX, a 4-noded
quadrilateral isoparametric element will be used. This is because an efficient
4-noded bending element has been developed by many investigators. Since
there is no difference for developing the elements between 4-noded and
8-noded elements, we will consider the 8-noded quadratic isoparametric

element. We refer to the reference” for an isoparametric element.

The actual element geometry is mapped into a parent plane (£, 5) using the

Serendipity shape functions, i.e. Fig.1 8 Noded Isoparametric

T=D0N, YD Ny reerereee e (15-a, b) Element.
where 7=1, ---, 8 and
1 1 1 - 1 1
le%RS**N;ngs, N.=t RS- gNs—gNﬁ,
1= 1 1o 1. 1
ZRS —_2" N7, N4 ZRS— N7 Ng,
1

Ne=4 R*S, Ne=%RS*, N=% RS, Ngz%RS*,

=1+$, S=1+47, R=1—¢ S=1—7y,
R*:14§2’ 5*21_772_ ................................................................................. (16-a~n)

The element displacement and rotation components are defined in terms of element nodal displacements and
rotations, 1, v; and 4, as
U= 0N, U= 90NDs, O3 N, oo eeemermereee et (17-a~c)

where =1, -+, 8. Substituting Egs. (15) and (17) into Eq. (5 ) and following the standard finite element
procedure, we obtain the stiffness matrix for this problem. The Gaussian quadrature rule is applied to Eq.
(5). It should be noted that no reduced integration is used for the 8-noded element and that the selective
reduced integration is used for the 4-noded element. As a result, the stiffness matrix has a correct rank
for both the 4-noded and 8-noded elements. It can be shown later that the present elements do not exhibit
locking phenomena ; such problems have been often encountered in the case of using a full integration.

4. NUMERICAL EXAMPLES

A variety of test problems have been analyzed to evaluate the performance of the proposed membrane
element. The purpose of these problems is to examine the numerical performance of the element with
respect to ( 1) shear locking, (2) sensitivity to element distortion, {3) accuracy in stress calculations
and (4) the in-plane rotations. As an application to shell problems, a pinched cylinder with end
diaphragms has been solved.

The present finite elements have compatible displacements and rotations, and can recover all constant
strain states. A convergence to exact solutions, therefore, is always assured by using consistent mesh
refinement. The stresses in each element are obtained from the present displacement field. If more than
one element meets at a node point of the finite element mesh, then the average value of the element stresses
is quoted. ‘

The value of ¢ is taken as (0.1 in this paper except for a shell problem. Note, once again, that the
numerical results are not affected by the value of . The same numerical results are obtained even though
the value of ¢ is equal to zero,

(1) Uniform tension

This example as shown in Fig, 2 is presented to show that the present element can recover the constant
stress states and that no drilling rotations occur under the uniform tension. This test is one of the so called
patch test’. The material properties are E=1 kgf/em? y=0.3, and h=]1cm. Table] shows the
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:’ Table1 Numerical Results of Uniform Tension (unit : em, kgf, rad).
T Point| U v %% 9
! : T ! 0.0 0.1500 x 10° | 0.1000 x 10" | 0.0
x . ( 0.0) ( 0.1500 ) ( 1.000) (0.0)
“ l 0.5000 x 10° | 0.1500 x 10° | 0.1000 x 10** 0.3538 x 1070
a_ B c ( 0.5000 ) ( 0.1500 ) ( 1.000) ( 6.0000 )
——— 1 0.1000 x 10"7| 0.1500 x 10° | 0.1000 x 10°L | 0.8935 x 10~°
Fig.2 Uniform Tension ( 1.000 ) ( 0.1500 ) (1.000 ) ( 0.0000 )
(unit : em, kgf) . Note: ( ) denotes the exact value.

numerical results. A good agreement between numerical results and exact ones has been obtained. Due to
rounding errors of digital computers, the drilling rotations do not become zero, These small values for
drilling rotations, however, can be regarded as zero.

(2) Thick cantilever beam under a tip load

This example as shown in Fig. 3 has been used extensively in the finite element literature. The cantilever
is subjected to a parabolically distributed force and has the material properties | E=30 000 kgf/cm?, v=
0.25, and h=1 cm. The numerical results for both regular and irregular meshes are listed in Table 2,
where the results using the other elements are also shown. An analytical answer of (). 35583 cm is used to

VAW
i = -f& TR
Pz=a0
1 B x P P=40 12 r
:\2_ v e ) r = f
-<—te~a£4l-faak-—zo—-a
a) Regular Mesh
b Irregular Mesh
Fig.3 Thick Cantilever Beam (unit @ cm, kgf).
Table 2 Normalized Results of Thick Cantilever Beam.
v [} [ g
No. of A xB xC xD
Element d.o.f.} Reg. Irreg. Reg. Irreg. Reg. Irreg. Reg. Irreg.
Allman [2] 81 0.9164
Bergan [3] 81 0.9772
30 # 0.9776  0.9761
MacNeal {4] s
30 0.9581  0.8867
Cook [5] 30 0.9226 0.9496 0.8750 0.8813 1.0000 1.0720 1.0000  0.9200
( AQ Elem. )
Sabir [6] 81 0.9707
Bergan [7] 81 0.9995
Cook (8] 30 1.0490  0.9167 | 1.0010  0.9338 | 1.1580 0.9080 | 1.1460  1.5320
( x=0.2)
Lee [9] 81 0.8313
Allman [11] 81 0.9089
30 © 1.0140  0.9861 | 0.9888  0.9238 | 1.1040 1.0180 | 1.0760  1.4640
Yunus [12] P
30 0.9308 0.9673 | 0.8988 0.8788 | 1.0000 1.0120 | 1.0000 1.0160
Olson [23] 81 0.8383
39 0.9578  —=—--m 0.9475  ———mme 0.9955  —=meem 0.9955  ~emeee
Present
69 0.9827 0.9784 | 0.9933  1.0100 | 1.0000 1.0090 | 1.0000 0.9372
Reg. : Regular Elements Irreg. : Irregular Elements

: Spurious modes are not controled.
: Spurious modes are controled.

1 Mixed AT.

: Mixed AQ.

oan TR
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normalize the tip displacement. The stresses ogy; oy and oy, are normalized by the exact solutions of
—80. 0 kgf/em?, —50. 0 kgf/cm?, and 50. 0 kgf/cm?, respectively. Blanks in Table 2 denote that these
values are not available from the existing literature,

As discussed by Timoshenko and Goodier®, there is no unique way to idealize a fixed boundary
condition. The drilling rotations at fixed ends have been often constrained in order to suppress the
zero-energy modes. As pointed out by Bergan and Felippa”, the continuum mechanics definition expressed
by Eq. (1) is non-zero at the fixed ends due to the term 9v/3x. In this paper, the fixed boundary
conditions are idealized by constraining the displacement components, 1y and p, at the fixed ends.

The finite element developed by Bergan and Nygard”, using 81 d. 0. f., shows a good performance in this
example. In their formulation, however, there remain a problem to decide the value of parameter which
affects the numerical results. The finite element, called “Mixed AT” element developed by Yunus, Saigal
and Cook?, gives an excellent performance except the stress gy,. The “Mixed AT" element, however,
tends to lock in a thin beam problem under severe geometric distortion, as shown in Sect. 4. (3). The
performance of the present element is quite remarkable for both regular and irregular meshes. Since the
use of only two elements (No. of d. 0. f. =39) can not treat with the bending problem of irregular mesh, we
can not fill in blanks associated with the present element in Table 2.

The exact drilling rotation at the tip is . 1075X 10" rad, while the present element gives the values of
0.1076X107'rad and (.1081X10 'rad for the drilling rotation of regular and irregular meshes,
respectively, Note that the error is (.56 % even for the irregular mesh.

(3) Thin cantilever beam under pure bending

This example has been used to evaluate the element capabilities for presenting the pure bending under
severe geometric distortion. The cantilever beam is subjected to the end forces, as shown in Fig. 4, and
has the material properties : E=3X10" kgf/em?, »=0.3, and hA=1cm. The numerical results,
normalized against the analytical solution of 1.8X10™* cm, are presented in Table 3 along with results
from other elements, It is observed that most of the existing elements, including the “Mixed AT"” element
developed by Yunus, Saigal and Cook'?, tend to lock in this problem. The advantage of the present
formulation is seen from this problem. The beam theory gives the value of (0. 6000X 107" rad for drilling
rotation at the tip, The value of (. 5532X 10" rad for drilling rotation was obtained by the present element.

L; .9 21 29 a1 a9 6.0 PI:_'..J(
o’ \ A g \ / \ l % 18
}_ 7 i1 1.8 31 3.9 s1 85 ' T’ T -3

Fig.4 Thin Cantilever Beam (unit: cm, kef). L
as
Table 3 Normalized Results of Thin

Cantilever Beam.
Fig.5 Cook’s Problem (unit :cm, kgf).

Element Tip Deflection
Yanus [12] 050 Table 4 Normalized Results of Cook’s Problem.
( Mixed AT ) ° No, of
Yunus [12] 0.85 Element d.o.f, | Tip Deflection
( Mixed AQ ) Bergan [3] 75 0.9377
*
Allman 0.21 Bergan [7] 75 0.9665
Pian and 0.16 Cook [8] 75 0.9682
Sumihara °
* 75 @ 0.9594
Cook 0.82 Yunus [12] 5
75 0.9728
Present 0.92
Present 63 0.9506
* These values are given in [12 a : Mixed AT , b : Mixed AQ
g
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(4) Cook’s problem -

This problem is a good exercise of element’s ability to model membrane situations with skewed meshes.
A skewed plate is clamped on one end and subjected to a uniformly distributed in-plane bending load on the
other end, as shown in Fig, 5. Since there exist no analytical solutions, a finite element converged solution
of 23.91 cm is used to normalize the results, which are shown in Table 4. The material properties are F =
1 kgf/em?, v==1/3, and h=]cm. No distinct differences among the existing results are found in this
problem,

(5) Pure bending of a square plate

This example was proposed by Allman?. The square plate is subjected to linearly varying distributed
forces, as shown in Fig. 6. Since the analytical solutions are available for this case, the numerical results
for drilling rotations have been compared with exact solutions. The exact solutions for this problem are
expressed as”
uzz(ﬁ‘i):ﬁ v:~<%>,§,ﬁf}/f’ 0:“2<,gﬂ>£- ........................................ (18-a~c)

Allman® has introduced the additional constrains for symmetric conditions in order to suppress the
zero-energy modes, Since the present element has no zero-energy modes the exact boundary and
symmetric conditions are imposed in this paper,

Table 5 shows the numerical results for displacements and drilling rotations. It is observed that a
complete agreement between numerical and exact solutions has been obtained for both displacements and
rotations, when we utilize four 8-noded elements developed herein,

(6) Shell problem

The main advantage of the use of elements with drilling rotations is prominent in an analysis of shell
structures. Since an efficient 4-noded bending element with a correct rank has been developed without
having locking phenomena, we analyze a shell problem using a 4-noded element. The example as shown in
Fig. 7 is a pinched cylinder. This is a challenging problem in a finite element shell analysis and has been
solved by many investigators. The bending element is developed on the basis of the work of Bathe and

v

f' (2X2rymesh Table5 Normalized Results of Square Plate.
ag [ o o
Eu |Ev E 6, I
NO- Of i ]Cj - (‘xc
] Element d.0.f. | %0 % % ol
| Allman [2] 75 0.494 | ~0,320 | ~0.982 | 0.996
b 4
L |
A = u Allman [11]] 75 0,482 | -0,311 | ~0,813 | 0,941
|
g Present 63 0.500 | ~0.325 | ~1,000 | 1.000
|
' Exact 0,500 | =0.325 | -1,000 | 1.000

1S

Fig.6 Square Plate,

P= 1

A D A D
|
I
B c B c
RIGID .
DIAPHRAGM A B>
Fig.7 Pinched Cylinder (unit : kgf). Fig.8 Mesh Patterns,
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Table 6 Normalized Results of Pinched Cylinder. Table 7 Normalized Results of Thick Cantilever Beam,
Mesh A Mesh B 4 Elements 16 Elements
Bathe [24] 0.830 Hughes and Brezzi [13] 0.863 0.953
Liu [26] e 0.854 Suzuki and Kaneko [18] 0.740 0.900
Simo [27] B 0.823 Present 0.994 0.997
Present 0.965 0.830

Dvorkin?, The 4-noded membrane element is developed on the basis'of Eq. (5). The value of ¢ is taken as
zero and the stiffness matrix is not reduced in this example, The length of the cylinder is [,=600 c¢m, the
thickness of shell is A==3 cm, and the radius is R=300 cm. The material properties are E=3X
10° kgf/em?, y=0.3, and the two mesh patterns are used, as shown in Fig. 8. The numerical results,
normalized against the exact solution of (). 1825X107* cm, are presented in Table 6. Solutions obtained
using another 4-noded element are also shown. It is seen from Table 6 that numerical results are sensitive
to the mesh patterns. It is natural for a finite element analysis to use fine meshes around a concentrated
force. The use of mesh (A), therefore, yields the accurate result. The best result in Mesh (B) has been
obtained by Liu, Law, Lam and Belytschko® in which the stabilization matrices have been employed.
When compared with their formulation, the present formulation seems to be simple and straightfoward.
Note that the present element yields the better result than the mixed element developed by Simo, Fox and
Rifai?” and that no fictitious stiffness has been used in this formulation to assemble the overall elements
which possess six degrees of freedom per node.

5. CONCLUDING REMARKS

A new formulation for membrane elements that possess the drilling d. 0. f. has been presented in this
paper. We have assumed, on the basis of classical elasticity, that the shear stresses are symmetric and no
external couples exist. As is well known'”? if a body couple, denoted by . is applied, the shear stresses
are no longer symmetric. When there exist the body couple, f, the surface couple, f, and the couple
stresses, s, and g, we obtain the following equilibrium equation and the mechanical boundary condition
associated with the drilling rotation :

ou. ou -
a; +Aa_yzi+rxy_ Tt E=0,  fxNp b ptyy=1F ~-overevmeee N (19-a,b)

where n_ and n, denote the direction cosines of the unit normal drawn outwards on the boundary. It is
observed from Eq. (19-b) that the assigned surface couple, #. should be equal to zero if there exist no
couple stresses. Lee and Yoo”?, and Yoshida, Amemiya and Masuda® have analyzed the example in which a
concentrated couple is applied. Since their elements have been developed on the basis of the classical
elasticity, the mechanical boundary condition associated with the drilling rotation would be violated.

It is clear that the present formulation is not available for the problem in which a concentrated couple is
applied. Such a problem might be analyzed by using a couple-stress theory or employing symmetric and
skewsymmetric shear stresses, However, most of the problems encountered can be analyzed by using the
classical elasticity. Numerical results for a variety of examples demonstrate that the present elements
show superior results even under severe geometric distortion, and a better performance compared to other
existing elements.
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APPENDIX

In this appendix, the thick cantilever beam, as illustrated in Fig. 3(a), is analyzed again for showing the
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numerical effect of the parameter x, introduced in Eq. (5). As described in Section 2, Hughes and
Brezzi' have derived the functional with x,=—1, while the membrane element developed by Suzuki and

Kaneko?¥ is obtained by setting x,=—4. The normalized tip deflections obtained using the same data in
Section 4. are listed in Table 7. It is shown, as described by Hughes and Brezzi'®, that both of the elments
developed by Hughes and Brezzi®¥ and Suzuki and Kaneko® give poor results.
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