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AN ELASTO-PLASTIC LARGE DEFORMATION ANALYSIS
OF COMPRESSED CYLINDRICAL SHELLS
WITH INITIAL IMPERFECTIONS

By Shobha R, GUNAWARDENA* and Tsutomu USAMI**

The behavior of axially loaded cylindrical shells is studied using a general purpose
non-linear shell element. The well-known nine-node degenerated shell element was selected
among the variety of shell finite elements proposed and developed in the past by several
researchers, because it satisfies all the compatibility conditions between adjacent elements
directly and gives accurate results. The behavior of axially loaded cylindrical shells are
observed through computations of some fabricated pipes which were tested in Nagoya
University. The measured initial imperfections are included in the calculations. The
effects of initial imperfections on the cylinder strength are also discussed.
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initial imperfections

1. INTRODUCTION

During the past two decades, the behavior of axially loaded compressed cylindrical shells has been
examined, experimentally and theoretically, to verify the initial imperfection sensitivity on the strength.
The research work done by J. E. Harding"~? has made a considerable effort to explain the effects of initial
deflections, residual stresses, cylinder length, radius-thickness ratio, etc. But the subject is still to be
investigated as, due to the authors’ knowledge, there is a little work done to compare the theoretically
computed results, using the measured initial imperfections, with experiments done on axially loaded
cylindrical shells because of the difficulty of measuring the initial imperfections incurred in the test. The
initial deflections and the residual stresses are different for each problem and, without a clear knowledge
of those, difficult to correlate.

To detect the ultimate strength and the buckling mode, for the further examination of the behavior, an
elasto-plastic large deformation analysis must be done. In a review on available finite elements it is
understood that the nine-node degenerated shell element with reduced integration is more effective and
accurate over the other shell elements. The formulations presented by K. J. Bathe et al. 9~ are used and
all the necessary transformations to include the large deformation effects are done additionally. Among the
number of problems solved, some typical examples will be presented first to show the ability of the element
developed in handling geometrically and materially non-linear problems. Some laboratory tests done in
Nagoya University on axially loaded cylindrical shells are computed and discussed in detail to see the
effects on initial imperfections.

* M. Eng., Graduate student, University of California (Santa Barbara, California, U. S A.)
** Member of JSCE, Dr. Sc., Dr. Eng.., Professor of Civil Engineering, Nagoya University (Chikusa-Ku, Nagoya 464)
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68 S.R, GUNAWARDENA and T, Usam1

2. FORMULATION OF EQUILIBRIUM EQUATION

The notations used are similar to Ref.5), as follows if explained briefly,

Left subscript ; Configuration with respect to which the quantity is measured,

Left superscript; Configuration in which the quantity occurs.

No superscript ; increment of the quantity.

The principle of virtual displacement with updated Lagrangian formulation is employed. The basic
equation to be solved is,

[v (¢+0§SU) & (t+6§55j) idV:HG‘i%}{ ................................................................................... ( 1 )

where 9!, =2nd Piola-Kirchhoff stress tensor, **°!¢,;=Green strain tensor, ***fi=External virtual
work, ‘V=Volume of the body at configuration %.

The above quantities are referred to the previous state as follows,

r+o~§sij:trij+tsij, t+a§€ij:te”+tmj’ 1S5 C g 1Epg 1t e e (Z.aNC)
in which ‘z,; is the Cauchy stress tensor, ,S,; is the increment in stress at configuration ¢, ,C,;. is the
corresponding constitutive relation at configuration %, ,e;; and ,7;; are the linear and nonlinear strain
increment tensors, respectively.

Substitution of Eq. (2) in Eq. (1) and linearization of the left hand side by ,S;;=,C;;,s 1€, leads to
the final equation given below (written in matrix form).

[[gKL]+[€KNL]]%tU }:{i-FO'lR }_{gigﬁ % ............................................................................ (3)
where [IK,]=linear stiffness matrix, [!K, ]=nonlinear stiffness matrix, |,U |=displacement increment
vector, {"9'R|=vector of external nodal point forces applied, |}[5iF |=vector of nodal point forces

obtained from internal forces.

3. ISOPARAMETRIC FORMULATION

The geometry of the shell is described by the coordinates and direction cosines of the normal vectors at
the nodal points on the shell mid surface. Fig.1 gives an illustration of the element. The interpolation
function used for the geometry is given by

txazéi(hk) (txf)+"2é§(hk)(a)(i ';L) .......................................................................... (4)

where * X *=global coordinate of node %, *X,=global coordinate at a generic point on the shell, h,=shape
function on r-g plane associated with node %, g=thickness of the shell, 'V},=component { of the unit
normal vector, tth to the mid-surface of the element at node k.

The displacement increment ,u, is given by ,u,="X,—'X, which leads to

9 9

zuz::/; (he) Gub+ ;f; (B (@) GVEY --eveemrmmeme e (5)
where, ,VE=t"tyk —ty% Initial values of FVE OVE are
computed as follows :
s ) o?k 2 oj(’ls 2 O‘X’k 5 O'X’k
0 k| X A ~No M 2 N S AR N A
V=% %55 )/ | %o > 5 (6)

Two orthonormal vectors to 'V £ are selected as follows
(see Fig.1) :

V=X, X VE/ I XX VEL; VE=TVEX TV (7)
In Eq. (7)., X, represents a unit vector in global X,

L\D‘w

direction, In the special case that 'V% is parallel to X,, V¥
o d oyt e, . . . N tywk twk tyk
and ‘V¥ are taken as X, and X, If any initial boundary K1 Nodal point k ; coordinates (X1, 'X§, ‘X%)

conditions or loading conditions are given in these two local Fig.1 Nine-node shell element.
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degrees of freedoms one must be careful in selecting the global coordinate system ; the vector 7()2 must not
become perpendicular to the shell surface at such loaded or restrained points throughout the application of
load (displacement) increments.

The components of the *°* V% can be written in terms of ' V%, V% and the rotations ay, &, of 'V E about
tV{” and tV,’; respectively?,

motyk =0 5(sin 8x coS art+sin B VE—0.5(sin ax cos Bx+sin an)' V5

+COSﬂkCOS aktvgi ...................................................................................... (8)
For small oy and By, cos ax=cosBx=1.0, sinaex=a, and sinFy=pF; Then
t+0th —.Gk “__a,ktvgi.pvﬁi ..................................................................................... (9)

Eq. (9) is used in the finite element formulation assuming e, and B, are small enough. But in the
calculation of #9'V%, Eq. (8) is used to ensure the unity of the vector V* throughout the loading, Eq.
(5) can then be rewritten as follows :
9 t 9
tui:’;l(hk)(tu) 5;( (@) (VB EVE By erem e (10)

The local derivatives of the displacement increments are computed directly from the Eq. (10) and then
transformed to the global derivatives using the Jacobian transformation, The linear and non-linear
incremental strain-displacement relations, which are used in the computations of stiffness matrix and
unbalanced force vector, can be directly written in terms of obtained global derivatives of displacement in-
crements,

4. CONSTITUTIVE RELATION

In this study an isotropic, elasto-plastic material behaviour is modeled. Von Mises yield criteria and
isotropic hardening are used with the associated flow rule. The effects of elastic unloading are
incorporated in the analysis following the procedures found in Ref. 20).

The shell assumption that the stress normal to the shell is zero, is imposed in the usual three dimensional
constitutive law corresponding to a local coordinate system, The resulting matrix is transformed to the
global coordinate system as the calculations of all the other quantities are performed with respect to that
system. The Vn, 71, T/:Z system, whichis, however, calculated for previous formulations, is taken as the
local coordinate system.

In the elasto-plastic stress-strain relation the local Cauchy stresses are used to impose the large
deformation effects. In obtaining the stresses for the current configuration using the previous state, the
Eq. (2-a) is used. The stresses 9IS, are transformed to %z, for each point as follows,

”""Tmn—% <%{ﬂ> worg <8_£;12;_X£> .................................................................... 11

where +9%9 /%o is the ratio of mass densities at configurations { and {+ &% and is given by the determinent
Of (a f+o‘tXi/a th) .

5. NUMERICAL INTEGRATION

It is observed that the reduced integration on the surface of the shell gives effective and accurate
solutions over the full integration, The 2)X2 Gauss-Legendre integration is done on the surface. In the
case of elasto-plastic analysis a fine mesh is necessary to capture the plastic zone. Since the large
deformations are to be considered, the stresses along the thickness direction do not remain constant.
Therefore the thickness is devided to some layers, where the stresses can be assumed constant, and
integrated using Simpson’s rule. The number of layers can be defined as a data (2~8).
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6. SOLUTION METHOD

Displacement increment using the modified Newton-Raphson method is adopted in the computations of
this study. But the developed element routine has the capability of handling the solutions using the modified
arc length method also. The popular research tool FEAP?® was used to perform the basic finite element
procedures. In that package there is a facility to perform iterative solutions with a check of displacement -
convergence. Whenever |l,u,/l<TOL. max, [I'yll, j=1,2, «-eeee , 1, the iteration ceases and the next
load/displacement step will be started. Here |l,1,ll is the norm of the displacement vector at j-th iteration
and TOL. is a predefined tolerance for displacements.

The computer machine FACOM M-780 was used for all the computations in this study.

7. NUMERICAL EXAMPLES

(1) Example1 Rectangular beam with clamped edges subjected to a concentrated load at
mid span

The problem is illustrated in Fig. 2. Perfectly plastic material behaviour is used with yield stress, o,
of 1000 kgf/cm?, Poisson’s ratio, v, of (.17 and Young's modulus, E, of 200 000 kgf/cm®. Five equal
elements were used in half span and the load-displacement curve obtained (Fig.2) is in very good
agreement with the result of Ref. [() which was computed from 50 beam elements in half span. There was a
difficulty of convergence near the peak load. 50 displacement increments of (). 2 cm with 10~ tolerance was
necessary to solve the problem.

(2) Example 2 Plate in uniform edge displacement

The problem is described in Fig, 3. Finite element mesh of 2X2 elements was used to analyze a quater of
the plate for symmetry. An initial deflection w of

w=1w, sin <%£> sin (%) ........................................................................................ (12)

was applied in the out-of—plane direction, where 7, is the maximum value of 2. In elastic-only-analysis,
60 displacement increments of (). 002 mm was given with a tolerance of 10, The result was compared with
the result in Ref. 11) and shown in Fig.3. In the figure, g,=yield stress, E=Young's modulus, y=
Poisson’s ratio, g=plate length, p=plate width, {=plate thichness, and p=reaction force at the loaded
edges. The computation time was about 40 seconds. In elasto-plastic analysis similar displacement
increments were given with a tolerance of 10!, The computation time was about 08 seconds. The result
agrees with the results of Ref 12). The plate behaviour changed from elastic to elasto-plastic at 22nd
displacement step (e/e,=0.64).

o Present Analysis (5 elements) 107y o —m Elastic only Coan s v M
[10} e t0-plastic (Kitada) b4
250% — Argyris et al. - | [ ] Present sty
= Lo i 1 E 4 Elastic only
~ 4
fcnzoo - 0 ]| o Elasioplastic
no' 10 Elaments 50 Elements S|+ - A o
= w
= Collapse load H ! 1 x ,,V‘A
(Simple plastic theory) 051 x

200m

- :’Bl-’.f)m

6000 kgf/cm® E = 2.1 x 10° kgf/cm?

U (@t Point B/cm) v =0.316 W= 0.1 cm
0 1.0 2.0
Fig.2 Schematic representation and load-mid span Deflection at center / Thickness
displacement curve for beam with clamped edges. Fig.3 Plate with inplane loading.
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Fig.4 Average stress-average strain curve for axially loaded (b)  Assumed residual stress

cylindrical shell. Fig.5 Initial imperfections.

(3) Example 3 Axially loaded cylindrical shell with initial imperfections

The illustrated problem in Fig. 4 was solved prior to the computations of the cylindrical shells tested in
the laboratory to ensure the ability of the developed element in handling axially loaded cylindrical shells.
The initial deflection, 7, used is,

W= Wnax Sin <”Tx>cos <?~§> ................................................................................ (13)

where 1nax=maximum value of 7, I==shell length, R=radius of shell, and x, y=coordinates defined in
Fig.5(a).

50 displacement increments of (). 002 mm were applied with a tolerance of 107, The average stress (o)-
average strain (¢) curve (Fig.4) was compared with the solution of Ref 13). The dynamic relaxation
method has been used in Ref. 13) with the thin shell theory of Sanders®. Assuming symmetry about the
horizontal mid surface, a half and a quater of the upper half of the cylinder was analyzed simultaneously.
The results obtained were very closer to each other. The reason of this similarity may be the symmetry of
the initial imperfection along the circumference (out of roundness). The computation time was about half
for the latter case (255 sec. and 120 sec. ). The analysis was done with and without residual stresses, the
distribution of which is as shown in Fig.5(b). The effect observed was only (0.7 % on the ultimate
strength.

The shell buckles near the top end surface. Fig, 6(a) illustrates the chnage in outward displacement
along the axial direction with respect to the initial position. Due to the evenness of the initial conditions the
variation is similar at different sections. It can be seen that the outward displacement is extremely
localized near the end of the shell.

A sketch of the plastic zone developed at ¢/¢,=1. 74 is presented in Fig. 6 (b). This diagram was drawn
by observing the material property changes at each integration point as the displacement was increased
gradually (up to ¢/e,=1.74). Some parts of the cylinder started yielding from the inner surface and some
parts yielded from outer surface while the other portions remained as elastic. A clear relation can be seen
between Figs. 6(a) and (b). Yielding starts from the inner surface of the cylinder (at e/¢,=0. 85), under
compression, in the vicinity of the region with-maximum outward displacement and penetrates into the outer
surface at ¢/e,=1. 74. The cylinder yields from the outer surface at a height where the outer surface is-in
compression.
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Fig.6 Axially loaded cylindrical shell.

(4) Example4 Comparison with test results - axially loaded cylindrical shells

Four cylindrical shells tested in Nagoya University’ were analyzed. The geometrical and material
properties of the specimens are as in Table 1.

a) Initial imperfection

The imperfections of the specimens are uneven and difficult to measure because of the curvature of the
cylindrical shell. There is no clear reference of perfect shape for curved elements as for straight of flat
elements after those are deformed. The method used in Ref. 15) was used to tackle this problem. In that
study a Fourier analysis was done to calculate the initial deviations from the perfect cylinder at any point
using the measured values at some known points. The initial shape of the developments of four cylinders
are shown in Fig,7. The effect of the residual stress is neglected in this analysis,

b) Boundary conditions

Restrained conditions equivalent to diaphragm walls at top and bottom ends of the cylinder were imposed
(u,=u,=p=0 at the top and bottom) . The displacement increments were applied as in Example 3. All the
problems were solved up to 60 displacement steps.

¢) Analytical results and comparison

The specimen NO : 1 did not converge when analyzed with all the imperfections, So only the
measurements of the out of roundness was employed with an assumed half sine wave along the axial
direction, For the symmetry half of the cylinder was analyzed. A description of finite element meshes and
displacement increments with a comparison of computed and test results is given in Table 2.

As it is illustrated in Fig. 8, the computed peak stresses are little higher than the experimental ones.
The test curves seem to be deviating from the linear behaviour as early as e/e,=0.3. In the analysis of
specimen NO : 2, yielding starts around the 16th displacement increment (e/e,=0.56).

d) Buckled shape ;

Fig. 9 shows 3-dimensional views of the deformed cylinders which were observed in the laboratory. The
variations of outward displacement, without initial deflections, along the circumference and axial direction
are drawn seperately in Fig. 10 to illustrate the computed results. The variation holds a symmetric pattern
with four outward lobes along the circumference except for the specimen NO : 1. In the case of specimen
NO:1 (R/t=37.5), no lobes were observed along the circumference. One vertical section for each
specimen is presented to exhibit the variation in axial direction.

The buckling modes of specimens NO : 1 and NO : 4 resemble the test results. In specimen NO : 2,
computed outward displacements are localized to the bottom diaphragm, in contrary to the experimental
result. Another important fact observed is the difference between the deformed shapes of two specimens
NO : 2 and NO : 3 which are almost the same in dimensions (i.e., R/#=56). This must be clearly an
effect of different initial imperfections employed.

CPU time for each problem is given in Table 2. From the solution of specimen NO : 1 it can be said that
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Table 1  Geometrical and material properties.

Specimen No: | L (mm)| R (mm)| t (um)| Arca (mm?)| R/t
NO:1 373 179.79 4.8 5350 375
NO:2 552 269.64 4.84 8130 55.7
NO:3 553 270.03 4.77 8020 56.6
NO: ' 642 315.28 4.84 9510 65.1

E=2.119x 10* kgf/mm? v=0.223

oy=54.84  kgf/mm?

WELD

00P¢ {om)

2

00PC (mm)

Note : QOPC~OQutward displacement Of Perfect Cylinder

Fig.7 Initial deflection patterns for test specimens'”.

Table2 A description of finite element models and results.

Specimen | No. of Displacement. oy (kg/mm?) | oy (kg/mm?) | CPU
NO: elements | increment(mm) | Computed Yest result time (sec)
NO:1 32 (4x8) 0.020 53.42 48.5 1567
NO:2 48 (6x8) 0.025 54.09 49.8 1800
NO:3 48 (6x8) 0.025 54.29 47.6 1680
NO:4 48 (6x8) 0.03 53.85 47.8 1611

present study Linear Present study

K Linear © 1 g elastic —+ NO:3
OOy elastic - :g:z Y /L’ e No2
1.0 Test results [14] 1.0 Test results [14]
= - NO:Y i -4- NO:3
O~8— cg}g\\ x o NO:2 08' X =0 NQO:4
RN Wil
0.6r f# = a 06F £ Tun
L@/ O O~ o - NN
0.4 £ < T 0.4+ f b
R ¥ &*s-;:%__dﬂ
0.2 0-2
I 1 L | 1 1 > : L L L L 1 L
0 2.0 4.0 6.0E/Ey 0 2.0 4.0 6.0 E/Ey
(a) (b)

Fig.8 Comparison of average stress-average strain curves with experimental results'¥.
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Fig. 10 The variations of outward displacement (continued).

all the imperfections need not be imposed to get a reasonable solution, But without knowing what factors
basically affect the strength of the cylinder it is harmful to do such assumptions. In the other three
specimens buckling occurred near the top or bottom diaphragm (not symmetric about the mid section as it
was assumed in the specimen NO : 1),

(5) Example5 Effect of R/t ratio and the magnitude of initial deflection on the ultimate

strength

Here five cylindrical shells with R/ ratio varying from 50 to 200 are each solved twice with two sets of
initial deflections as shown in Fig. 11. The boundary conditions are the same as those of Example 3. The
initial imperfection mode of w=wy.y sin (zX /L) is assumed with the same notations as in Example 3.
The magnitude of 1y, of Case 2 is obtained by giving the maximum fabrication tolerance specified in
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AN L/R=0. 25/_,
‘;\ Case 2 wmax=0.04 Rt # ()'u/()'y
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© 4 1 L
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R/t Fig. 12 Comparison of obtained strength curves with design

de curves.
Fig. 11 Comparison of magnitudes of initial deflection. co

ECCS code!”, It is seen that the initial deflections observed in the Nagoya University test program are
much smaller than the fabrication tolerance of ECCS. The parameter R,¥ was drawn versus ¢,/g, to
illustrate the result (Fig.12), where

The points obtained from Examples 4 and 5 are also plotted in the same diagram. The computed strengths
for test specimens are lying above the AISC'? design code curve and the experimental curve'” while the
curves of Case 1 and Case 2 lie below those. Results of Case ] are in good agreement with ECCS' strength
curve, However, the ECCS strength curve is found to be optimistic for initial deflections of Case 2. The
solid curve has been obtained from the Nagoya University tests" as well as the tests of Lehigh
University'” . Therefore it may be though of that initial deflections observed in actual fabricated pipes are
much smaller than those specified in ECCS (or Case 2 initial deflections). It can be concluded from the
Figs. 11 and 12 that the ultimate strengths are higher for smaller magnitudes of initial deflections (tested
specimens) and lower for larger initial deflections (Case 1 and Case 2).

8. CONCLUSIONS

The post-buckling behavior of axially loaded cylindrical shells was studied using a nine-node
degenerated, isoparametric shell element. Both initial deflections of shell surface and residual stresses
caused by welding are included in the analysis. From the extensive numerical study, the following
conclusions have been drawn :

(1) The developed element has the ability of solving a variety of non-linear shell problems with high
accuracy., ‘

(2) The outward displacements of compressed cylindrical shells are localized near their ends
regardless of the initial imperfection pattern along the axial direction.

(3) The residual stresses found for fabricated tubes are less effective on the ultimate strength.

(4) The initial deflection mode affects the buckling mode as well as the load-deformation
characteristics in the post-critical range.

(5) The maximum strengths are, however, less sensitive to the initial deflection mode.

(6) The ECCS strength curve for cylindrical shell in compression is found to be optimistic for the
maximum initial deflection specified in the rule.
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